Pointers
02-201 / 02-601

Complex Literal Data Example

func main() {
company := make(map[string]TeamInfo)]]]
- Notice the data duplication
company|["appleWatch"] = TeamInfo{
teamName: "appleWatch",
meetingTime: 10,]
members: []Employee({ Changlng salary here
Employee{id: 7, name: "Carl", salary: 1.0},<€="""""
Employee{id: 3, name: "Dave", salary: 50.0}, Has no effect here
}, -

}

company|["iPhone"] = TeamInfo{
teamName: "iPhone",
meetingTime: 3,
members: []JEmployee{
Employee{id: 4, name: "Mike", salary: 101.0},
Employee{id: 8, name: "Sally", salary: 151.0},
by
}
e "+ Error prone
company|["iMac"] = TeamInfo{
teamName: "iMac",
meetingTime: 10, s
members: []Employee({ - Waste of memory
Employee{id: 7, name: "Carl", salary: 1.0}, v
Employee{id: 10, name: "George", salary: 75.0},
} Employee{id: 11, name: "Teresa", salary: 92.0}, . Updatlng informatiOn SIOWGF
4 "
} because every instance

. . . must be found
fmt.Println(teamCost (company, "appleWatch"))

fmt.Println(timeConflict (company))

teamName TeamInfo
struct {
teamName = “appleWatch”
meetingTime = 10
(o 1)
appleWa’[Ch struct { struct {
members = id = 7 id = 3
name = “Carl” name = “Dave”
salary = 1.0 salary = 50.0
} } }
struct {
teamName = “iPhone”
meetingTime = 3
(134)
IPhone _|struct { struct {
members = |77, _ , id - 8
name = “Mike” name = “Sally”
salary = 101.0 salary = 151.0
} } }
struct {
teamName = “iMac”
meetingTime = 10
1K 4 struct { struct { struct {
IMac members = id = 7 id = 11 id = 10
name = “Carl” name = “Teresa” name = “George”
salary = 1.0 salary = 92.0 salary = 75.0
} } }

struct {

id = 3
teamName TeamInfo name = “Dave”
salary = 50.0
struct { J
-~
teamName = “applelWatch> Struct |
meetingTime = 10
appleWatch member‘§ i | id = 7
} name = “Carl”
salary = 1.0
}
struct {
teamName = “iPhone”
iPhone meetingTime = 3 struct {
members = E\ id = 4
Y ¢ — name = “Mike”
salary = 101.0
struct { }
teamName = “iMac’
iMac meetingTime = 40
members = L&19 |& struct {
} / \ id = 8
/ name = “Sally”
salary = 151.0
Instead of storing }
Employee structs in the struct { struct {
members slice directly, id = 10 id = 11
we can store a pointer name = “George” nhame = “Teresa”

to a struct.

salary = 75.0
}

}

salary = 92.0

Pointer Types

type TeamInfo struct { The “*” means “pointer to”
teamName string
meetingTime int This is a slice of pointers
member«s []*Employee PRI to Employee Structs

¥

Can have pointers to most types:

var name *string

var person *Employee

var pj *int

var m map[string]*Employee
var pA *[10]floate4

var Apf [10]*float64

RAM

struct
Employee {

Your computer’'s memory
Is a long chain of cells
numbered 0 to some
large number.

Address —

Each variable you declare
take up some number of

struct these cells.
Employee {

19 «—Memory

What’s a Pointer

struct
Employee {

A pointer is a variable that
holds the address of
some other variable.

Setting What a Pointer Points To

var P Employee = createEmployee()
var person *Employee

// at this point, person == nil

person = &P

A

The “&” opérator
means “address of”

Another example:

var 1 int = 10
var p *int = &1

Accessing What a Pointer Points To

var i1 int = 10

var j int = 10 You access what p points to by
var p *int = &i prefixing p with *

1 =11

fmt.Println(*p) 11

fmt.Println(p) some big number

*p = 300

fmt.Println(*p) 300

fmt. Pr‘intln(p) the same big number
fmt.Println(i) 300 o = 300
p = &J

fmt.Println(*p) 10

*p = 12

fmt.Println(*p) 10

LCeci nest nas une fufie.

L

René Magritte

Pointers are "meta” things:
An Employee is a piece of data, an “object” of your program.
A *Employee is a reference to that object.

A variable of type *Employee is not an Employee.

Accessing the fields of a struct through a pointer

var P Employee = createEmployee()
var person *Employee

// at this point, person == nil
person = &P

(*person).name = “Jerry”

A

This is so :Common, Go provides a shortcut: just use
the pointer to a struct like a struct:

person.name = “Jerry”

type Contact struct {
name string
id int

}

func main() {

var c Contact = Contact{name: "Dave",

var p *Contact = &c

fmt.Println(c)
fmt.Println(*p)
(*p) .name = "Holly"
p.1d = 33
fmt.Println(*p)

id:33}

Example: Passing A Struct to a Function

What's wrong with this code”?

type Contact struct {
name string

id int

}

func setContactInfo(c Contact) {
c.name = "Holly Golightly"
c.id = 101

}

func main() {
var c¢ Contact = Contact{name:"Dave", 1d:33}
setContactInfo(c)
fmt.Println(c)

}

How do we fix it?

Example: Passing A Struct to a Function

Pass the address of a Contact to setContactinfo:

type Contact struct {
name string

id int

}

func setContactInfo(c *Contact) {
c.name = "Holly Golightly"
c.id = 101

}

func main() {

var ¢ Contact = Contact{name:"Dave", 1d:33}
setContactInfo(&c)
fmt.Println(c)

Example: How is a Slice Implemented

- Conceptually, a
slice Is a struct
containing 3 things:

struct { - This is why:
startIndex int
endIndex int - Subslices point to the
array *[100]float64 original data
}
- Passing slices to functions
doesn’t copy the data
31 122 31 30 73 86 102 -2.7 309 6.1 115 115 116 32.7 649 80.2 99.1 -1.1 0.0 121

- This is only a conceptual equivalence.
Go treats slices differently than these structs.

Pointer Summary

- Pointers store addresses of other variables.

» Declare by prefixing type with *

- Access the variable they point to by prefixing the pointer with *

- Get the address of a variable (to assign to a pointer) via &

- Most common use: pointers to structures

