More Examples
02-201 / 02-601

Debugging

How to Debug

- Debugging is solving a murder mystery: you see the evidence of

some failure & you try to figure out what part of the code caused it.

- It's based on backward reasoning:

:

see A, what could have caused A?
t could have beenBorCorD or E or F.
t isn’t B because if | comment out that code, | still get the problem.

tisn’t C because if | add an “if” statement to check if C is
nappening, | see that it is not.

tisn't D because | wrote a small test program, and D can't
nappen.

t isn’t E because | print out the value of E, and it's correct.

- So it must be F.

Bug are “normal”

72
\sum_{i=1}A{x"2} \alphaAi + 3iN2 »TE}(>§ o' + 32'2
1=1

TeX is a system for typesetting mathematical and scientific papers.
It's was written by Don Knuth (Stanford CS prof), and still widely used.

THE ERRORS OF TyX 1
10 Mar 1978
1 Rename a few external variables to make their first six letters unique. L
2 Initialize escape_char to —1, not 0 [it will be set to the first character input]. §240 D
3 Fix bug: The test ‘id < "200’ was supposed to distinguish one-letter identifiers
from longer (packed) ones, but negative values of id also pass this test. §356 L
4 Fix bug: I wrote ‘while a A (8 V 7)’ when I meant ‘while (a A 8) V~'. §259 B
5 Initialize the input routines in INITEX [at this time a short, separate program
not under user control, in case errors occur. §1337 R
6 Don’t initialize mem in INITEX, it wastes time. §164 E
7 Change ‘new_line’ [which denotes a lexical scanning state| to ‘nezt_line’ [which

denotes carriage-return and line_feed] in print commands.
Include additional test ‘mem/[p] # 0 A" in check-mem. §168
Fix inconsistency between the eq_level conventions of macro_def and eq_define. §277 M

Mm@

About six hours of debugging time today.

INITEX appears to work, and the test routine got through start_input, chcode
[the TEX78 command for assigning a cat_code], get_next, and back.input the
first time.

e o © ®

http://texdoc.net/texmi-dist/doc/generic/knuth/errata/errorlog.pdf

More Programming Examples

Example: Random Walks

Simulate a random walk on an n-by-n chessboard

L

(n/2, n/2)

Example: Random Walks

Simulate a random walk on an n-by-n chessboard

func randDelta() int {
return (rand.Int() % 3) - 1€

}

func randomWalk(n, steps int) {
var X, y = n/2, n/2
fmt.Println(x,y)
for i := 0; i < steps; i++ {
var dx, dy int

for dx == 0 && dy == 0 { &
dx = randDelta()

for Xx+dx < 0 || X+dx >= n {<

dx = randDelta()
}

dy = randDelta()

for y+dy < 0 || y+dy >= n { &

dy = randDelta()

}
}
X += dx
y t= dy
fmt.Println(x,y)

.
.
L2
L4
.
.
.
L2
L4
.
.
.
.
.
.
.
‘e
.

rand.Int() returns a random
non-negative integer.

Must put

import “math/rand”
at top of your program.

Loop to make sure we
MOoVe.

Loop to keep position
within [0, n) x [0, n)

-Note the code duplicating

"""""" the test for an in-field

coordinate.
This isn't very good.

Better to break this out into
a function.

ouuvuooUh,pR,bS,P,UUBRLRWRUIEWN WD UIR
ONOoOooONOULUIOCDUTE BB UTO UL A U B U UTRS

New Version With Better Functions

func randDelta() int {
return (rand.Int() % 3) - 1
} e clearer

This version is:

e more flexible — perhaps we can use randStep()

func inField(coord, n int) bool { someplace else

return coord >= 0 && coord < n
} e Slightly shorter (25 vs. 26 lines)

func randStep(x,y,n int) (int, int) {
var nx, ny int = x, y
for (nx == x && ny == y) || !inField(nx,n) || !inField(ny,n) {
nx = xX+randDelta()
ny = y+randDelta()
}

return nx, ny

}

func randomWalk(n, steps int) {
var X, y = n/2, n/2
fmt.Println(x,y)
for i := 0; i < steps; i++ {
X,y = randStep(x,y,n)
fmt.Println(x,y)

“Style” Tip

Break your program into short functions that do a single,
well-defined job.

Functions / Modularity
* [s your program partitioned into a set of reasonable functions?
o Do your functions accomplish a single task?
o Are your functions potentially re-usable in other contexts?
* Does the input and output for your functions make sense?
o Don't take 1n more inputs then you need
© Don't output more then you want

Not just about “style”, but small functions let you think about
one thing at a time.

