
Programming for Scientists
!

Introduction
02-201 / 02-601

What is Programming?

Programming is clearly, correctly telling a computer what to do.

func gcd(a int, b int) int {!
! var c int!
! if a == b {!
! ! return a!
! }!
! if a > b {!
! ! c = a - b!
! ! return gcd(c, b)!
! } else {!
! ! c = b - a!
! ! return gcd(a, c)!
! }!
}

Programming language
provides for a formal, textual

representation of an algorithm

Algorithm:
Idea of what

computer
should do

Programming

Compiler: a program itself that
turns our notation into

something the machine can run

Executable
Program

f(t) =

Z t

0

1

ln(t)
dtCalculus is a formal notation for

a branch of mathematics:

Programming languages
provide an even more formal
description of algorithms.

Why is Programming Important?

- simulation
- statistical tests
- data cleaning
- data visualization
- search
- data processing → insights
- machine learning (predicting attributes)
- modeling

This case almost doesn’t need to be made nowadays:
!
Facebook, Google, LinkedIn, Twitter, Pinterest, DuoLingo, Flappy Bird, NetFlix, iTunes,
Microsoft Word, Minecraft, …

These are both “programs” and part of nearly all of our lives.

Why is programming important for scientists?

Example Programs in Science

Genome Sequencing

A Cow Genome

Sequencing
technologies

produce millions
of “reads” = a
random, short

substring of the
genome

If we already know the genome of one cow, we can get reads from a 2nd cow and map them
onto the known cow genome — Need to do millions of string searches in a long string.

Bioinformatics (2009) 25(14):1754-1760.

Sailfish: Ultra-fast Gene Expression Estimation

Sailfish quickly determines the relative
expression level of genes and their isoforms

GCTCAGTGTTGTTTGTCTGCTTGTTTGCGACGGAG
CCCTATACCTTCTGCATAATGAATTAACTAGAAAT
GCAGCAGCCACAGCGGGGAGAAGCCGCACCACTGC
CCGGACCAGCTTTAGCAAGATCTCCAGCATCCACC
ATCACCTCTGACGGTGTCAGTCATCGAGGACCGGC
GATTTTTGAAGGACTAGATAGTTATTCTGGTCTCT
CGGACCCAGCCAATCGGGATCGGCGGACGCCCATC
GGAGAATCCACAGGAGGGAGAGGAGGAAAGGGAAC
CGTTGGGACTAATGGGCTGGGGAGGAAGGTCATCG
CAGAGTCATAGAGTTAATTAGCGTGTGTCAGGAGT
CTCCGGGCAAGCCACCTAGGCCGTCCTGCGCTGTC
CTGGTCTACTCAGCCTACTAAGGCAGCGGGTGGAG
GTACAGTGGCACAATCTTGACTCACTGCAACCTCT
GTCTGGTGCATGTGATGAAACCTGCAGCTTTATCG
GAAAAAGGTTAGTGTTTGGGGGCCGGGGGAGGAGT
GTGAGCTACCGCGCCCGGCCTATTTACTTTTCTTA
CGTCTGCCCATAGGCGAAGATGCACACGTTGTATC
GGTGACCTGGCGGGCACTACGCAATAGCAGCTGCC
CGCGACTGTAGTCTCAGTTTCTTGGGAGGCTGAGG
CCCTCCTTAACCTCTACTTCTACCTACGCCTAATC
CCAATGTGGTCATAGGTGACAACCTTCTCCTCGCT
CACGCCTGCAACAGCGTGAATGTGTGTACCACCGA
GTGCCACCTCCCCCCGTCCCCGTGTTGCCAGGGGC
GCCAAACTGGAACGTTTGCGAGAGAAGGATAAGCA
CAGCTGAGGAAAGTACCCAGAGACTACACTACAGT
GCCACCAGATCCTGGCGCTGTCAGAAGGCCTTGCA
GACGTCCGGGAATTGCATCTGTTTTTAAGCCTAAT
GCAAGCCATCCAGGTCACTGCAGCAGCCATACTCT
AAACCAAAAACAAAAAAAACCAACAAAACCAAAAC
GTGAGCTACCGCGCCCGGCCTATTTACTTTTCTTA
CGTCTGCCCATAGGCGAAGATGCACACGTTGTATC
GGTGACCTGGCGGGCACTACGCAATAGCAGCTGCC
CGCGACTGTAGTCTCAGTTTCTTGGGAGGCTGAGG
CCCTCCTTAACCTCTACTTCTACCTACGCCTAATC
CCAATGTGGTCATAGGTGACAACCTTCTCCTCGCT
CACGCCTGCAACAGCGTGAATGTGTGTACCACCGA
GTGCCACCTCCCCCCGTCCCCGTGTTGCCAGGGGC
GCCAAACTGGAACGTTTGCGAGAGAAGGATAAGCA
CAGCTGAGGAAAGTACCCAGAGACTACACTACAGT
GCCACCAGATCCTGGCGCTGTCAGAAGGCCTTGCA
GACGTCCGGGAATTGCATCTGTTTTTAAGCCTAAT
GCAAGCCATCCAGGTCACTGCAGCAGCCATACTCT
AAACCAAAAACAAAAAAAACCAACAAAACCAAAAC

.	

