
Structs
02-201 / 02-601

Lindenmayer Stack Example

Xstack := createStack()!
Ystack := createStack()!
DirStack := createStack()!
!
// …!
!
Xstack = push(Xstack, x)!
Ystack = push(Ystack, y)!
DirStack = push(DirStack, dir)!
!
// …!
!
Xstack, x = pop(Xstack)!
Ystack, y = pop(Ystack)!
DirStack, dir = pop(DirStack)

• Needed to create 3 stacks to hold 3
different values.

• Logically (x,y,dir) is one thing: the current
state of our drawing pen

• This is a common situation:

• an experiment might measure
temperature, humidity, salinity

• a person might have have name, an
id#, an address, and a phone number.

• You will want to manipulate these logical
entities as a single program entity.

structs

type Contact struct {!
! firstName string!
! lastName string!
! company string!
! mobile []int!
! homeEmail string!
! homePage string!
}

• Creates a new type called “Contact”

• This type contains within it fields
corresponding to other variables.

• These variables are contained within a
Contact struct and any time you create
a Contact, these variables will be
created automatically.

Creating a struct variable

type Contact struct {!
! firstName string!
! lastName string!
! company string!
! mobile []int!
! homeEmail string!
! homePage string!
}

var me Contact

Once you’ve created a Contact type, you can use
it anyplace you used any of the builtin types:

func printContact(c Contact) {!
! // print the contact!
}

func createContact(n string) Contact {!
! // create a contact from name n!
}

You can create Contact variables:

Pass Contact variables into functions:

Return Contact variables from functions:

• You can get the fields of a struct using the “.” (dot) syntax:

Accessing the fields of a struct

func printContact(c Contact) {!
! fmt.Println(“Name:”, c.firstName + “ “ + c.lastName)!
! fmt.Println(“Company:”, c.company)!
! fmt.Println(“Email:”, c.homeEmail)!
! fmt.Println(“Web:”, c.homePage)!
}

type Contact struct {!
! firstName string!
! lastName string!
! company string!
! mobile []int!
! homeEmail string!
! homePage string!
}

Setting the Values of a Struct

func createContact(n string) Contact {!
! var c Contact!
! c.firstName = n!
! c.lastName = “Unknown”!
! return c!
}

• You can assign to a field of a struct using the same “.” syntax.

• These “c.firstName” variables act just like regular variables, and
you can manipulate them in the same way.

• The only difference is that they are bundled together in a struct.

A Better Lindenmayer Stack

type Pen struct {!
! x, y float64!
! dir float64!
}!
!
func createPenStack() []Pen {!
 return make([]Pen, 0)!
}!
!
func pushPen(S []Pen, item Pen) []Pen {!
 return append(S, item)!
}!
!
func popPen(S []Pen) ([]Pen, Pen) {!
 if len(S) == 0 {!
 panic(“Can’t pop empty stack!")!
 }!
 item := S[len(S)-1]!
 S = S[0:len(S)-1]!
 return S, item!
}

The pen state is now represented by a
struct type

You can create a slice of Pen structs just
as you would any other slice.

You can manipulate the []Pen exactly as
before.

Using the Pen Stack
func drawPlant(s string) {!
 const w, h = 10000, 10000!
 pic := CreateNewCanvas(w, h)!!
 var myPen Pen!
 myPen.x, myPen.y = 0.5*w, 0.5*h!
 myPen.dir = 0.0!
 step := 10.0!!
 penStack := createPenStack()!!
 pic.MoveTo(myPen.x,myPen.y)!
 for _, c := range s {!
 switch c {!
 case 'F':!
 myPen.x = myPen.x + step * math.Cos(myPen.dir)!
 myPen.y = myPen.y - step * math.Sin(myPen.dir)!
 pic.LineTo(myPen.x, myPen.y)!!
 case '+':!
 // turn left!
 myPen.dir = myPen.dir + math.Pi * (25.0 / 180.0)!!
 case '-':!
 // trun right!
 myPen.dir = myPen.dir - math.Pi * (25.0 / 180.0)!!
 case '[':!
 // save!
 penStack = pushPen(penStack, myPen)!!
 case ']':!
 // restore!
 penStack, myPen = popPen(penStack)!
 pic.MoveTo(myPen.x,myPen.y)!!
 case 'X':!!
 default:!
 panic("Wow, somethings really wrong.")!
 }!
 }!
 pic.Stroke()!
 pic.SaveToPNG("Plant.png")!
}!