Command Line Arguments

$ go run revint.go 70

Command line arguments provide a way for
the user to pass values into your program:

$ go run revint.go 7023

Package “os” provides access to these parameters:

os.Args[i] theith argument on the command line when your program was run.
(i=0 is a special case and the parameters are ini = 1)

len(os.Args) the number of command line arguments + 1

import “os” go run myProgram.go a 3 77 *"“another param”

®*O0s.Args[l] = “a”
/] . o - "
®*0Os.Args[2] = “3"
func main() { ®*o0s.Args[3] = “T77"
fmt.Println(os.Args[1l]) e 0Ss.Args| 41 = “another param”
L ®*0s.Args[0] = “myProgram”
“"‘7 R’o
Note: all os.ArgsJi] are 0s.Args[0] holds some
strings even if they look representation of the

like numbers. name of your program.

Example: Print a Diamond

func printDiamond(n, shift int)

RHRHBHA
HHAHHBHRH
HARHHBHBHBH
HHABRHABRBHRH

i — BRI
shift = number of rtssssisiessd | = number of lines
characters to shift |[EmmEiziizizzzzzzzzszzz: J

diamond right BRI (must be odd) ~
BT
B
HAHHHHHRAH
HIHHHHH
HHHHHIH

printDiamond(19,5)

Break into two subproblems:
printTriangle(n, shift int)
printInvertedTriangle(n, shift int)

/2]

[n/2]

ceil = largest
integer<n/2

floor = smallest
integer >n /2

HUHAHHIHY
HHAAHHHRRAA
BHHAHHHRIHAAH
HHAHHH SR
BHAHHA R HHRIH
HAHR R HHH R RS S S SSHS

BHAHHH R IR
HHAHHH BRI
BHHAHH R
HHAAHHHRHAA
HUHAHHIHY

Example: printDiamond

HBRHHHH IR

HUHHAHHIRIH
HEHHHAHHRRHIA

Break into two subproblems:

printTriangle(n, shift int) s |

. . . N o
printInvertedTriangle(n, shift int) e
fis it

HBRHIHH I

if n % 2 ==0
{ valid. This is good practice.

func printDiamond(n, shift int) {
Check that the parameters are
fmt.Println("Error! n must be odd; it's", n)

} else {
printTriangle(n / 2 +]., Shlft) T LU RECCLLLLL Printtop triang|e_

printInvertedTriangle(n/2, shift+l) o
N
Print bottom triangle.

Since nis odd:
[n/z_‘ — n/Q 4+ 1 Whats going on here?
Since n is an integer variable and 2 is an integer
Ln/QJ p— n/Q the code n / 2 does integer division and rounds down.

The bottom triangle is slightly shorter and shifted to the right by 1 extra space.

Top-Down Program Design

- We “used” the printTriangle() and printInvertedTriangle () functions in
our thinking before we wrote them.

- We know what they are supposed to do, so we could use them to write

printDiamond () even before we implemented them.

In a sense, it doesn’'t matter how printTriangle() and
printInvertedTriangle () are implemented: if they do what they are supposed to
do, everything will work.

It's only their interface to the rest of the program that matters.

-+ This is top-down design, and it's often a very good way to approach writing programs:
1. start by breaking down your task into subproblems.

2. write a solution to the top-most subproblem using functions for other subproblems that you will
write later.

3. then repeat by writing solutions to those subproblems, possibly breaking them up into
subproblems.

Good Programming:

Break big problems into small functions with good
interfaces.

The size variable
tracks the

number of # to ===

print on the
current row.

size goes up by
2 after each row

...................... > Size — Size + 2

printTriangle(n,shift) "oH by-ones errors:
e.g. using row <=
n orrow := 1

(though using both
would be ok)

loops for n rows
(0 to n-1)

func printTriangle(n, shift int) {

............ > var Size int — 1 E,

for row := 0; row < n; row = row + 1 {
// print space to indent row
for 1 := 1; i <=|(n - 1) - row + shift} i =1 + 1 {
fmt.Print(" ")

}

// print the right number of symbols in a row

for i := 1; i <= size; 1 =1 + 1 { N‘.‘
fmt.Print ("#") '“

}

Lines that start

with // are comments
for the human
reader

fmt.Println()
} A

Print a newline
(return) character

loops for size times
after each row

to print out the right
number of #

Why n - row - 1 + shift?

row

for 1 := 1; 1 <= (n - 1) - row + shift; 1 =1 + 1 {
fmt.Print(" ")

HHEHBHH
HHBEHBHBHH
HHEHAH PR AH
HHBEHBEHHHHBHHBH
HHBHBHHHHBHBEHBEH
HHIHBH PR R H BT
b \WNEN row = N-1, loop should execute shift times
HHBHBHBHHHHBEHBEHBEH
HHEH BRI A AR

RHBHBHHHHBEHBEH
HHHHHHH A At each row, one fewer space should be written.

g g The last row (numbered n-1) should have shift spaces
written.

