
More Examples
02-201 / 02-601

Debugging

How to Debug

• Debugging is solving a murder mystery: you see the evidence of
some failure & you try to figure out what part of the code caused it.

• It’s based on backward reasoning:

• I see A, what could have caused A?

• It could have been B or C or D or E or F.

• It isn’t B because if I comment out that code, I still get the problem.

• It isn’t C because if I add an “if” statement to check if C is
happening, I see that it is not.

• It isn’t D because I wrote a small test program, and D can’t
happen.

• It isn’t E because I print out the value of E, and it’s correct.

• So it must be F.

Bug are “normal”

\sum_{i=1}^{x^2} \alpha^i + 3i^2

x

2X

i=1

↵i + 3i2TEX

TeX is a system for typesetting mathematical and scientific papers.
It’s was written by Don Knuth (Stanford CS prof), and still widely used.

http://texdoc.net/texmf-dist/doc/generic/knuth/errata/errorlog.pdf

More Programming Examples

Example: Random Walks
Simulate a random walk on an n-by-n chessboard

(n/2, n/2)

n

n

Example: Random Walks

func randDelta() int {!
 return (rand.Int() % 3) - 1!
}!
!
func randomWalk(n, steps int) {!
 var x, y = n/2, n/2!
 fmt.Println(x,y)!
 for i := 0; i < steps; i++ {!
 var dx, dy int!
!
 for dx == 0 && dy == 0 {!
 dx = randDelta()!
 for x+dx < 0 || x+dx >= n {!
 dx = randDelta()!
 }!
!
 dy = randDelta()!
 for y+dy < 0 || y+dy >= n {!
 dy = randDelta()!
 }!
 }!
 x += dx!
 y += dy!
 fmt.Println(x,y)!
 }!
}

Loop to keep position
within [0, n) x [0, n)

rand.Int() returns a random
non-negative integer.
!
Must put
 import “math/rand”
at top of your program.

Note the code duplicating
the test for an in-field
coordinate.
!
This isn’t very good.
!
Better to break this out into
a function.

x y
5 5
4 5
3 4
2 5
3 4
4 5
5 6
4 5
3 4
4 4
5 4
4 5
4 6
4 5
4 6
5 7
6 8
5 8
5 7
6 6

Loop to make sure we
move.

Simulate a random walk on an n-by-n chessboard

New Version With Better Functions

func randDelta() int {!
 return (rand.Int() % 3) - 1!
}!
!
func inField(coord, n int) bool {!
 return coord >= 0 && coord < n!
}!
!
func randStep(x,y,n int) (int, int) {!
 var nx, ny int = x, y!
 for (nx == x && ny == y) || !inField(nx,n) || !inField(ny,n) {!
 nx = x+randDelta()!
 ny = y+randDelta()!
 }!
 return nx, ny!
}!
!
func randomWalk(n, steps int) {!
 var x, y = n/2, n/2!
 fmt.Println(x,y)!
 for i := 0; i < steps; i++ {!
 x,y = randStep(x,y,n)!
 fmt.Println(x,y)!
 }!
}

This version is:
• clearer
• more flexible — perhaps we can use randStep()

someplace else.
• Slightly shorter (25 vs. 26 lines)

“Style” Tip

• Break your program into short functions that do a single,
well-defined job.

! Functions / Modularity!
•	
 Is your program partitioned into a set of reasonable functions?!
◦!Do your functions accomplish a single task?!
◦!Are your functions potentially re-usable in other contexts?!

•	
Does the input and output for your functions make sense?!
◦!Don't take in more inputs then you need!
◦!Don't output more then you want

• Not just about “style”, but small functions let you think about
one thing at a time.

