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Dictionary Abstract Data Type (ADT)

• Most basic and most useful ADT:
• insert(key, value)
• delete(key)
• value = find(key)

• Many languages have it built in like Go’s map:

• Insert, delete, find each either ≈ log n steps [C++] or expected 
constant # of steps [perl, python]

• How can such dictionaries are implemented? — There are a number 
of ways; we’ll see one next.

awk: D[“AAPL”] = 130 # associative array                                                 
perl: my %D; $D[“AAPL”] = 130; # hash              
python: D = {}; D[“AAPL”] = 130 # dictionary          
C++: map<string,string> D = new map<string, string>();         

D[“AAPL”] = 130; // map                     



Trees



Hierarchies

Many ways to represent tree-like information:
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Definition – Rooted Tree

• nil is a tree

• If T1, T2, ..., Tk are trees with roots r1, r2, ..., rk and r is 
a node ∉ any Ti, then the structure that consists of 
the Ti, node r, and edges (r, ri) is also a tree.
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Terminology

• r is the parent of its children r1, r2, ..., rk.

• r1, r2, ..., rk are siblings.

• root = distinguished node, usually drawn 
at top. Has no parent.

• If all children of a node are nil, the node 
is a leaf. Otherwise, the node is a internal 
node.

• A path in the tree is a sequence of nodes 
u1, u2, ..., um such that each of the edges 
(u, ui+1) exists.

• A node u is an ancestor of v if there is a 
path from u to v.

• A node u is a descendant of v if there is a 
path from v to u.
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Unfortunately, different authors use 
different tree terminology



Height & Depth

• The height of node u is the length of the longest path from u to a leaf.

• The depth of node u is the length of the path from the root to u.

• Height of the tree = maximum depth of its nodes. 

• A level is the set of all nodes at the same depth.  
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Subtrees, forests, and graphs

• A subtree rooted at u is the tree formed from u and all 
its descendants.

• A forest is a (possibly empty) set of trees.  
The set of subtrees rooted at the children of r form a 
forest.

• As we’ve defined them, trees are not a special case of 
graphs:

- Our trees are oriented (there is a root which implicitly 
defines directions on the edges).

- A free tree is a connected graph with no cycles.



Alternative Definition – Rooted Tree

• A tree is a finite set T such that:

- one element r ∈ T is designated the root.

- the remaining nodes are partitioned into k ≥ 0 disjoint 
sets T1, T2, ..., Tk, each of which is a tree.

This definition emphasizes the 
partitioning aspect of trees:

As we move down the we’re 
dividing the set of elements into 
more and more parts.

Each part has a distinguished 
element (that can represent it).



Binary Search Trees



Binary Search Trees (BST)

• BST Property: If a node has key 
k then keys in the left subtree 
are < k and keys in the right 
subtree are > k.

• For convenience, we disallow 
duplicate keys.

• Good for implementing the 
dictionary ADT we’ve already 
seen: insert, delete, find.
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BST Find
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insert(T, K):
   q = NULL
   p = T
   while p != nil and p.key != K:
      q = p
      if p.key < K:
        p = p.right
      else if p.key > K:
        p = p.left

   if p != nil: error DUPLICATE

   N = new Node(K)
   if q.key > K:
     q.left = N
   else:
     q.right = N
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insert(T, K):
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BST Delete

2

3

5

6

2

3

5

4 2

3

5

Node is a leaf: Node has 1 child:

2

3

5 5

2

4

2

3

5

6

4

Node has 2 
children:



BST Delete

2

3

5

6

2

3

5

4 2

3

5

Node is a leaf: Node has 1 child:

2

3

5 5

2

4

2

3

5

6

4

Node has 2 
children:



BST Delete

2

3

5

6

2

3

5

4 2

3

5

Node is a leaf: Node has 1 child:

2

3

5 5

2

4

2

3

5

6

4

Node has 2 
children:



BST Operations Summary

• Find: walk left or right according to the key 
comparison.

• Insert: Put the new node where a Find for it would 
have fallen off the tree.

• Delete: 

- If deleting a leaf, just remove it. 

- If deleting a node u with 1 child, move that child up to be a 
child of u’s parent.

- If deleting a node u with 2 children: find the smallest key in 
the subtree rooted at u, delete it, and replace u with that key.