B~ WO —= O

when row = n-3, loop should execute 2 + shift times
when row = n-2, loop should execute 1 + shift times

n-1

RAAAFHRH

n-1 “(n—1) - row

, .I:H

row

printinvertedTriangle(n,shift)

size starts at the size of func printInvertedTriangle(n, shift int) {

the top-most row, Which = >var size int = 2*n -1
has 2n - 1 symbols in it. // Note: this loop counts down
for row := n; row > 0; row = row - 1 {
> for 1 :=1; 1 <= n - row + shift; 1 =1 + 1 {

.
s
s
.
.
“““
.
.
.t
.t
.t

In first iteration of the
row loop, row == n, SO }
n - row = 0, and this

loop iterates shift times

fmt.Print(" ")

// print the right number of symbols in a row
for i := 1; 1 <= size; i =1 + 1 {
fmt.Print ("#")

size = size - 2
fmt.Println()

func princtriangle(n, shift int) Complete Code for

for row := 0; row < n; row = row + 1 { e
// print space to indent zow Diamond Example
for i :=1; i <= n - row - 1 + shift; i =1 + 1 {
fmt.Print(" ")
}
// print the right number of symbols in a row
for i := 1; i <= size; i =1+ 1 {
fmt.Print ("#") Nested statements are
}- | PSR R R R ndented for clarity
size = size + 2
fmt.Println()
}
}
Comments are added to make
func printInvertedTriangle(n, shift int) ({ code more readable
var size int = 2*n -1
// Note: this loop counts down & (don’t overdo comments though!)
for row := n; row > 0; row = row - 1 {
for i := 1; i <= n - row + shift; i =1 + 1 {
fmt.Print(" ")
}
// print the right number of symbols in a row
for i := 1; i <= size; i =1 + 1 {
fmt.Print ("#")
}
size = size - 2
fmt.Println()
}
}
func printDiamond(n, shift int) {
if n $ 2 == 0 {
fmt.Println("Error! n must be odd; it's", n)
} else {

printTriangle(n / 2 + 1, shift)
printInvertedTriangle(n/2, shift+1)

A worse way to write printDiamond()

Bug! In fact, there is

a subtle bug here:

func badPrintDiamond(n, shift int) {
2 == 0 {

fmt.Println("Error! n must be odd; it's", n)
} else {

var size int =1

for row := 0; row < n/2+1; row = row + 1 {

// print space to indent row
for i := 1; i <= (n/2+1) - row - 1 + shift; i =i + 1 {
fmt.Print(" ")

}
// print the right number of symbols in a row
for i := 1; i <= size; 1 =1 + 1 {
fmt.Print ("#")
}
size = size + 2

fmt.Println()

=n -1

for row := (n/2); row > 0; row = row - 1 {

for i := 1; i <= (n/2) - row + shift+l; i =i + 1 {
fmt.Print(" ")

}

// print the right number of symbols in a row

for i := 1; i <= size; i =1 + 1 {
fmt.Print("#")

}

size = size - 2

fmt.Println()

Must understand the entire function before you really know what it does.
Bugs in top part affect execution of bottom part (what if you reassigned n accidentally someplace?)

Coding Style

Style #1

func ReverseInteger(n int) int {
out := 0
for n !'= 0 {

- Indent blocks of code: things inside of a
{} should be indented and aligned.

Go convention is to use a TAB out = 10*out + n & 10
2 - 4 spaces is also ok. n=n/ 10
But be consistent. }

return out

- Use consistent spacing: e.g.:
func badReverselInteger(n int) int {

func Hypergeometric(a,b,c,d int) int { out := 0

[/ for n != 0 {

' out = 10*out + n % 10
func Hypergeometric(a, b,c, d int) int { n=n / 10

// .)

} return out}

- Choose descriptive variable names:
short variable names are ok when: they are “loop
numSteps, numberOfSteps, nSteps o B S variables” (|Ike I), or they are the main variable in a
short function (see Reverselnteger above)

- Don'’t use the same name for two things.
(e.g. don’t use a variable named KthDigit
inside a function named KthDigit)

Nested loops: Printing a “Square”

func printSquare(n int) { carlk$ go run square.go
. . . BHEHHRHR Y
for § := 1: 3 <= n: S=4+1 BHHHHR RS
] rJ ! J=J { HEHHHRAS
fmt.Print("#") BRBHRAR
} BHHHHR RS
. BRBHHHHR Y
fmt.Println("") A
BHHHHR RS
} BRBHHHHR Y

Style #2: Comments

- Use comments to describe tricky or confusing things in your code

text from // to the end of a line is a comment.