.	

.

10m to 100m
reads
sampled from
genes
expressed
during a
condition

SAILFISH

• Measuring gene expression is a fundamental way to uncover organism
response to stimuli & to determine gene function

RNA-seq:

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5000 10000 15000 20000 25000 30000

E
xp

re
ss

io
n

le
ve

l

Gene

1gb to
20gb

7

Cell Organizer

CellOrganizer can learn models of

 • cell shape
 • nuclear shape
 • chromatin texture
 • vesicular organelle size, shape and position
 • microtubule distribution.

http://cellorganizer.org

Modeling Biological Reactions

RuleBender &
BioNetGen

Software for
modeling biological
pathways and
chemical reactions

http://rulebender.cs.pitt.edu/
wordpress/?page_id=16

Analysis of Gene Regulation

http://sb.cs.cmu.edu/Software/
Ziv Bar-Joseph’s group

One could go on and on…

Programming is now central to nearly all of science.

Programming as Carpentry

There are good cabinets and bad cabinets.
!
!

As with carpentry, takes practice to develop the skill to write good programs.

http://www.texastoolbox.com/cabinet-installation.htm https://woodgears.ca/dovetail/dovetail_vs_boxjoint.html

Example Go Program!

Computing the constant “e”:

Example Go I wrote on the fly last class:

package main!
import "fmt"!
!
func factorial(n int) int {!
 var out = 1!
 for i := 1; i <= n; i++ {!
 out = out * i!
 }!
 return out!
}!
!
!
func approxE(k int) float64 {!
 var out = 1.0!
 for i := 1; i <= k; i++ {!
 out = out + 1.0 / float64(factorial(i))!
 }!
 return out!
}!
!
func main() {!
 fmt.Println(approxE(10))!
}

Why Go?

• Modern language.

• Open source, industry supported (not a toy language like C0)

• Powerful, efficient, but relatively easy to learn.

• Far faster and more memory-efficient than Python.

• Has modern, important programming concepts like types and
pointers. (Python lacks both, Java lacks pointers).

• Very easy parallel programming.

• Excellent tools and documentation.

Go is more scalable than Python

https://tech.dropbox.com/2014/07/open-sourcing-our-go-libraries/

TIOBE Programming Language Survey

There are a lot of
programming
languages.
!
Some better suited
for certain jobs.
!
With a few
exceptions, all
popular languages
share many
similarities.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Most programming languages are not that different
func primeSieve(isComposite []bool) {!
 var biggestPrime = 2 !
 for biggestPrime < len(isComposite) {!
 for i := 2*biggestPrime; i < len(isComposite); i += biggestPrime {!
 isComposite[i] = true!
 }!
 biggestPrime++!
 for biggestPrime < len(isComposite) && isComposite[biggestPrime] {!
 biggestPrime++!
 }!
 }!
}

def primeSieve(isComposite):!
 biggestPrime = 2!
 while biggestPrime < len(isComposite):!
 for i in xrange(2*biggestPrime, len(isComposite), biggestPrime):!
 isComposite[i] = True!
 biggestPrime += 1!
 while biggestPrime < len(isComposite) and isComposite[biggestPrime]:!
 biggestPrime += 1

void primeSieve(std::vector<bool> isComposite) {!
 int biggestPrime = 2;!
 while (biggestPrime < isComposite.size()) {!
 for (int i = 2*biggestPrime; i < isComposite.size(); i += biggestPrime) {!
 isComposite[i] = true;!
 }!
 biggestPrime++!
 while (biggestPrime < isComposite.size() && isComposite[biggestPrime]) {!
 biggestPrime++!
 }!
 }!
}

Go:

Python:

C++:

Program for
computing
prime
numbers

Programming Languages Go Out of Style

For it’s entire history, nearly all iOS apps were
developed in a language called Objective-C

In June, Apple released a new language
called Swift that most new apps will be
written in.
!
If you think of programming as being specific
to a language, this is a major change.

You can’t get fixated on a single language —

The Goals of Programming

1. Correctness – paramount; incorrect programs aren’t worth much

2. Maintainability – more people will use and modify code than will
write it the first time. Maintainability also leads to correctness.
Function follows form.

3. Robustness – tolerate user errors, changes in machine
configuration, changes in operating system, etc.

4. Efficiency – work using as few computational resources as
possible.

Example Programing Mistakes (bugs)

!
A goal of the course is that you will write programs that avoid these kinds of

embarrassing mistakes.

