Carl Kingsford, 02-201, Fall 2015

Lecture 6: Types and Expressions

Types

Since the computer only operates on bits, we need a way to specify how to interpret particular sets of bits. Do

these bits represent an integer? a string? a real number?

Go (and many programming languages) do this via types, which we saw a little bit last time. Now, we'll see

more of the types that Go has built in.

Number-based types

Type Data
int Positive or negative integers
uint Non-negative integers (u = unsigned)
bool Holds true or false
float64 Real, floating point number

complex128 Complex number (real, imaginary)

string Holds a sequence of characters

Some example variable definition:

var m uint = 10

var small bool = true

var big bool = m > 10

var e, pi floate4 = 2.7182818285, 3.14
var name string = "Carl"

var root complex64 = 3 + 71

Examples
3,-200,40,42
0,3,7,11,13
true
3.14159, 12e-3, 0.23
10 + 3i

"Hello, world"

Literals

Explicit values for variables are called literals.

¢ Integer literals: a sequence of digits 0,1,2,...,9

72

6402

000734

OXFF // hexadecimal literals start with ©x

e String literals: a sequence of characters between quotes "

"Hi there”
e // unicode characters supported in strings
"1+==4"

"3.14159" // this is a string NOT a number

e bool (Boolean) literals: either true or false

true
false

¢ Floating point (real) literals: a number with a"." or "e"

7.

7.0

.32456
1.21212121
12E2

10E+3
1le-2

aEb means a x 10b.

¢ Imaginary literal: floating point literal with i after it

7.01
7i
le-5i

Items in an expression must have the same type

var a float64 = 3.0 // ok!

var b float64 = "4.0" // ERROR! “4.0” is a string

var ¢ int = 3.0 // ERROR! 3.0 is not an int

var d string = 7000 // ERROR!

var e int = 2 // ok

var f uint = e // ERROR! e is an int not a uint

var ok bool = 0 // ERROR! @ is not a bool

var ok2 bool = e > 1 // ok: boolean expression

var scale int = 2 // ok

var t float64 = 2.3*scale // ERROR! 2.3 is a float, scale is an integer
var t2 float64 = 2*scale // ERROR! 2*scale is an integer

Everything in a Go expression must have the same type.

Type converstions

You can change the type of a variable in an expression by type casting.

You use the syntax: TYPE(EXPRESSION) to change the type of EXPRESSION to TYPE.

var time floate4 = 7.2 // ok
var r int = time // ERROR! time not an int
var round int = int(time) // ok!!!l pound will equal 7

You know that time is 7.2, but Go doesn’t know that, so it trusts you that you want to change time to an int.

When converting a floating point number to an int, Go will throw away the fractional part.
Conversion challenges

var a, b floated4 = 7.6, -13.9
var ¢, d int = int(a), int(b)

Q: What values do ¢ and d have?

var u int = -70
var q uint = uint(u)

Q: What value does g have?

Variables have limited range

Type Min

int -9223372036854775808

uint 0

float64 -1.797693134862315708145274237317043567981e+30

Question: What does this print?

var i int = 9223372036854775807
fmt.Println(i+l)

Max

9223372036854775807

18446744073709551615

1.797693134862315708145274237317043567981e+308

Go has types that let you specify how many bits they use:

Type Number of bits

int 32 or 64 depending on your computer
uint 32 or 64 depending on your computer (but always same size as int)
int8 / uint8 8

int16 / uint16 16

int32 / uint32 32

int64 / uint64 64

float32 32

float64 64

complex64 32 for each of the real and imaginary parts
complex128 64 for each of the real and imaginary parts
byte another word for int8

rune another word for int32

Tip: use int, float64, and complex128 unless you have memory limitations.

string types

A variable that can hold a string has type string :

var name string = "Carl"

Summary of types
e Types in an expression must agree.
e Be sure you don’t corrupt your data by converting to the wrong type.

e Everything else is basically details that you have to know to program, but that shouldn’t be forefront in
your mind.

Expressions & Operators

Operations on integers

a + Db addition a - Db subtraction

a * Db mulplication —a negation

+a doesn’t do anything, but available for symmetry with -

/ b integer division: 2/3 = 0; 10/3 = 3; -10/3 = -3
a results are truncated toward O

lfg=x/yandr=x%y then

x=qgq%y+r and |r| <|y|

modulus (aka remainder):
a %$ b 183%2=1,10%2=0;10%3=1
-10 % 3 =-1 (since -10 = 3*(-3) - 1)

Increment and decrement on integers

Adding and subtracting 1 is so common there is a special notation for it:

a++ isthesameas g = a + 1

a - 1

a—-— Isthesameas @

Operations on real values

The standard mathematical operations on real values are supported:

a+ba-ba*b-a+aa/b

Real-valued division is of limited precision:

2.0/3.0 = 0.6666666666666666
10.0/3.0 = 3.3333333333333335
-10.0/3.0 = -3.3333333333333335

Example expressions

a+b/3+2
(a+b) / 3 + 2
-a*(3+c - d)

Boolean variables and operators
A Boolean variable is a variable that can hold two possible values: either true or false .

