More Object-Oriented Programming:
Encapsulation, Interfaces

02-201 / 02-601

Example 1: A Stack

Designing a Stack the Object-Oriented Way

*@Q

Sk, ZELLT push. poF

LIFO = last-in, first-out

- QOur “noun’ is the stack

- QOur “verbs” are push, pop, create

Recall: Non-O0O implementation

func createStack() []int { £ in() {
unc main

return make([]int, 0)
} S := createStack()
S = push(S, 1)
S = push(S, 10)
func push(S []int, item int) []int { S = push(S, 13)
return append(S, item) fmt.Println(S)
}
S, i1tem := pop(S)
fmt.Println(item)
fun9 pop (S []fft) ([]int, int) { S, item = pop(S)
1f len(S) == 0 {

. | fmt.Println(item)
panic(“Can’'t pop empty stack!")
! S, i1tem = pop(S)

item := S[len(S)-1] fmt.Println(item)
S = S[0:len(S)-1]

return S, item

Object Oriented Implementation:

type Stack struct { Step 1: Define a type that corresponds to
items []int our noun that can hold the data we need for
} a stack

Step 2: Define methods for the verbs: Push, Pop:

func (S *Stack) Push(a int) {
S.items = append(S.items, a)

func (S *Stack) Pop() int {
a := S.items[len(S.items)-1]
S.i1tems = S.items[:len(S.items)-1]
return a

Define a regular function for Create:

- In order to call a method, need a variable of the appropriate type.

- So: “Create” can’t be a method since that is how we create a

variable of this type.

func CreateStack() Stack {
return Stack{items: make([]int, 0)}

- Sometimes called a “factory function” since it creates variables of a
given type.

Using the Stack

- Now much nicer because we don’t have to also return the new

stack:

S := CreateStack()
S.Push(10)
S.Push(20)
fmt.Println(S.Pop())

Example 2: A Drawing Program

Design for A Drawing Program

() W Style: Lines and Shapes 21
|) L el B

v Stroke

==

Thickness: 1 pt

<> <>

Corner Radius: 0 pt

0OSOO0
28 AN 2K
wQLl—[/\UC]

OQUDOOS N
P Canvas: Size %3

- Atypical drawing program (this one
is OmniGraffle)

- Manipulates: shapes, text, lines

- Also: handles on the shapes,
colors, shadows, layers, canvases,
etc.

Canvases
v Canvas 1

+

10

Layer 1

»+ *'

Untitled — Edited

:“ ?:L \' A'YE] <{' e Gf,é, .QQ W @ %\J »

!

lo
o

v..h

Circle Square!

™%
F

b= 17/38in | 125/36i || 1417200 | 165721

[2v Y v'I3v v']4'v'1 v

0

=l

— < WO

1 of 4 objects selected

~

100%

i

Shapes

T - T type Square struct {
x0,y0 int
- x1,yl int
" 0 fillColor color.Color
strokeColor color.Color
lineWidth int
& 0 0 }

- Natural to create an object
type for each shape:

. Circle func (s *Square) MoveTo(x,y int)
func (s *Square) Resize(w,h int)
+ Oval func (s *Square) Handles() []Handles
- Triangle func (s *Square) Draw(c *DrawingCanvas)
. Star func (s *Square) SetLineWidth(w int)

func (s *Square) ContainsPoint(x,y int)

Square

Shapes

type Oval struct {
x0,y0 int
radius int
fillColor color.Color
strokeColor color.Color

‘_—,//l lineWidth int
}

- Natural to create an object
type for each shape:

- func (s *Oval) MoveTo(x,y int)
- Circle , ,
func (s *Oval) Resize(w,h 1int)
+ Oval func (s *Oval) Handles() []Handles
- Triangle func (s *Oval) Draw(c *DrawingCanvas)
. Star func (s *Oval) SetLineWidth(w int)
func (s *Oval) ContainsPoint(x,y int)
+ Square I

These functions are needed for all shapes.

DrawingCanvas

type DrawingCanvas struct {
width, height int

backgroundColor color.Color What type can go here ??7?7 if our
shapes []??7?7? < canvas may contain Squares,
} Circles, Triangles?

func (¢ *DrawingCanvas) DrawAllShapes()

Should call the “Draw()” function on
each of the shapes the canvas contains

func (c *DrawingCanvas) DrawAllShapes() {
for shape := range shapes {
shape.Draw(c)

}

Before Solving the Problem:
The benefits of this design

DrawAllShapes is conceptually very simple:

» just loop through the shapes and ask each of them to draw
themselves

- All the shape-specific knowledge is embedded inside each shape
type:
- an Oval knows how to draw itself

- a Square knows how to draw itself, etc.

