
More Object-Oriented Programming:
Encapsulation, Interfaces

02-201 / 02-601

Example 1: A Stack

Designing a Stack the Object-Oriented Way

Stack:
top

push, pop
aka LIFO

LIFO = last-in, first-out

• Our “noun” is the stack

• Our “verbs” are push, pop, create

Recall: Non-OO implementation

func pop(S []int) ([]int, int) {
 if len(S) == 0 {
 panic(“Can’t pop empty stack!")
 }
 item := S[len(S)-1]
 S = S[0:len(S)-1]
 return S, item
}

func push(S []int, item int) []int {
 return append(S, item)
}

func createStack() []int {
 return make([]int, 0)
}

func main() {
 S := createStack()

 S = push(S, 1)
 S = push(S, 10)
 S = push(S, 13)
 fmt.Println(S)

 S, item := pop(S)
 fmt.Println(item)

 S, item = pop(S)
 fmt.Println(item)

 S, item = pop(S)
 fmt.Println(item)
}

Object Oriented Implementation:

type Stack struct {
 items []int
}

func (S *Stack) Push(a int) {
 S.items = append(S.items, a)
}

func (S *Stack) Pop() int {
 a := S.items[len(S.items)-1]
 S.items = S.items[:len(S.items)-1]
 return a
}

Step 1: Define a type that corresponds to
our noun that can hold the data we need for
a stack

Step 2: Define methods for the verbs: Push, Pop:

Define a regular function for Create:

• In order to call a method, need a variable of the appropriate type.

• So: “Create” can’t be a method since that is how we create a
variable of this type.

func CreateStack() Stack {
 return Stack{items: make([]int, 0)}
}

• Sometimes called a “factory function” since it creates variables of a
given type.

Using the Stack

• Now much nicer because we don’t have to also return the new
stack:

S := CreateStack()
S.Push(10)
S.Push(20)
fmt.Println(S.Pop())

Example 2: A Drawing Program

Design for A Drawing Program

• A typical drawing program (this one
is OmniGraffle)

• Manipulates: shapes, text, lines

• Also: handles on the shapes,
colors, shadows, layers, canvases,
etc.

Shapes

Canvas

Shapes

• Natural to create an object
type for each shape:
• Circle
• Oval
• Triangle
• Star
• Square
• ….

type Square struct {
 x0,y0 int
 x1,y1 int
 fillColor color.Color
 strokeColor color.Color
 lineWidth int
}

func (s *Square) MoveTo(x,y int)
func (s *Square) Resize(w,h int)
func (s *Square) Handles() []Handles
func (s *Square) Draw(c *DrawingCanvas)
func (s *Square) SetLineWidth(w int)
func (s *Square) ContainsPoint(x,y int)

Shapes

• Natural to create an object
type for each shape:
• Circle
• Oval
• Triangle
• Star
• Square
• ….

type Oval struct {
 x0,y0 int
 radius int
 fillColor color.Color
 strokeColor color.Color
 lineWidth int
}

func (s *Oval) MoveTo(x,y int)
func (s *Oval) Resize(w,h int)
func (s *Oval) Handles() []Handles
func (s *Oval) Draw(c *DrawingCanvas)
func (s *Oval) SetLineWidth(w int)
func (s *Oval) ContainsPoint(x,y int)

These functions are needed for all shapes.

DrawingCanvas

type DrawingCanvas struct {
 width, height int
 backgroundColor color.Color
 shapes []????
}

func (c *DrawingCanvas) DrawAllShapes()

What type can go here ???? if our
canvas may contain Squares,
Circles, Triangles?

Should call the “Draw()” function on
each of the shapes the canvas contains

func (c *DrawingCanvas) DrawAllShapes() {
 for shape := range shapes {
 shape.Draw(c)
 }
}

Before Solving the Problem:
The benefits of this design

• DrawAllShapes is conceptually very simple:
• just loop through the shapes and ask each of them to draw

themselves

• All the shape-specific knowledge is embedded inside each shape
type:
• an Oval knows how to draw itself
• a Square knows how to draw itself, etc.

• Adding a new shape is easy: just create a new shape type
• Don’t need to modify any existing shape types (each shape can store the

data it needs, i.e. radius vs. width/length)
• Don’t need to modify DrawAllShapes!

interface{}

• The problem above is that the shapes all have different types but
we want to put them into a single slice.