Command Line Arguments

import “os”!
!
! // …!
!
func main() {!
! fmt.Println(os.Args[1])!
}

os.Args[i] the ith argument on the command line when your program was run.
(i=0 is a special case and the parameters are in i ≥ 1)

go run myProgram.go a 3 77 “another param”

Command line arguments provide a way for
the user to pass values into your program:

$ go run revint.go 70
7
$ go run revint.go 7023
3207
$ go run revint.go -7023
-3207
$

Package “os” provides access to these parameters:

•os.Args[1] = “a”!
•os.Args[2] = “3”!
•os.Args[3] = “77”!
•os.Args[4] = “another param”!
•os.Args[0] = “myProgram”

Note: all os.Args[i] are
strings even if they look
like numbers.

os.Args[0] holds some
representation of the
name of your program.

len(os.Args) the number of command line arguments + 1

Example: Print a Diamond

 #
 ###
 #####
 #######
 #########
 ###########
 #############
 ###############
 #################
 ###################
 #################
 ###############
 #############
 ###########
 #########
 #######
 #####
 ###
 #

func printDiamond(n, shift int)

shift = number of
characters to shift

diamond right

n = number of lines
(must be odd)

printDiamond(19,5)

dn/2e

bn/2c floor = smallest
integer ≥ n / 2

ceil = largest
integer ≤ n / 2

 #
 ###
 #####
 #######
 #########
 ###########
 #############
 ###############
 #################
 ###################
 #################
 ###############
 #############
 ###########
 #########
 #######
 #####
 ###
 #

Break into two subproblems:
! printTriangle(n, shift int)!
! printInvertedTriangle(n, shift int)

Example: printDiamond
 #
 ###
 #####
 #######
 #########
 ###########
 #############
 ###############
 #################
 ###################
 #################
 ###############
 #############
 ###########
 #########
 #######
 #####
 ###
 #

Break into two subproblems:
! printTriangle(n, shift int)!
! printInvertedTriangle(n, shift int)

func printDiamond(n, shift int) {!
 if n % 2 == 0 {!
 fmt.Println("Error! n must be odd; it's", n)!
 } else {!
 printTriangle(n / 2 + 1, shift)!
 printInvertedTriangle(n/2, shift+1)!
 }!
}

Check that the parameters are
valid. This is good practice.

Print top triangle.

dn/2e = n/2 + 1

Print bottom triangle.

Since n is odd:

bn/2c = n/2

What’s going on here?
Since n is an integer variable and 2 is an integer
the code n / 2 does integer division and rounds down.

The bottom triangle is slightly shorter and shifted to the right by 1 extra space.

Top-Down Program Design

• We “used” the printTriangle() and printInvertedTriangle() functions in
our thinking before we wrote them.

• We know what they are supposed to do, so we could use them to write
printDiamond() even before we implemented them.

• In a sense, it doesn’t matter how printTriangle() and
printInvertedTriangle() are implemented: if they do what they are supposed to
do, everything will work.

• It’s only their interface to the rest of the program that matters.

• This is top-down design, and it’s often a very good way to approach writing programs:

1. start by breaking down your task into subproblems.

2. write a solution to the top-most subproblem using functions for other subproblems that you will
write later.

3. then repeat by writing solutions to those subproblems, possibly breaking them up into
subproblems.

Good Programming:!
!

Break big problems into small functions with good
interfaces.

printTriangle(n,shift)

func printTriangle(n, shift int) {!
 var size int = 1!
 for row := 0; row < n; row = row + 1 {!
 // print space to indent row!
 for i := 1; i <= (n - 1) - row + shift; i = i + 1 {!
 fmt.Print(" ")!
 }!
 // print the right number of symbols in a row!
 for i := 1; i <= size; i = i + 1 {!
 fmt.Print("#")!
 }!
 size = size + 2!
 fmt.Println()!
 }!
}

The size variable
tracks the

number of # to
print on the
current row.

loops for n rows
(0 to n-1)

Tip: watch out for
“off-by-one” errors:
e.g. using row <=
n or row := 1
(though using both
would be ok)

Print a newline
(return) character

after each row

size goes up by
2 after each row

Lines that start
with // are comments
for the human
reader

loops for size times
to print out the right
number of #

Why n - row - 1 + shift?

