
Maps
02-201 / 02-601

Arrays Store Lists of Variables

3 12 3 3 7 8 10 -2 30 6 11 11 11 32 64 80 99 -1 0 12

• A list of filenames

• A list of prime numbers

• A column of data from a spreadsheet

• A collection of DNA sequences

• Factors of a number

• etc.

Arrays are fundamental data structures
Useful whenever you have a collection of

things you want to work with together.

What if you want to store populations of US states?

State or territory
Population estimate for!

July 1, 2013

 California 38,332,521

 Texas 26,448,193

 New York 19,651,127

 Florida 19,552,860

 Illinois 12,882,135

 Pennsylvania 12,773,801

 Ohio 11,570,808

 Georgia 9,992,167

 Michigan 9,895,622

 North Carolina 9,848,060

 New Jersey 8,899,339

Arrays: var statePop []int

Maps: var statePop map[string]int

statePop[“PA”] = 12773801!
statePop[“CA”] = 38332521

Access and use like an array, but:
!
• you can associate data with an

arbitrary key
!

• maps grow and shrink as needed
as you add items

http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/Texas
http://en.wikipedia.org/wiki/New_York
http://en.wikipedia.org/wiki/Florida
http://en.wikipedia.org/wiki/Illinois
http://en.wikipedia.org/wiki/Pennsylvania
http://en.wikipedia.org/wiki/Ohio
http://en.wikipedia.org/wiki/Georgia_(U.S._state)
http://en.wikipedia.org/wiki/Michigan
http://en.wikipedia.org/wiki/North_Carolina
http://en.wikipedia.org/wiki/New_Jersey

Declaring a map variable

var grades map[string]int! ! ! // strings to ints!
var rules map[string]string! ! // strings to strings!
var multi map[string][]string!! // strings to string slices!
var pop map[string]float64!! ! // strings to floats!
var ssn map[int]string // ints to strings!
var families map[string]map[string]int

map[KEYTYPE]DATATYPEBasic syntax:

As with slices, you have to “make” a map:

grades = make(map[string]int)!
rules = make(map[string]string)!
multi = make(map[string][]string)!
pop = make(map[string]float64)!
ssn = make(map[int]string)!
families = make(map[string]map[string]int)

Mental Image of a Map

Key Value
Albert 50.5
Bob 30.2

Ethan 65.45
Vivian 83
Dave 76.7

Rebecca 90.5
Susan 100
Charlie 82
Mike 33
Kelly 76
Sarah 95

Margaret 25
Lauren 21
Betty 91

Mental Image of a Map of Maps

Key Value
Albert 50.5
Bob 30.2

Ethan 65.45
Vivian 83
Dave 76.7

Rebecca 90.5
Susan 100

Key Value

CMU

Bob •

Ethan •

Vivian •

Dave •

Rebecca •

Susan •

Using Maps

• Maps look like slices, but now you index the elements using the key:

grades[“Carl”] = “A+++”!
fmt.Println(“Rule for”, x, “is”, rules[x])!
ssn[627729183] = “Dave”!
paPop = pop[“PA”]

• After you “make”, items start at their 0 value:

fmt.Println(grades[“Chuck”]) // will print “”

Map Example

// gets the Rhs for a given Lhs for a rule!
func getRhsFor(char string, lhs, rhs []string) (string, bool) {!
 for i, l := range lhs {!
 if l == char {!
 return rhs[i], true!
 }!
 }!
 return "", false!
}

• Recall this function we wrote for the Lindenmayer system:

• This assumed we had rules encoded like this:

 lhs := []string{"A", "B"}!
 rhs := []string{"B-A-B", "A+B+A"}

• But the rules are more logically encoded as a map from a string (lhs)
to another string (rhs)

Map Example, continued

// gets the Rhs for a given Lhs for a rule!
func getRhsFor(char string, rules map[string]string) (string, bool) {!
! rhs, exists := rules[char]!
! return rhs, exists!
}

• Now we can write getRhsFor() much easier:

rules := make(map[string]string)!
rules[“A”] = “B-A-B”!
rules[“B”] = “A+B+A”

• This is (a) clearer, and (b) more efficient (no loop)

• But the rules are more logically encoded as a map from a string (lhs)
to another string (rhs)

Checking if a map contains a key

• You can check to see if a map value has ever been set explicitly:

paPop, exists := pop[“PA”]!
if !exists {!
! fmt.Println(“Never set PA pop!”)!
}

paPop := pop[“PA”]

paPop, exists := pop[“PA”]

paPop will be whatever is
stored in pop[“PA”], or “” if
nothing was stored there

paPop will be set as above,
but exists will be false if
nothing was stored there

You can use any variable name
here (exists is a bool variable)

Deleting an element

delete(pop, “PA”)!
delete(rules, “A”)!
delete(ssn, x)

• You can remove an item from a map (so it looks like you never set it to
a non-zero value):

map name, key value

Map Literals

• Just as with arrays and slices, we can explicitly list what we want to
be in a map:

rules := map[string]string{!
! “A”: “B-A-B”,!
! “B”: “A+B+A”,!
}

(if you put this on
multiple lines, the last

one must have a “,” just
like the others)

Getting the Number of Elements in a Map

len(pop)

• Use the len() function to get the number of things that have been
added to a map:

m := make(map[int]int)!
m[1] = 0!
m[7] = 10!
m[8] = 0!
fmt.Println(len(m))

• Example:

Will print 3

Looping Through the Items in a Map

• Just as with arrays and slices, we can loop using the for…range
loop:

for k, v := range pop {!
! fmt.Println(“The population of”, k, “is”, v)!
}

• Note: there is no guarantee about which order the elements of the
map will be accessed in a for…range statement.

Summary

• Maps store associations between a key and a value.

• Keys must be unique within a map.

• You can use them like slices, but with more general keys.

• Maps are extremely useful.