• The thing that is common to “shapes” is what you can do with them:
Draw, MoveTo, Resize, etc.

• Go lets you define a type that specifies only possible methods:

type Shape interface {
 MoveTo(x,y int)
 Resize(w,h int)
 Handles() []Handles
 Draw(c *DrawingCanvas)
 SetLineWidth(w int)
}

Means: a Shape is a thing
that has these methods

DrawingCanvas — with Interface

type DrawingCanvas struct {
 width, height int
 backgroundColor color.Color
 shapes []Shape
}

func (c *DrawingCanvas) DrawAllShapes()

The shapes slice can contain
anything that supports the Shape
interface

Should call the “Draw()” function on
each of the shapes the canvas contains

func (c *DrawingCanvas) DrawAllShapes() {
 for shape := range shapes {
 shape.Draw(c)
 }
}

Since all Shape variables must support
Draw() this is ok

Simplified Drawing
Example

//=================================
// What all shapes must do
//=================================

type Shape interface {
 MoveTo(x,y int)
 Draw()
}

//=================================
// An Oval Shape
//=================================

type Oval struct {
 x0,y0 int
}

func (s *Oval) MoveTo(x,y int) {
 s.x0, s.y0 = x,y
}

func (s *Oval) Draw() {
 fmt.Println("I'm an OVAL!!!! at", s.x0, s.y0)
}

//=================================
// A Square Shape
//=================================

type Square struct {
 x0,y0 int
}

func (s *Square) MoveTo(x,y int) {
 s.x0, s.y0 = x,y
}

func (s *Square) Draw() {
 fmt.Println("I'm a SQUARE!!!! at ", s.x0, s.y0)
}

//=================================
// A function to draw all the shapes
//=================================

func DrawAllShapes(shapes []Shape) {
 fmt.Println("===================================")
 for _, shape := range shapes {
 shape.Draw()
 }
 fmt.Println("===================================")
}

//=================================
// Create some shapes and add them to the list
//=================================

func main() {
 shapes := make([]Shape, 0)
 var s1 Shape = &Square{10,10}
 var s2 Shape = &Square{100,100}
 var s3 Shape = &Oval{60,75}
 shapes = append(shapes, s1)
 shapes = append(shapes, s2)
 shapes = append(shapes, s3)

 DrawAllShapes(shapes)

 shapes[1].MoveTo(3333,3333)
 DrawAllShapes(shapes)

}

Duck typing

Luis Miguel Bugallo Sánchez (Lmbuga Commons)(Lmbuga Galipedia)

“If it walks like a duck, swims
like a duck, and quacks like a
duck, it’s a duck.”

If it Draw()s like a Shape,
MoveTo()s like a Shape, and
Resize()s like a Shape, it’s a
Shape.

Note: we never explicitly said that Square or Oval were Shapes!

http://commons.wikimedia.org/wiki/User:Lmbuga
http://en.wikipedia.org/wiki/gl:User:Lmbuga

Interfaces & Pointers

• An interface is a set of methods that can be called on the type.

var s1 Shape = &Square{10,10}

func (s *Oval) Draw() {
 fmt.Println("I'm an OVAL!!!! at", s.x0, s.y0)
}

• Our methods are expecting a * type:

• So we store a pointer to the shape inside our Shape variable:

• Note though: s1 is not a pointer: It’s a variable of an interface type
that holds a pointer to the thing that satisfies the interface.

Encapsulation

• A fundamental design principle in programming is encapsulation:

• group together related things, and hide as many details as possible from
the rest of the world

• expose only a small “interface” to the rest of the program.

• Examples:

• Functions — to use “fmt.Printf” I only need to know the rules about what
parameters it takes and what it returns; how it is implemented is totally
hidden from me.

• Packages — inside the “fmt” package is a huge amount of code, but we
only need to know about the functions.

• Interfaces — if I have a Shape, I don’t need to know what kind of shape,
or how its shape functions are implemented.

Summary

• Create interfaces if you have a number of related “nouns” that will
all do the same thing

• You can declare variables of the type of the interface that can hold
any variable that supports that interface’s methods.

• Let’s you write general code that depends only on the methods that
you expect to exist.