©
20

08
 N

at
ur

e
Pu

bl
is

hi
ng

 G
ro

up
 h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

BLOSUM62 is a widely used algorithm to
compare protein sequences, described in
1992.
!
In 2008, researchers reported that the code
computing it contained several bugs.
!
Computational thinking: testing, assuming
things are wrong until you check they are
right.

©
20

08
 N

at
ur

e
Pu

bl
is

hi
ng

 G
ro

up
 h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

©
20

08
 N

at
ur

e
Pu

bl
is

hi
ng

 G
ro

up
 h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

Bug: goto fail;
In early 2014, Apple revealed that their secure internet connection code had a
huge bug that introduced a big security flaw:

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)!
 goto fail;!
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)!
 goto fail;!
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)!
 goto fail;!
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)!
 goto fail;!
 goto fail; /* this code causes the SSL check to always succeed!*/!
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)!
 goto fail;!
!
err = sslRawVerify(...);

http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

Heartbleed bug in OpenSSL was also found around the same time: it allowed
snooping of data in your computer’s memory.

Programming is Like Writing

You want to express your thoughts  
(in this case an algorithm) clearly.

!
You write, revise, edit, refine.

!
In a quest for:

!
correctness, clarity, and style

Both your English writing and your code should be precise & concise.

Ways to Run Go

playground
go run foo.go

go build
go test

1. Type your program into a text
file whose name ends with “.go”

2. Then compile and run your
program from the command line
(cmd in Windows, Terminal in
OS X):

go run hw.go

Using the Go
Playground

1. Type your program into the
web form at:

2. Press “run”
go run hw.go

http://play.golang.org

Building Executables You Can Share

1. Create the green directory structure.

2. Create a directory for every program you
want to write (can add more later, of course)

go build

go/!
 src/!
 username/!
 computePrimes/!
 primes.go!
 utils.go!
 gcd/!
 gcd.go!
 bigint.go!
 util.go!
 bin/!
 pkg/

3. Write your program, splitting into as
many .go files as you want under the program
directory.

4. “cd” into the program directory and run

this will produce an executable with the name
= to the directory name.

5. Run this program with: ./computePrimes

Overview of the Class

• First part: learn most of Go, write some programs in it. Learn fundamental
programming concepts.

• Data structures: stacks, queues, lists, binary search trees, heaps, graphs.

• Software engineering: version control, unit testing, profiling, coverage tests,
documentation, style, good interface design.

• “Object-oriented programming”: a style of programming aimed at controlling
complexity.

• Parallelism: Co-routines, using multiple processors at once, locks, and threads.

• C++: Another view of object-oriented programming, memory management,
generics (i.e. template programming).

• Python: Comparison with Go and C++.

See syllabus for more details!

Grading

• 8 - 12 programming assignments: 70% of your grade

• You must work on program assignments on your own (unless
otherwise noted).

• You cannot look at other’s code or share code.
• You may discuss the problems in a general way without sharing

code.

• Programs will be submitted to Autolab and graded automatically for
correctness.

• An additional part of your programming grade will be good style
and design.

Midterm and Final

• Midterm counts for 15%

• Final counts for 15%

• Midterm will be in class.

• Final will be held at the time scheduled by the university.

Resources

Book: free online at: http://www.golang-book.com

The Go Programming Language Specification
http://golang.org/ref/spec

A Tour of Go
http://tour.golang.org/#1

Effective Go
http://golang.org/doc/effective_go.html

http://www.golang-book.com
http://tour.golang.org/#1
http://golang.org/doc/effective_go.html

Office Hours / Help Sessions

• We will have 3-4 special “help sessions” per week.

• These are entirely optional.

• During the first few minutes, a TA will go over something from the
topic of the week that would benefit from another example or some
more discussion.

• Then the TA will take questions and provide individual help on
homeworks, etc.

Homework 0: Due Thursday

1. Complete the background survey on BlackBoard.

2. Please find a way to run Go:
• on your personal computer, (see http://golang.org/doc/install)
• through the CMU Linux Timeshares, (see http://www.cmu.edu/

computing/clusters/software/timeshares.html)
• or in a lab (BH 140F, Wean 5207)
• (or all 3)!

3. Work through the examples here: http://golang.org/doc/code.html

4. Read chapters 1-3 of An Introduction to Programming in Go by Caleb
Doxsey: http://www.golang-book.com

http://golang.org/doc/install
http://www.cmu.edu/computing/clusters/software/timeshares.html
http://golang.org/doc/code.html
http://www.golang-book.com

Summary

• Programming is central to science.

• The “Go” language is efficient, expressive, and modern.

• Learning Go will make it easy to learn many other languages.

• Programming languages come and go, but nearly all of the work of
programming has nothing at all to do with the notation.