Boolean operators combine boolean variables:

a && b trueifandonlyif aand b are both true

a ‘ ‘ b trueif and only if one of a or b is true

Go also has comparison operators, the result of which is a Boolean value:

a<D>b a>Db a == b equals

a<=b a > b a != Db notequals

Examples with Boolean values:

a=10
b=50
a>10 && b > 20 false b==50 || a == 10 && b >= 100 true

Examples, true or false?

a==10 && b < 100 && a*b > 1000 false a>5 && b>20 || a==0 && b==0 true
a>20 || b < 51 || b-a*b > 0 true a>5 || b>20 && a==0 || b==0 true
a=10 && b=50 syntax error! a>5 || (b>20 && a==0) || b==0 true

a==10 && b >= 100 || b == 50 true

Packages

e Packages are collections of functions you can use in your program.

¢ Go provides many built-in packages: see hitp://golang.org/pkg/

o Enable the use of a package with:

import "packageName"

at the top of your program.

¢ If you need to import lots of packages, you can write:

import (
"packagel”
"package2"
"package3"

at the top of your program.

e The fmt package providesthe fmt.Print and fmt.Println functions we've used a lot.

The math package

http://golang.org/pkg/

The math package contains many funtions related to mathematical operations. For example:

func Abs(x float64) float64
func Min(x, y float64) float64
func Pow(x, y float64) float64d

To use the math package, put import "math" at the top of your program. Then these functions are
avaliable with the following syntax:

math.Abs(x)
math.Min(x,y)
math.Pow(x,y)

When using a function F from a package X ,youwrite X.F .

The strings package

The strings package provides many functions to operate on strings. This example tests whether one
string has another as a substring:

var a string = "hi, there"

var b string = "the"

if strings.Contains(a, b) {
fmt.Println("String a contains string b!")

e Avery large part of programming in practice is looking up how to use functions in existing packages.

The strconv package and error

Suppose we have an string "42" that we want to convertto an int . We cannot do:

// BAD CODE BAD CODE BAD CODE BAD CODE
var s string = "42"

var x int64

x = int64(s) // WRONG!

// BAD CODE BAD CODE BAD CODE BAD CODE

The reason we can't do this is that converting a string to an integer involves more than just relabeling its type. It
requires interpreting the string in a way we understand as decimal notation. Instead, we have to use a function
to do this conversion.

var err error
X, err = strconv.ParseInt(s, 10, 64)

What's going on here? strconv.ParselInt is a function that takes 3 parameters:

¢ the string to convert
¢ the base of the integer that the string is written in
¢ the number of bits used to represent the integer

It also returns 2 values:

e the value inthe stringas an inté64
¢ an error value that indicates whether the operation work

Whatis an error value? error is atype thatcan hold either an error code or the special value nil
indicating no error.

Test yourself: What happens if you run this code:

var x inte4

var err error

X, err = strconv.ParseInt("StampyCat", 10, 64)
fmt.Println("x=", x, "err=", err)

Finally, note that strconv.ParseInt alwaysreturnsan inté64 ---if you want a different size int, you
must convert the result you get.

The strconv package contains many functions to convert between various types and string s.
Next time, we'll see how to handle the case when you get an error like the one above.

On your own: What happens when you run this code:

var x string
x = string(0x1f601)
fmt.Println(x)

Why?

Summary

e Every variable has a type that tells Go how to interpret the bits that represent that variable.
¢ In Go, everything in an expression must have the same type.
¢ You can convert between types by using the type name like a function: int(myFloatVar).

¢ Consistent with other types: string(103) reinterprets the number 103 as a string. It does not turn 103 into a
string "103" of the decimal representation of 103.

e Packages provide lots of useful pre-defined functions, one of which is to convert numbers into strings (and

vice versa).

Glossary

e package: a group of functions that you can import to use in your program
¢ literal: an explict value like 23, "hi", or 2.3 in your program

¢ type casting: changing the type of an expression

e error: is a special type that holds an error code

e Boolean: a type that can hold true or false