 #
 ###
 #####
 #######
 #########
 ###########
 #############
 ###############
 #################
 ###################
 #################
 ###############
 #############
 ###########
 #########
 #######
 #####
 ###
 #

for i := 1; i <= (n - 1) - row + shift; i = i + 1 {!
 fmt.Print(" ")!
}

4

0
1
2
3

n -1

row

when row = n-1, loop should execute shift times
when row = n-2, loop should execute 1 + shift times
when row = n-3, loop should execute 2 + shift times

At each row, one fewer space should be written.
The last row (numbered n-1) should have shift spaces
written.

0

n-1

row

(n-1) - row

printInvertedTriangle(n,shift)

func printInvertedTriangle(n, shift int) {!
 var size int = 2*n - 1!
 // Note: this loop counts down!
 for row := n; row > 0; row = row - 1 {!
 for i := 1; i <= n - row + shift; i = i + 1 {!
 fmt.Print(" ")!
 }!
 // print the right number of symbols in a row!
 for i := 1; i <= size; i = i + 1 {!
 fmt.Print("#")!
 }!
!
 size = size - 2!
 fmt.Println()!
 }!
}

In first iteration of the
row loop, row == n, so
n - row = 0, and this
loop iterates shift times

size starts at the size of
the top-most row, which
has 2n - 1 symbols in it.

Complete Code for
Diamond Example

func printTriangle(n, shift int) {!
 var size int = 1!
 for row := 0; row < n; row = row + 1 {!
 // print space to indent row!
 for i := 1; i <= n - row - 1 + shift; i = i + 1 {!
 fmt.Print(" ")!
 }!
 // print the right number of symbols in a row!
 for i := 1; i <= size; i = i + 1 {!
 fmt.Print("#")!
 }!
 size = size + 2!
 fmt.Println()!
 }!
}!!
func printInvertedTriangle(n, shift int) {!
 var size int = 2*n - 1!
 // Note: this loop counts down!
 for row := n; row > 0; row = row - 1 {!
 for i := 1; i <= n - row + shift; i = i + 1 {!
 fmt.Print(" ")!
 }!
 // print the right number of symbols in a row!
 for i := 1; i <= size; i = i + 1 {!
 fmt.Print("#")!
 }!
 size = size - 2!
 fmt.Println()!
 }!
}!!
func printDiamond(n, shift int) {!
 if n % 2 == 0 {!
 fmt.Println("Error! n must be odd; it's", n)!
 } else {!
 printTriangle(n / 2 + 1, shift)!
 printInvertedTriangle(n/2, shift+1)!
 }!
}

Nested statements are
indented for clarity

Comments are added to make
code more readable
!
(don’t overdo comments though!)

A worse way to write printDiamond()

func badPrintDiamond(n, shift int) {!
 if n % 2 == 0 {!
 fmt.Println("Error! n must be odd; it's", n)!
 } else {!
 var size int = 1!
 for row := 0; row < n/2+1; row = row + 1 {!
 // print space to indent row!
 for i := 1; i <= (n/2+1) - row - 1 + shift; i = i + 1 {!
 fmt.Print(" ")!
 }!
 // print the right number of symbols in a row!
 for i := 1; i <= size; i = i + 1 {!
 fmt.Print("#")!
 }!
 size = size + 2!
 fmt.Println()!
 }!!
 size = n - 1!
 for row := (n/2); row > 0; row = row - 1 {!
 for i := 1; i <= (n/2) - row + shift+1; i = i + 1 {!
 fmt.Print(" ")!
 }!
 // print the right number of symbols in a row!
 for i := 1; i <= size; i = i + 1 {!
 fmt.Print("#")!
 }!
 size = size - 2!
 fmt.Println()!
 }!
 }!
}

Must understand the entire function before you really know what it does.
Bugs in top part affect execution of bottom part (what if you reassigned n accidentally someplace?)