- Adding a new shape is easy: just create a new shape type

Don’t need to modify any existing shape types (each shape can store the
data it needs, i.e. radius vs. width/length)

Don’t need to modify DrawAllShapes!

interface{}

- The problem above is that the shapes all have different types but
we want to put them into a single slice.

»+ The thing that is common to “shapes” is what you can do with them:
Draw, MoveTo, Resize, etc.

- Go lets you define a type that specifies only possible methods:

type Shape interface {
MoveTo(x,y int)
Resize(w,h int)
Handles () []Handles
Draw(c *DrawingCanvas)
SetLineWidth(w int)

Means: a Shape is a thing
that has these methods

DrawingCanvas — with Interface

type DrawingCanvas struct {
width, height int

backgroundColor color.Color The shapes slice can contain
shapes []Shape < anything that supports the Shape
} interface

func (¢ *DrawingCanvas) DrawAllShapes()

Should call the “Draw()” function on
each of the shapes the canvas contains

func (c *DrawingCanvas) DrawAllShapes() {
for shape := range shapes {

shape.Draw(c) Since all Shape variables must support
} Draw() this is ok

S———— Simplified Drawing
[— Example

type Shape interface {
MoveTo(x,y int)

Draw()
} [/| =================================
// A function to draw all the shapes
/ [================================= = ————————————————
// An Oval Shape
/[================================= func DrawAllShapes(shapes []Shape) {
fmt.Println (" ===================================
type Oval struct { for , shape := range shapes ({
x0,y0 int shape.Draw()
} }
fmt.Println("===================================
func (s *Oval) MoveTo(x,y int) { }
s.x0, s.y0 = x,vy
} [/| =================================
// Create some shapes and add them to the list
func (s *Oval) Draw() { //=================================
fmt.Println("I'm an OVAL!!!! at", s.x0, s.y0)
} func main() {
shapes := make([]Shape, 0)
A e e e e s e e var sl Shape = &Square{10,10}
// A Square Shape var s2 Shape = &Square{100,100}
e e e var s3 Shape = &0Oval{60,75}
shapes = append(shapes, sl)
type Square struct { shapes = append(shapes, s2)
x0,y0 int shapes = append(shapes, s3)

}

DrawAllShapes (shapes)
func (s *Square) MoveTo(x,y int) {

s.x0, s.y0 = x,y shapes[1l].MoveTo(3333,3333)
} DrawAllShapes (shapes)
func (s *Square) Draw() { }

fmt.Println("I'm a SQUARE!!!! at ", s.x0, s.y0)

}

Duck typing

Note: we never explicitly said that Square or Oval were Shapes!

“If it walks like a duck, swims
like a duck, and quacks like a
duck, it's a duck.”

If it Draw()s like a Shape,
MoveTo()s like a Shape, and
Resize()s like a Shape, it's a

Shape.

Luis Miguel Bugallo Sanchez (Lmbuga Commons)(Lmbuga Galipedia)

http://commons.wikimedia.org/wiki/User:Lmbuga
http://en.wikipedia.org/wiki/gl:User:Lmbuga

Interfaces & Pointers

- An interface is a set of methods that can be called on the type.

- Our methods are expecting a * type:

func (s *Oval) Draw() {
fmt.Println("I'm an OVAL!!!! at", s.x0, s.y0)
}

- S0 we store a pointer to the shape inside our Shape variable:

var sl Shape = &Square{10,10}

- Note though: s1 is not a pointer: It's a variable of an interface type
that holds a pointer to the thing that satisfies the interface.

Encapsulation

- A fundamental design principle in programming is encapsulation:

- group together related things, and hide as many details as possible from
the rest of the world

- expose only a small “interface” to the rest of the program.

- Examples:

- Functions — to use “fmt.Printf” | only need to know the rules about what
parameters it takes and what it returns; how it is implemented is totally
hidden from me.

- Packages — inside the “fmt” package is a huge amount of code, but we
only need to know about the functions.

- Interfaces — if | have a Shape, | don’t need to know what kind of shape,
or how its shape functions are implemented.

Summary

- Create interfaces if you have a number of related “nouns” that will
all do the same thing

 You can declare variables of the type of the interface that can hold
any variable that supports that interface’s methods.

- Let's you write general code that depends only on the methods that
you expect to exist.