Instead of creating x,y,dir individually, we
create a single Pen variable

We can now push and pop Pens directly
onto our Pen stack.

Suppose we wanted to add new rules like:
 ^: increases pen width
 v: decreased pen width
 R: changes pen color to red
!
We could add fields to our Pen struct and
only need to add code to handle these new
Lindenmayer commands.

• This code initializes the value of the myPen struct.

• It’s a little clunky (repeat “myPen” a lot, e.g.)

!

!

!

• Setting the initial values of a struct is a very common thing to do.

• Can use “struct literals” to do it:

Struct Literals

var myPen Pen!
myPen.x, myPen.y = 0.5*w, 0.5*h!
myPen.dir = 0.0

var myPen = Pen{x: 0.5*w, y: 0.5*h, dir:0.0}

The name of the
struct type A field name The value for

the field

func drawPlant(s string) {!
 const w, h = 10000, 10000!
 pic := CreateNewCanvas(w, h)!!
 var myPen = Pen{x:0.5*w, y:0.5*h, dir:0.0}!
 step := 10.0!!
 penStack := createPenStack()!!
 pic.MoveTo(myPen.x,myPen.y)!
 for _, c := range s {!
 switch c {!
 case 'F':!
 myPen.x = myPen.x + step * math.Cos(myPen.dir)!
 myPen.y = myPen.y - step * math.Sin(myPen.dir)!
 pic.LineTo(myPen.x, myPen.y)!!
 case '+':!
 // turn left!
 myPen.dir = myPen.dir + math.Pi * (25.0 / 180.0)!!
 case '-':!
 // trun right!
 myPen.dir = myPen.dir - math.Pi * (25.0 / 180.0)!!
 case '[':!
 // save!
 penStack = pushPen(penStack, myPen)!!
 case ']':!
 // restore!
 penStack, myPen = popPen(penStack)!
 pic.MoveTo(myPen.x,myPen.y)!!
 case 'X':!!
 default:!
 panic("Wow, somethings really wrong.")!
 }!
 }!
 pic.Stroke()!
 pic.SaveToPNG("Plant.png")!
}!

Using struct literals

Can create an initialize the pen at the
same time

Notice code is getting:
!
(a) shorter
!
(b) clearer since the program entities
now better correspond to the logical
things we’re modeling

• You can create maps where the values are structs:

!

!

• These data structures let you organize data in complex ways.

Another Common Case:
maps of structs

var people map[string]Contact !
people[“Carl”].company = “Carnegie Mellon”!
people[“Dave”].firstName = “Mike”

people[“Alice”].homeEmail = “alice@yahoo.com”

what data? the data about people.

which person? the one named Alice

what about Alice? her home email

Side Note:

var people map[string]struct{!
! company string!
! firstName string!
}!
people[“Carl”].company = “Carnegie Mellon”!
people[“Dave”].firstName = “Mike”

• You don’t need to define a struct as a new type to use structs:

• But this quickly becomes tiring to type and it makes it harder to
pass structs around to functions, etc.

• Tip: always make a new type for your structs.

• Again, can create slices of struct types just as you would any other:

!

• You access the items as usual:

!

• Note: when you create a Contact, it is initialized so that all its fields
are their “0” value.

• This means any slices inside of the struct are nil and need to be
“make”ed.

