Binary Search Trees & Trees in General 02-201 / 02-601

Dictionary Abstract Data Type (ADT)

- Most basic and most useful ADT:
	- insert(key, value)
	- delete(key)
	- value = $find(key)$
- Many languages have it built in like Go's **map**:

awk: $D["AAPL"] = 130$ # associative array perl: my D ; D ["AAPL"] = 130; # hash python: $D = \{\}$; $D[$ "AAPL"] = 130 # dictionary $C++:$ map<string, string> $D = new$ map<string, string>(); $D[$ "AAPL"] = 130; 10^{10} / map

- **Insert**, **delete, find** each either ≈ log *n* steps [C++] or expected constant # of steps [perl, python]
- How can such dictionaries are implemented? There are a number of ways; we'll see one next.

Trees

Hierarchies

Many ways to represent tree-like information:

I. A 1. B a. D i. E b. F 2. C *outlines, indentations*

 $(((E):D), F):B, (G):C):A$ *nested, labeled parenthesis nested sets*

Definition – Rooted Tree

• **nil** is a tree

• If T_1 , T_2 , ..., T_k are trees with roots r_1 , r_2 , ..., r_k and r is a node \notin any T_i , then the structure that consists of the T_i , node r , and edges (r, r_i) is also a tree.

Terminology

Unfortunately, different authors use different tree terminology

- *• r* is the *parent* of its *children r1*, *r2*, ..., *rk*.
- *• r1*, *r2*, ..., *rk* are *siblings.*
- *• root* = distinguished node, usually drawn at top. Has no parent.
- If all children of a node are **nil**, the node is a *leaf.* Otherwise, the node is a *internal node.*
- A *path* in the tree is a sequence of nodes *u1, u2,* ..., *um* such that each of the edges (u, u_{i+1}) exists.
- A node *u* is an *ancestor* of *v* if there is a path from *u* to *v*.
- A node *u* is a *descendant* of *v* if there is a path from *v* to *u.*

Height & Depth

- *•* The *height* of node *u* is the length of the longest path from *u* to a leaf.
- *•* The *depth* of node *u* is the length of the path from the root to *u*.
- Height of the tree = maximum depth of its nodes.
- *•* A *level* is the set of all nodes at the same depth.

Subtrees, forests, and graphs

- A *subtree* rooted at *u* is the tree formed from *u* and all its descendants.
- A <u>*forest*</u> is a (possibly empty) set of trees. The set of subtrees rooted at the children of *r* form a forest.
- As we've defined them, trees are **not** a special case of graphs:
	- Our trees are *oriented* (there is a root which implicitly defines directions on the edges).
	- ^A*free tree* is a connected graph with no cycles.

Alternative Definition – Rooted Tree

- A *tree* is a finite set *T* such that:
	- one element $r \in T$ is designated the *root*.
	- the remaining nodes are partitioned into $k \ge 0$ disjoint sets T_1 , T_2 , ..., T_k , each of which is a tree.

This definition emphasizes the *partitioning* aspect of trees:

As we move down the we're dividing the set of elements into more and more parts.

Each part has a distinguished element (that can represent it).

Binary Search Trees

Binary Search Trees (BST)

- **BST Property:** If a node has key *k* then keys in the **left** subtree are < *k* and keys in the **right** subtree are $> k$.
- For convenience, we disallow duplicate keys.
- Good for implementing the *dictionary ADT* we've already seen: insert, delete, find.

Find $k = 6$:

Find $k = 6$:

Is $k < 5?$

Find $k = 6$: Is $k < 8$? Is $k < 5$? No, go right

Find $k = 9$:

Find $k = 9$:

Is $k < 5?$

Find $k = 9$: Is $k < 8$? Is $k < 5$? No, go right

Find $k = 13$:

Find $k = 13$:

Is $k < 5?$

Find $k = 13$: Is $k < 8$? Is $k < 5$? No, go right

9


```
insert(T, K):
    q = NULL
   p = T while p != nil and p.key != K:
      q = p if p.key < K:
        p = p.right
       else if p.key > K:
         p = p.left
    if p != nil: error DUPLICATE
   N = new Node(K) if q.key > K:
      q.left = N
    else:
      q.right = N
                                                              11
                                                       8
                                                  6
                                         3
                                                 5
                                                         9
                                           4
                                                                 nil
                                    2
                                                       q
                                                            p
                                          Same idea as BST Find
```