- Also use comments to document what a function does.

// ReverselInteger(n) will return a new integer formed by
// the decimal digits of n reversed.
func ReverseInteger(n int) int {
out := 0
for n !'= 0 {
out = 10*out + n % 10
n = / 10 // note: integer division!

}

return out

- Code between /* and */ is also a comment:

/* Reverselnteger(n) will return a new integer formed by
the decimal digits of n reversed. */
func ReverselInteger(n int) int {

/7.

Goal with Style:

Readability & Consistency

Important because it’s likely you or someone else will have to
modify or maintain this code later.

google-styleguide - Style guides for Google-originated open-source projects - Google Project Hosting

Reader BES.

- AIRECIRI =48] & + _G https @ code.google.com/p/google-styleguide/ v

My favorites v | Sign in
." google-styleguide
) Style guides for Google-originated open-source projects Search projects

‘ Project Home l Source

Summary People

Project Information
Project feeds
Code license
Artistic License/GPL

Content license
Creative Commons 3.0 BY

Labels

Google, Documentation,
CPlusPlus, Objective-C, XML,
Python, JavaScript, Java

4 & Members

mmento...@gmail.com,
mark@chromium.org,
pinker...@gmail.com

16 committers

Links

External links

C++ Style Guide
Objective-C Style Guide
HTML/CSS Style Guide
XML Document Format Style Guide
JavaScript Style Guide
AngularJS Style Guide
Common Lisp Style Guide
R Style Guide
cpplint
Vimscript Style Guide
le-c-style.el
Java Style Guide

Python Style Guide
Rl Stvle Guide

Every major open-source project has its own style guide: a set of conventions (sometimes arbitrary)
about how to write code for that project. It is much easier to understand a large codebase when all
the code in it is in a consistent style.

“Style" covers a lot of ground, from “use camelCase for variable names” to “never use global
variables" to “never use exceptions.” This project holds the style guidelines we use for Google code.
If you are modifying a project that originated at Google, you may be pointed to this page to see the
style guides that apply to that project.

Our C++ Style Guide, Objective-C Style Guide, Java Style Guide, Python Style Guide, Shell Style
Guide, and Vimscript Style Guide are now available. We have also released cpplint, a tool to assist
with style guide compliance, and google-c-style.el, an Emacs settings file for Google style.

If your project requires that you create a new XML document format, our XML Document Format
Style Guide may be helpful. In addition to actual style rules, it also contains advice on designing
your own vs. adapting an existing format, on XML instance document formatting, and on elements
vs. aftributes.

These style guides are licensed under the CC-By 3.0 License, which encourages you to share these
documents. See http://creativecommons.org/licenses/by/3.0/ for more details.

go fmt

- Go provides an automatic code formatting utility called “go fmt”.

- Usage:

$ 9o fmt revint.go

revint.go

- This will reformat your Go program using the preferred Go style,
with all the correct indentations, etc.

-+ Note: your program must be a correct Go program for this to work
(it won’t format code with syntax errors)

Style Guidelines (25% of HW grades)
02-201 / 02-601: Programming for Scientists

Variables (5 points)

* Do your variables follow proper naming convention?
o Descriptive but not pedantic

* Do your variables fit into the proper scope?
o Global variables are almost always bad

Functions / Modularity (10 points)
* [s your program partitioned into a set of reasonable functions?
o Do your functions accomplish a single task?
O Are your functions re-usable in other contexts?
* Does the input and output for your functions make sense?
o Don't take in more inputs then you need
o Don't output more then you want

Comments (5 points)
* Did you include your name and date at the top of the file?
* Do you have comments explaining each functions use cases?

Efficiency (5 points)

* Does your code process in a reasonable amount of time?

* Do you have extraneous loops, functions, or variables that don't have any function in your current code?
o Delete or comment out old code rather then let crud accumulate.

Additional points may be awarded for particularly elegant solutions to complicated problems that go beyond the scope of the class.

Summary

- To figure out why your program isn’'t working, think backwards,
trying to figure out how what you are seeing could happen.

- Don’t be afraid to look at the documentation.

- “Style” is crucial: good style is important for you because it makes it
easier to debug programs.