Bug! In fact, there is
a subtle bug here:

Coding Style

Style #1

• Indent blocks of code: things inside of a
{} should be indented and aligned.

• Go convention is to use a TAB
• 2 - 4 spaces is also ok.
• But be consistent.

func ReverseInteger(n int) int {!
 out := 0!
 for n != 0 {!
 out = 10*out + n % 10!
 n = n / 10!
 }!
 return out!
}

func badReverseInteger(n int) int {!
out := 0!
for n != 0 {!
out = 10*out + n % 10!
n = n / 10!
}!
return out}

• Use consistent spacing: e.g.:

func Hypergeometric(a,b,c,d int) int {!
//…!
}

func Hypergeometric(a, b,c, d int) int {!
//…!
}

• Choose descriptive variable names:

numSteps, numberOfSteps, nSteps n
short variable names are ok when: they are “loop
variables” (like i), or they are the main variable in a
short function (see ReverseInteger above)

• Don’t use the same name for two things. 
(e.g. don’t use a variable named KthDigit
inside a function named KthDigit)

Nested loops: Printing a “Square”

func printSquare(n int) {!
 for i := 1; i <= n; i=i+1 {!
 for j := 1; j <= n; j=j+1 {!
 fmt.Print("#")!
 }!
 fmt.Println("")!
 }!
}

carlk$ go run square.go !
##########!
##########!
##########!
##########!
##########!
##########!
##########!
##########!
##########!
##########

Style #2: Comments

• Use comments to describe tricky or confusing things in your code
• text from // to the end of a line is a comment.

• Also use comments to document what a function does.

// ReverseInteger(n) will return a new integer formed by !
// the decimal digits of n reversed.!
func ReverseInteger(n int) int {!
 out := 0!
 for n != 0 {!
 out = 10*out + n % 10!
 n = n / 10! // note: integer division!!
 }!
 return out!
}

• Code between /* and */ is also a comment:

/* ReverseInteger(n) will return a new integer formed by !
the decimal digits of n reversed. */!
func ReverseInteger(n int) int {!
//…

Goal with Style:
!

Readability & Consistency

Important because it’s likely you or someone else will have to
modify or maintain this code later.

Google Style Guides

go fmt

• Go provides an automatic code formatting utility called “go fmt”.

• Usage:

!

• This will reformat your Go program using the preferred Go style,
with all the correct indentations, etc.

• Note: your program must be a correct Go program for this to work
(it won’t format code with syntax errors)

$ go fmt revint.go
revint.go

Style Guidelines (25% of HW grades)!
02-201 / 02-601: Programming for Scientists!

!
	
 Variables (5 points)!

•	
 Do your variables follow proper naming convention? !
◦!Descriptive but not pedantic!

•	
 Do your variables fit into the proper scope?!
◦!Global variables are almost always bad!

!
! Functions / Modularity (10 points)!

•	
 Is your program partitioned into a set of reasonable functions?!
◦!Do your functions accomplish a single task?!
◦!Are your functions re-usable in other contexts?!

•	
 Does the input and output for your functions make sense?!
◦!Don't take in more inputs then you need!
◦!Don't output more then you want!

!
! Comments (5 points)!

•	
 Did you include your name and date at the top of the file?!
•	
 Do you have comments explaining each functions use cases?!

!
! Efficiency (5 points)!

•	
 Does your code process in a reasonable amount of time?!
•	
 Do you have extraneous loops, functions, or variables that don't have any function in your current code?!
◦!Delete or comment out old code rather then let crud accumulate.!

!
Additional points may be awarded for particularly elegant solutions to complicated problems that go beyond the scope of the class.!

Summary

• To figure out why your program isn’t working, think backwards,
trying to figure out how what you are seeing could happen.

• Don’t be afraid to look at the documentation.

• “Style” is crucial: good style is important for you because it makes it
easier to debug programs.