BST FindMin

BST FindMin

Walk left until you can't go left any more

BST FindMin

Walk left until you can't go left any more

BST Delete

BST Delete

BST Delete

BST Operations Summary

- Find: walk left or right according to the key comparison.
- Insert: Put the new node where a Find for it would have fallen off the tree.
- Delete:
	- If deleting a leaf, just remove it.
	- If deleting a node u with 1 child, move that child up to be a child of u's parent.
	- If deleting a node u with 2 children: find the smallest key in the subtree rooted at u, delete it, and replace u with that key.

• What's the worst possible insertion order?

• What's the best possible insertion order?

Binary Tree Representation

BST Find Code

```
type BSTNode struct {
    key int
    left, right *BSTNode
}
```
A node contains the data (here key) plus pointers to the left and right children.

Recursive implementation:

```
func BSTFind(root *BSTNode, k int) *BSTNode {
    if root != nil {
       if k == root.key { return root }
       if k < root.key { return BSTFind(root.left, k) }
       if k > root.key { return BSTFind(root.right, k) }
 }
    return nil
}
```
How much memory is used?

BST Find: Non-recursive

We update "root" so that it points to the current node:

Also extended so that this returns both the node and it's parent

```
func BSTFind(root *BSTNode, k int) (*BSTNode, *BSTNode) {
    var parent *BSTNode = nil
    for root != nil {
       if k == root.key { return parent, root }
       parent = root
       if k < root.key {
          root = root.left 
       } else if k > root.key { 
          root = root.right 
 }
    }
    return parent, root
}
```
BST Insert Code

```
func BSTInsert(root *BSTNode, k int) (*BSTNode, bool) {
    newNode := CreateBSTNode(k)
    if root == nil { return newNode, true }
    parent, current := BSTFind(root, k)
    // if key is already in the tree, report error
    if current != nil { return root, false}
    if newNode.key < parent.key {
       parent.left = newNode
    } else {
       parent.right = newNode
    }
    return root, true
}
                                          Decide if new node should 
                                          be a left or right child of 
                                          where we fell off the tree
```
BST FindMin Code


```
BST Delete 
                                                                      Code
func BSTDelete(root *BSTNode, k int) (*BSTNode, bool) {
    if root == nil { return nil, false }
    parent, current := BSTFind(root, k)
    if current == nil { return root, false } // didn't find
    var pPointer **BSTNode // !!!
    if parent != nil {
       if current.key < parent.key {
          pPointer = &parent.left
       } else {
          pPointer = &parent.right
       }
    }
    switch {
    case current.left != nil && current.right != nil:
       min := BSTFindMin(current)
       BSTDelete(current, min.key)
       current.key = min.key
    case current.left == nil && current.right == nil:
       *pPointer = nil
    case current.left != nil:
       *pPointer = current.left
    case current.right != nil:
       *pPointer = current.right
    }
    return root, true
}
                                                                Find the node to 
                                                                delete and its parent
                                               Coding jujutsu: pPointer is a pointer 
                                               to the pointer in the parent that we 
                                               have to change during the delete
                                                        The delete cases depend on 
                                                        which children exist in the node 
                                                        we are deleting
```
Summary

- Binary search trees are a fundamental data structure supporting the "dictionary" (aka map, associative array) operations.
- The requirement that the keys be unique is not crucial: it just adds a few more special cases to the code.
- The running time of all the operations is proportional to the height of the tree.
- Standard BSTs don't do anything to keep the height small.

More about trees

Basic Properties

• Every node except the root has exactly one parent.

• A tree with *n* nodes has *n*-1 edges (every node except the root has an edge to its parent).

• There is exactly one path from the root to each node. (Suppose there were 2 paths, then some node along the 2 paths would have 2 parents.)

Binary Trees – Definition

• An *ordered* tree is a tree for which the order of the children of each node is considered important.

- A *binary tree* is an ordered tree such that each node has ≤ 2 children.
- Call these two children the *left* and *right* children.

