Objects, Object-Oriented Design,
Methods

02-201 / 02-601

“Objects”

- Top-down design: start from the big problem and break it into

smaller problems, writing a function for each of the smaller
problems

»+ Another useful way of thinking: describe the organization of your
data and have that reflected in your program.
- A contact management program will manipulate Contacts

- Adrawing program will manipulate a Canvas, and perhaps Lines, Colors,
and Shapes

Facebook will manipulate Users, Posts, and Advertisements

Twitter will manipulate Tweets, Users, Advertisements

+ These are the "nouns” of these programs.

These two ways of thinking complement each other

R ﬁo‘-f.t

od poravcteg
bromdwort od borw
cod $yran: dera
UL LR S TR)
et igorihere
e ettty
e corgdig NIKLALUS wirTtH

Objects + Operations

- Once you've decided on the “nouns”, you choose the “verbs” that apply to
those nouns.

- Example:
Your “noun” Is a Tweet: - Get Hashtags in Tweet
type Tweet struct { - Get Direct Mentions in Tweet
text string - Shorten URL in Tweet
time uinté64 _
Whe SilEE e - Get URLs in Tweet
} - Get Short Version of Tweet
Your “noun” |S a User . Direct Message User
type User struct { . Add Follower

name string
followers []*User
following []*User
tweets []*Tweets - Remove Following User

} - Get All Tweets from Followed Users

- Remove Follower

- Add Following User

Twitter Graph

User structs are nodes
Pointers represent edges

type User struct {
name string
followers []*User
following []*User |<€—
tweets []*Tweets

type User struct {
name string
followers []*User

— following []*User

type User struct {
name string

tweets []*Tweets

followers []*User
following []*User ¢

?

type User struct {
name string
followers []*User
following []*User
tweets []*Tweets

tweetd []*Tweets
}

type User strucX {
name string
followers []*Uswkr
following []*Use
tweets []*Tweets

'

type User struct
name string
followers []*Use
following []*User
tweets []*Tweets

Example 2: Contacts

Your “noun” is a Contact:

type Contact struct {
name string
id int
salary floaté64
friends []*Contact
phone []int

Operations you will need to perform on a Contact:

- Get First Name

- Get Last Name

- Set First Name

- Set Last Name

- Get Formatted Phone Number
- Call

- Count Friends

- Add Friend

- Give Raise

Example 3: Spatial Games

type Field struct {
cells [][]Cell

}

type Cell struct {
kind string
score floaté64
prevKind string

-+ Count Cell Kinds in Neighborhood
- Read Field From File

- Evolve Single Step

- Save Field To File

- Draw Field

- Check Field is Valid

- Zero All Scores

- Zero Score

- Set Kind

- Get Kind

- Get Previous Kind

+ Get Cell Color

Example 4: Real World Example

- Too complex to be a good example for class, but | wanted to show
that this kind of thinking is actually used:

BloomTree
+ bf_cache
filename
BF hashes
filename num_hashes
hashes <«———— | bloom_filter
num_hashes heap_ref
bits children[2]
load parent
save name
operator(] child
size set_child
contains num_children
similarity get_parent
union_with set_parent
union_into similarity
T bf
union_bloom_filters
UncompressedBF load
bv
load unload
*
operator(] :
size
similarity
union_with
union_into 1
A\
Heap<T>
size
pop
insert
increase_key

Example 5: Canvas

type Canvas struct { Pointer to an object that

gc *fdraw2d. ImageGraphicContext € represents the pen
1img image.Image <.

Width int An ObJeCt that

height int represents the image

Operations you can perform on a Canvas:

MoveTo(c *Canvas, X, y float64)

LineTo(c *Canvas, x, y float64) These operations are logically related:
SetStrokeColor(c *Canvas, col color.Color) they are the things you can do to a
SetFillColor(c *Canvas, col color.Color) Canvas

SetLineWidth(c *Canvas, w float64)
Stroke(c *Canvas)
FillStroke(c *Canvas)

Fill(c *Canvas)

They are functions called “methods”.

They all take a *Canvas as their first

ClearRect(c *Canvas, x1, y1, x2, y2 int) parameter.

SaveToPNG(c *Canvas, filename string)

Width(c *Canvas)

Height(c *Canvas) Go provides a special syntax for this

situation (next slide)

Go’s Method Syntax

- Same as a function definition, with one addition:

Move the logical “first”
parameter to before the
name of the function

v
func (¢ *Canvas) SetStrokeColor(col color.Color) {
c.gc.SetStrokeColor(col)

!

Can use “c”.just like
any other parameter

- Now use “dot” syntax to call the method:

var pic *Canvas = MakeCanvas()
pic.SetStrokeColor (blue)

What'’s the Point?

- Logically groups operations with the data they operate on
»+ Supports the “noun” / “verb” way of designing programs directly

-+ Let’s you use the same function name for different object types:

+ (c *Canvas) Draw()

» (b *Button) Draw()
are different functions.

Method Summary

- Methods are functions that are associated with a type.

- |f you have a variable X, you can call any of its methods using:

X .methodName (paraml, param?2)

This works like a normal function call.

»+ This is “object-oriented programming”

Object-Oriented Design Summary

+ Create types for the things your program will manipulate

- Write methods for each of those types that perform the operations
on those things that you will need.

- Use those methods to solve the tasks you are aiming to solve.