• What’s the worst possible insertion order?

• What’s the best possible insertion order?



Binary Tree Representation

key

*left_child *right_child

key

*left_child *right_child

key

*left_child *right_child

key

*left_child *right_child

key

*left_child *right_child

nil nil nil nil

nil nil



BST Find Code

type BSTNode struct {
   key int
   left, right *BSTNode
}

func BSTFind(root *BSTNode, k int) *BSTNode {
   if root != nil {
      if k == root.key { return root }
      if k < root.key { return BSTFind(root.left, k) }
      if k > root.key { return BSTFind(root.right, k) }
   }
   return nil
}

Recursive implementation:

How much memory is used?

A node contains the data (here key) 
plus pointers to the left and right 
children.



BST Find: Non-recursive

func BSTFind(root *BSTNode, k int) (*BSTNode, *BSTNode) {
   var parent *BSTNode = nil
   for root != nil {
      if k == root.key { return parent, root }
      parent = root
      if k < root.key {
         root = root.left 
      } else if k > root.key { 
         root = root.right 
      }
   }
   return parent, root
}

We update “root” so that it points to the current node:
Also extended so that this returns both the node and it’s parent



BST Insert Code

func BSTInsert(root *BSTNode, k int) (*BSTNode, bool) {
   newNode := CreateBSTNode(k)
   if root == nil { return newNode, true }

   parent, current := BSTFind(root, k)
   // if key is already in the tree, report error
   if current != nil { return root, false}

   if newNode.key < parent.key {
      parent.left = newNode
   } else {
      parent.right = newNode
   }
   
   return root, true
}

Decide if new node should 
be a left or right child of 
where we fell off the tree



BST FindMin Code

func BSTFindMin(root *BSTNode) *BSTNode {
   if root == nil { return nil }
   for root.left != nil {
      root = root.left
   }
   return root
}

Look ahead: will going left 
make us fall off the tree?



BST Delete 
Code

func BSTDelete(root *BSTNode, k int) (*BSTNode, bool) {
   if root == nil { return nil, false }
   parent, current := BSTFind(root, k)
   if current == nil { return root, false } // didn’t find

   var pPointer **BSTNode    // !!!
   if parent != nil {
      if current.key < parent.key {
         pPointer = &parent.left
      } else {
         pPointer = &parent.right
      }
   }

   switch {
   case current.left != nil && current.right != nil:
      min := BSTFindMin(current)
      BSTDelete(current, min.key)
      current.key = min.key
   case current.left == nil && current.right == nil:
      *pPointer = nil
   case current.left != nil:
      *pPointer = current.left
   case current.right != nil:
      *pPointer = current.right
   }
 
   return root, true
}

Find the node to 
delete and its parent

Coding jujutsu: pPointer is a pointer 
to the pointer in the parent that we 
have to change during the delete

The delete cases depend on 
which children exist in the node 
we are deleting



Summary

• Binary search trees are a fundamental data structure supporting 
the “dictionary” (aka map, associative array) operations. 

• The requirement that the keys be unique is not crucial: it just adds 
a few more special cases to the code. 

• The running time of all the operations is proportional to the height 
of the tree. 

• Standard BSTs don’t do anything to keep the height small.



More about trees



Binary Tree Traversals

H I J

D E F

B

G

C

A

inorder: HDIBEAJFCG     
preorder: ABEHIECFJG   
postorder: HIDEBJFGCA 

func traverse(T *Node) {
  if(T != nil) {
      PREORDER(T);
      traverse(T.left);
      INORDER(T);
      traverse(T.right);
      POSTORDER(T);
   }
}

How much space is used?



Basic Properties

• Every node except the root has exactly one parent.

• A tree with n nodes has n-1 edges  
(every node except the root has an edge to its 
parent).

• There is exactly one path from the root to each node. 
(Suppose there were 2 paths, then some node along 
the 2 paths would have 2 parents.)



Binary Trees – Definition

• An ordered tree is a tree for which the order of the 
children of each node is considered important.

• A binary tree is an ordered tree such that each node 
has ≤ 2 children.