Example Binary Trees

The edge cases:

Small binary tree:

Extended Binary Trees

Replace each missing child with *external node*

Do you need a special flag to tell which nodes are external?

Binary tree Extended binary tree

Every internal node has exactly 2 children.

Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree – let's us distinguish different instances of Λ.

of External Nodes in Extended Binary Trees

Thm. *An extended binary tree with* n *internal nodes has* n+1 *external nodes.*

Proof. By induction on *n*. $X(n) :=$ number of external nodes in binary tree with *n* internal nodes.

<u>Base case:</u> $X(0) = 1 = n + 1$.

Induction step: Suppose theorem is true for all *i* < *n*. Because $n \geq 1$, we have:

$$
X(n) = X(k) + X(n-k-1) \\
 = k+1 + n-k-1 + 1 \\
 = n+1 \quad \Box
$$

Extended binary tree

Alternative Proof

Thm. *An extended binary tree with* n *internal nodes has* n+1 *external nodes.*

Proof. Every node has 2 children pointers, for a total of 2*n* pointers.

Every node except the root has a parent, for a total of *n* - 1 nodes with parents.

These *n* - 1 parented nodes are all children, and each takes up 1 child pointer.

(pointers) - (used child pointers) = (unused child pointers) $2n - (n-1) = n + 1$

Thus, there are $n + 1$ null pointers.

Every null pointer corresponds to one external node by construction. □

Full and Complete Binary Trees

- If every node has either 0 or 2 children, a binary tree is called *full*.
- If the lowest *d-1* levels of a binary tree of height *d* are filled and level *d* is partially filled from left to right, the tree is called *complete*.
- If all *d* levels of a height-*d* binary tree are filled, the tree is called *perfect.*

Nodes in a Perfect Tree of Height h

Thm. *A perfect tree of height h has* 2^{h+1} - 1 *nodes.*

Proof. By induction on *h.*

Let *N*(*h*) be number of nodes in a perfect tree of height *h*.

<u>Base case:</u> when $h = 0$, tree is a single node. N(0) = $1 = 2^{0+1}$ - 1.

Induction step: Assume $N(i) = 2^{i+1} - 1$ for $0 \le i \le h$.

A perfect binary tree of height *h* consists of 2 perfect binary trees of height *h*-1 plus the root:

$$
N(h) = 2 \times N(h - 1) + 1
$$

= 2 \times (2^{h-1+1} - 1) + 1
= 2 \times 2^h - 2 + 1
= 2^{h+1} - 1

2*^h* **are leaves 2***h* **- 1 are internal nodes**

Full Binary Tree Theorem

Thm. *In a non-empty, full binary tree, the number of internal nodes is always 1 less than the number of leaves.*

Proof. By induction on *n*. $L(n) :=$ number of leaves in a non-empty, full tree of *n* internal nodes.

<u>Base case:</u> $L(0) = 1 = n + 1$.

```
Induction step: Assume L(i) = i + 1 for i < n.
```
Given T with n internal nodes, remove two sibling leaves.

T' has *n*-1 internal nodes, and by induction hypothesis, $L(n-1) = n$ leaves.

Replace removed leaves to return to tree T. Turns a leaf into an internal node, adds two new leaves.

Thus: $L(n) = n + 2 - 1 = n + 1$.

Array Implementation for Complete Binary Trees

left(*i*): 2*i* **if** $2i \leq n$ **otherwise** 0 right(i): $(2i + 1)$ **if** $2i + 1 \le n$ **otherwise** 0 parent(i): $\lfloor i/2 \rfloor$ **if** $i \geq 2$ **otherwise** 0

Summary

- Trees are an incredibly common way to organize data:
	- folders on your hard drives
	- URLs:<http://www.cs.cmu.edu/~ckingsf/software/sailfish>
	- BST, Splay trees, AVL trees, B-trees, Quad-trees, kd-trees, red-black trees, M-trees, … probably thousands of variants that are good for different data and different queries.
- Binary trees in particular are nice because each node partitions the data into 2 subsets and because there are nice relationships between # of nodes and # of leaves, etc.
- Typically, trees are represented using nodes & pointers, though this does not have to be the case.