
Summary of Go Syntax
02-201 / 02-601

Variables

var Name1, Name2, … Type = InitialValue1, InitialValue2, …

The type of the variables
(Can be omitted if you provide
initial values from which the type
can be inferred)

Can optionally provide initial values
for all the variables (if omitted,
each variable defaults to the “0”
value for its type)

Can declare 1 or
more variables in
same var statement

• Variables have types that never change

• Uninitialized variables start with their 0 value (i.e. 0, 0.0, “”, false)

• You can’t declare variables that you don’t use

Name1, Name2 := EXPRESSION
Can abbreviate using the := syntax.
At least 1 variable on the left-hand
side must be new.

Variables are boxes that
contain data. The data is of
a particular type. The box
is labeled with the
variable’s name.

Scope

• Variables last from when they are declared to the end of the { } block that they
are declared in

• Exception: variables declared as function parameters last for the entire
function

• Global variables (those not in a {} block) last from when they are declared until
the program ends.

func gcd(a int, b int) int {!
! if a == b {!
! ! return a!
! }!
! var c int!
! if a > b {!
! ! c = a - b!
! ! return gcd(c, b)!
! } else {!
! ! c = b - a!
! ! return gcd(a, c)!
! }!
}

variable c 
created

variable c 
destroyed

Types

int, int8, int16, int32, int64!
uint, uint8, uint16, uint32, uint64!
bool!
float32, float64

[N]Type!
[]Type!
string

map[Type1]Type2

struct {!
! N1 T1!
! N2 T2!
! N3 T3!
}

*Type

Basic Numeric and logical types

List types: arrays (fixed size), slices
(variable size), strings (like []int8)

Maps: relate unique keys of Type1
to values of Type2. Any type where
== is defined can be a key type.

Structures: a grouping of a small
number of variables

Pointers: a reference to a variable of
type Type

Types, 2

• Types can be composed to create complex data structures:

map[int]struct{id int; n []*map[string]int}

a map from ints to structs, each containing an int field id and a
field “n” that is a slice of pointers to maps from strings to ints

• New names for types can be provided via the type statement:

type Name Type

type S struct {id int; n []*map[string]int}

type EmployeeId int

Slices & Arrays

var slice []Type

slice = make([]Type, Length)

len(slice)

[]Type declares a slice with elements of type Type

slices start out as nil, you must call make
to create the actual slice.

the length of slice S can be obtained with len(S)

var array [10]Type Arrays are slices with an explicit length (that is
known at compile time)

• It’s almost always better to use a slice instead of an array.

slice[I]!
array[J]

access the I and Jth elements of slices an arrays. I and J can be
arbitrary integer expressions (i.e. 3*a + 7*b)

Elements are numbered starting at 0

It’s an error to try to use an index greater than the size of the slice or
array.

Maps

var Name map[KeyType]ValueType

Name[Key] = Value!
fmt.Println(Name[Key])

Declare a map from KeyType to ValueType

Set and access elements in maps like arrays and
slices

v = Name[Key]!
v, ok = Name[Key]

Check if key present by trying to extract 2 values from the
array; second value will be true if Key is in Name

delete(Name, Key)!
len(Name)

Remove an item with delete
Get number of items with len

Name = make(map[KeyType]ValueType) Map variables start as nil
Must call make to create the map

Structs

• Group together related variables to create a logical, composite
object.

struct {!
! N1 T1!
! N2 T2!
! N3 T3!
}

• Nearly always used in a type statement to give a name to the
struct.

type Name struct {!
! N1 T1!
! N2 T2!
! N3 T3!
}

• Access fields using the “.” syntax: S.F1 = 3!
fmt.Println(S.F2)

Composite Literals

ListType{value1, value2, value3, …}!
MapOrStructType{key1:value1, key2:value2, …}

• Specify initial values for composite types (arrays, slices, maps,
structs) using the general syntax:

[]int{3,4,1,5,6,-6}! ! ! ! ! // slice literal!
[5]uint{3,4,1,5,6}! ! ! ! ! // array literal!
map[string]int{“a”:3, “b”:7}! ! // map literal!
Contact{name:”Eric”, age:37}! ! // struct literal

• Examples:

Pointers

• Pointers hold the addresses of other variables.

var pName *Type Declare pointers by using type *Type

• Pointers start out nil

pName = &i Use the & operator to get the address
of a variable to store into a pointer

*pName
Use *PointerName to follow the pointer (called “dereferencing”)
!
*PointerName acts just like the variable it points to.