• Call these two children the left and right children.

r1 r2 r3 r4

r

r1 r2r3r4

r

≠



Example Binary Trees

Only left 
child

Only right 
child

Single 
node

Empty 
Binary 

Tree

Λ

Small binary tree:

The edge cases:



Extended Binary Trees

Replace each missing 
child with external node

Do you need a special 
flag to tell which nodes 

are external?

Every internal node has exactly 2 children.

Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree – 
let’s us distinguish different instances of Λ.

Extended binary treeBinary tree



# of  External Nodes in Extended Binary Trees

Thm. An extended binary tree with n internal nodes has 
n+1 external nodes.

Proof. By induction on n.  
X(n) := number of external nodes in binary tree with 
n internal nodes.

Base case: X(0) = 1 = n + 1.

Induction step: Suppose theorem is true for all i < n. 
Because n ≥ 1, we have:

Extended binary tree

k nodes (for 
some 0 ≤ k < n)

n-k-1 
nodes

X(n) = X(k) + X(n-k-1)
= k+1 + n-k-1 + 1         
= n + 1  ☐         



Alternative Proof

Thm. An extended binary tree with n internal nodes has n+1 external nodes.

Proof. Every node has 2 children pointers, for a total of 2n pointers.

Every node except the root has a parent, for a total of n - 1 nodes with parents.

These n - 1 parented nodes are all children, and each takes up 1 child pointer.

Thus, there are n + 1 null pointers.

Every null pointer corresponds to one external node by construction. ☐

(pointers) - (used child pointers) = (unused child pointers)
2n - (n-1) = n + 1



Full and Complete Binary Trees

• If every node has either 0 or 2 children, a binary tree is called full.

• If the lowest d-1 levels of a binary tree of height d are filled and 
level d is partially filled from left to right, the tree is called 
complete.

• If all d levels of a height-d binary tree are filled, the tree is called 
perfect.

full complete perfect

Unfortunately, different authors 
use different tree terminology



# Nodes in a Perfect Tree of  Height h

Thm. A perfect tree of height h has 2h+1 - 1 nodes.

Proof. By induction on h.

Let N(h) be number of nodes in a perfect tree of height h. 

Base case: when h = 0, tree is a single node. N(0) = 1 = 20+1 - 1.

Induction step: Assume N(i) = 2i+1 - 1 for 0 ≤ i < h.  

A perfect binary tree of height h consists of 2 perfect binary trees of 
height h-1 plus the root:

N(h) = 2 × N(h - 1) + 1 
= 2 × (2h-1+1 - 1) + 1         
= 2 × 2h - 2 + 1         
= 2h+1 - 1   ☐         

2h are leaves
2h - 1 are internal nodes



Full Binary Tree Theorem

Thm. In a non-empty, full binary tree, the number of internal nodes is always 1 less 
than the number of leaves.

Proof. By induction on n.  
L(n) := number of leaves in a non-empty, full tree of n internal nodes.

Base case: L(0) = 1 = n + 1.

Induction step: Assume L(i) = i + 1 for i < n.

Given T with n internal nodes, remove two sibling leaves.

T’ has n-1 internal nodes, and by induction hypothesis, L(n-1) = n leaves.

Replace removed leaves to return to tree T.  
Turns a leaf into an internal node, adds two new leaves. 

Thus:  L(n) = n + 2 - 1 = n + 1.



Array Implementation for Complete Binary Trees

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H I J K L M

D E F

B

G

C

A

left(i): 2i if 2i ≤ n otherwise 0
right(i): (2i + 1) if 2i + 1 ≤ n otherwise 0
parent(i): ⎣i/2⎦ if i ≥ 2 otherwise 0

Mapping 
of nodes to 
integers

1
2 3

4



Summary

• Trees are an incredibly common way to organize data: 
• folders on your hard drives 
• URLs: http://www.cs.cmu.edu/~ckingsf/software/sailfish 
• BST, Splay trees, AVL trees, B-trees, Quad-trees, kd-trees, red-black trees, M-trees, … 

probably thousands of variants that are good for different data and different queries. 

• Binary trees in particular are nice because each node partitions the 
data into 2 subsets and because there are nice relationships 
between # of nodes and # of leaves, etc. 

• Typically, trees are represented using nodes & pointers, though this 
does not have to be the case.

http://www.cs.cmu.edu/~ckingsf/software/sailfish