Another Common Case:
Slices of Structs

var employees = make([]Contact, 100)

employees[10].mobile = make([]int, 10)

Data Structure Example

Example: you run a small company that has several teams of employees. Each team has a
name, a meeting time, a list of members. Each employee has an id, a name, and a salary.
!
You want to be able to:

• compute the total cost of a team, and
• see if any employee is on two different teams that meet at the same time

type	 TeamInfo	 struct	 {	
	 	 teamName	 string	
	 	 meetingTime	 int	
	 	 members	 []Employee	
}

type	 Employee	 struct	 {	
	 	 id	 int	
	 	 name	 string	
	 	 salary	 float64	
}

teamName TeamInfo

map[string]TeamInfo

Writing teamCost()

// returns the total cost of team t!
func teamCost(teams map[string]TeamInfo, t string) float64 {!
! var sum float64!
! for _, emp := range teams[t].members {!
! ! sum = sum + emp.salary!
! }!
! return sum!
}

• The cost of a team is the total cost of the salaries of the members of
the team.

!
• Computing the total cost of a team:

• Our organization of the data let’s us find the members of a team with a
simple “teams[t].members” statement.

Writing timeConflict()

• We want to check if any employee is on two different teams that meet at the same time.

• This is harder, since the way we organized the data doesn’t let us directly find teams by
meeting time or even the teams an employee is on.

• Any ideas?

Writing timeConflict()

// returns true if an employee has a time conflict!
func timeConflict(teams map[string]TeamInfo) bool {!
! meetTimes := make(map[int]map[int]bool)!
!
! // for every employee!
! for _, info := range teams {!
! ! for _, emp := range info.members {!
! ! ! // if we haven’t make the map for this employee yet!
 _, exists := meetTimes[emp.id]!
! ! ! if !exists {!
! ! ! ! meetTimes[emp.id] = make(map[int]bool)!
! ! ! }!
! ! ! // if we added this meeting time to this emp in the past!
! ! ! if meetTimes[emp.id][info.meetingTime] {!
 fmt.Println("Employee", emp.name, !
! ! ! ! ! "has 2 meetings at", info.meetingTime)!
! ! ! ! return true!
! ! ! }!
! ! ! meetTimes[emp.id][info.meetingTime] = true!
! ! }!
! }!
! return false!
}

meetTimes[id][time] will be true if
employee with id has a meeting at time.

Complex Literal Data Example
func main() {!
 company := make(map[string]TeamInfo)!!
 company["appleWatch"] = TeamInfo{!
 teamName: "appleWatch",!
 meetingTime: 10,!
 members: []Employee{!
 Employee{id: 7, name: "Carl", salary: 1.0},!
 Employee{id: 3, name: "Dave", salary: 50.0},!
 },!
 }!!
 company["iPhone"] = TeamInfo{!
 teamName: "iPhone",!
 meetingTime: 3,!
 members: []Employee{!
 Employee{id: 4, name: "Mike", salary: 101.0},!
 Employee{id: 8, name: "Sally", salary: 151.0},!
 },!
 }!!
 company["iMac"] = TeamInfo{!
 teamName: "iMac",!
 meetingTime: 10,!
 members: []Employee{!
 Employee{id: 7, name: "Carl", salary: 1.0},!
 Employee{id: 10, name: "George", salary: 75.0},!
 Employee{id: 11, name: "Teresa", salary: 92.0},!
 },!
 }!!
 fmt.Println(teamCost(company, "appleWatch"))!
 fmt.Println(timeConflict(company))!
}

• Typically you would read
in your data from a file or
user input (we’ll see how
soon)

!

!

• But sometime (especially
for testing) it’s useful to
be able to specify your
data right in the program.

!

• Example at left.

Summary

• Structs group a “small” number of related variables together to be
manipulated as a unit.

• Good when your logical state has multiple parts to it.

• The “type” statement lets you define new types that work like the
built-in types you’ve used many times already.

• Maps, slices, structs, variables let you create complex organization
of your data to make answering the questions you want to answer
easier.