(*pStruct).Field

pStruct.Field
These are equivalent in the special case of a
pointer to a struct

Type Conversions

Type(Expression) Converts the result of Expression
into type Type (if possible)

var v int!
var q float64 = 3.14!
v = int(q)

• To convert a string to a number or vice versa you have to use a
library call; Package strconv provides a number of such functions.

Operators

+! ! addition, string concatenation!
-! ! subtraction, negation!
/! ! division, integer division!
%! ! remainder!
!
&&! ! logical AND!
||! ! logical OR!
!! ! logical NOT!
!
==! ! equals!
!=! ! not equals!
<=! ! less than or equal to!
>=! ! greater than or equal to!
<! ! less than!
>! ! greater than!
!
&! ! address of!
*! ! follow pointer (“dereference”)

• All the operands for an operator must have the same type.

Increment & Decrement Statements

• For integer variables i : i++!! means increase i by 1!
i--!! means decrease i by 1

Assignment Operators

a += Expr! ! means a = a + (Expr)!
a -= Expr! ! means a = a - (Expr)!
a *= Expr! ! means a = a * (Expr)!
a /= Expr! ! means a = a / (Expr)!
a %= Expr !! means a = a % (Expr)

Constants

const Name Type = Value

Type is optional.
!
If it’s omitted, the constant
doesn’t have a type and can be
used anywhere “Value” could
have been typed directly

const (!
! Name1 Type1 = Value1!
! Name2 Type2 = Value2!
! // …!
)

Can group together several
constant definitions

• Best practice: declare constants for any non-trivial numbers you
have in your code.

Import, main()

• You code starts by running the main() function.

• You can import packages to access functions and types they
include via:

import “packageName”!
!
import (!
! “packageName1”!
! “packageName2”!
! //…!
)

• The functions from package P are accessible via P.FunctionName

Flow Control: Conditionals

if BooleanExpression {!
! // statements T!
} else {!
! // statements F!
}

switch Value {!
case V1:!
! // statements!
case V2:!
! // statements!
case V3, V4:!
! // statements!
default:!
! // statements!
}

If BooleanExpression is true do
statements T otherwise do statements F

Do the first set of statements with a case
value (e.g. V1) that matches the switch
Value
!
Do the (optional) default statements if no
other case matches.

Flow Control: Loops

for InitStmt ; BooleanExpr ; IncrStmt {!
! // Statements!
}

Execute Statements while
BooleanExpr is true

Do this just before
loop starts

Do this in between
each iteration (and
after the last iteration)

• Any variables declared in the InitStmt have scope of just the for loop

• One or both of InitStmt and IncrStmt can be empty

• If both are empty, you can omit the “;”

• If BooleanExpr is empty, it means “true”

Flow Control: Looping Over Lists and Maps

• Use the blank identifier “_” if you don’t need i

• If ListVar is a map, the order of the elements is not defined

for i, v := range ListVar {!
! // Statements!
}

A map, array, slice, or
string variable

The index or key
of the current
element

The value of the current
element (this can be
omitted to just loop over
the indices)

Functions

func (m *T0) Name(param1 T1, param2 T2, …) (RT1, RT2, …) {!
! // Statements!
! // Including a return statement if any return types were!
! // declared!
}

The return types (if only 1, the
parentheses can be omitted)

The parameters and their types
(if the type is the same as the
previous parameter, it can be
omitted)

The receiver type: if
present, function
must be called using
C.Name where C is
of type T0

• Functions can return ≥ 0 values and can have ≥ 0 parameters

• All possible paths through a function must return a value if a return type is declared

• Variables of a simple type (int, string, bool, etc) are copied when passed into a function.

• Arrays are copied when passed into a function

• Maps and slices are passed by reference: you can change the values in a map or slice within the function.

Design Strategies

• Top-down: write a function to solve your problem, “creating” (but not
writing) functions for smaller problems as needed.

• Object-oriented: create types for your real-world entities (users,
files, cars) and then write methods that manipulate those entities.

• Data structuring: choose a way to arrange your data into variables
(maps, lists, structs, etc.) that make answering your desired
questions easy.

• Small-to-large: start with a small, simple case, and then add
complexity incrementally after you have worked out bugs at each
stage.

