
Binary Search Trees & Trees in General
02-201 / 02-601

Dictionary Abstract Data Type (ADT)

• Most basic and most useful ADT:
• insert(key, value)
• delete(key)
• value = find(key)

• Many languages have it built in like Go’s map:

• Insert, delete, find each either ≈ log n steps [C++] or expected
constant # of steps [perl, python]

• How can such dictionaries are implemented? — There are a number
of ways; we’ll see one next.

awk: D[“AAPL”] = 130 # associative array
perl: my %D; $D[“AAPL”] = 130; # hash
python: D = {}; D[“AAPL”] = 130 # dictionary
C++: map<string,string> D = new map<string, string>();

D[“AAPL”] = 130; // map

Trees

Hierarchies

Many ways to represent tree-like information:

A

B C

D F

E

G

I. A
 1. B
 a. D
 i. E
 b. F
 2. C
 a. G A

CG

E D

F
B

(((E):D), F):B, (G):C):A
nested, labeled parenthesis nested sets

outlines,
indentations

linked hierarchy

Definition – Rooted Tree

• nil is a tree

• If T1, T2, ..., Tk are trees with roots r1, r2, ..., rk and r is
a node ∉ any Ti, then the structure that consists of
the Ti, node r, and edges (r, ri) is also a tree.

r1

r2

r3

r4 r1 r2 r3 r4

r

T1

T2

T3
T4

Terminology

• r is the parent of its children r1, r2, ..., rk.

• r1, r2, ..., rk are siblings.

• root = distinguished node, usually drawn
at top. Has no parent.

• If all children of a node are nil, the node
is a leaf. Otherwise, the node is a internal
node.

• A path in the tree is a sequence of nodes
u1, u2, ..., um such that each of the edges
(u, ui+1) exists.

• A node u is an ancestor of v if there is a
path from u to v.

• A node u is a descendant of v if there is a
path from v to u.

root

leaves

u

children of u
(they are siblings)

internal
node

w

parent
of w

path from
root to w

Unfortunately, different authors use
different tree terminology

Height & Depth

• The height of node u is the length of the longest path from u to a leaf.

• The depth of node u is the length of the path from the root to u.

• Height of the tree = maximum depth of its nodes.

• A level is the set of all nodes at the same depth.

Depth = 0

Depth = 1

Depth = 2

Depth = 3

 1

 0 0 0

 0 0 0

 1

 2

 3 Numbers in
nodes give
heights

Subtrees, forests, and graphs

• A subtree rooted at u is the tree formed from u and all
its descendants.

• A forest is a (possibly empty) set of trees.  
The set of subtrees rooted at the children of r form a
forest.

• As we’ve defined them, trees are not a special case of
graphs:

- Our trees are oriented (there is a root which implicitly
defines directions on the edges).

- A free tree is a connected graph with no cycles.

Alternative Definition – Rooted Tree

• A tree is a finite set T such that:

- one element r ∈ T is designated the root.

- the remaining nodes are partitioned into k ≥ 0 disjoint
sets T1, T2, ..., Tk, each of which is a tree.

This definition emphasizes the
partitioning aspect of trees:

As we move down the we’re
dividing the set of elements into
more and more parts.

Each part has a distinguished
element (that can represent it).

Binary Search Trees

Binary Search Trees (BST)

• BST Property: If a node has key
k then keys in the left subtree
are < k and keys in the right
subtree are > k.

• For convenience, we disallow
duplicate keys.

• Good for implementing the
dictionary ADT we’ve already
seen: insert, delete, find.

2 11

8

6

3

5

9

4

BST Find

2 11

8

6

3

5

9

4

Find k = 6:

BST Find

2 11

8

6

3

5

9

4

Find k = 6:

Is k < 5?

BST Find

2 11

8

6

3

5

9

4

Find k = 6:

Is k < 5? No, go right

BST Find

2 11

8

6

3

5

9

4

Find k = 6:

Is k < 8?

Is k < 5? No, go right

BST Find

2 11

8

6

3

5

9

4

Find k = 6:

Is k < 8?

Is k < 5? No, go right

Yes, go left

BST Find

2 11

8

6

3

5

9

4

Find k = 9:

BST Find

2 11

8

6

3

5

9

4

Find k = 9:

Is k < 5?

BST Find

2 11

8

6

3

5

9

4

Find k = 9:

Is k < 5? No, go right

BST Find

2 11

8

6

3

5

9

4

Find k = 9:

Is k < 8?

Is k < 5? No, go right

BST Find

2 11

8

6

3

5

9

4

Find k = 9:

Is k < 8?

Is k < 5? No, go right

No, go right

BST Find

2 11

8

6

3

5

9

4

Find k = 9:

Is k < 8?

Is k < 5? No, go right

No, go right

Is k < 11?

BST Find

2 11

8

6

3

5

9

4

Find k = 9:

Is k < 8?

Is k < 5? No, go right

Yes, go left

No, go right

Is k < 11?

BST Find

2 11

8

6

3

5

9

4

Find k = 13:

BST Find

2 11

8

6

3

5

9

4

Find k = 13:

Is k < 5?

BST Find

2 11

8

6

3

5

9

4

Find k = 13:

Is k < 5? No, go right

BST Find

2 11

8

6

3

5

9

4

Find k = 13:

Is k < 8?

Is k < 5? No, go right

BST Find

2 11

8

6

3

5

9

4

Find k = 13:

Is k < 8?

Is k < 5? No, go right

No, go right

BST Find

2 11

8

6

3

5

9

4

Find k = 13:

Is k < 8?

Is k < 5? No, go right

No, go right

Is k < 11?

BST Find

2 11

8

6

3

5

9

4

Find k = 13:

Is k < 8?

Is k < 5? No, go right

No, go right

Is k < 11?

nil

No, go right

insert(T, K):
 q = NULL
 p = T
 while p != nil and p.key != K:
 q = p
 if p.key < K:
 p = p.right
 else if p.key > K:
 p = p.left

 if p != nil: error DUPLICATE

 N = new Node(K)
 if q.key > K:
 q.left = N
 else:
 q.right = N

BST Insert

11

8

6

3

5

9

4

nil

2

Same idea as BST Find

insert(T, K):
 q = NULL
 p = T
 while p != nil and p.key != K:
 q = p
 if p.key < K:
 p = p.right
 else if p.key > K:
 p = p.left

 if p != nil: error DUPLICATE

 N = new Node(K)
 if q.key > K:
 q.left = N
 else:
 q.right = N

BST Insert

11

8

6

3

5

9

4

nil

2

q

p

Same idea as BST Find

insert(T, K):
 q = NULL
 p = T
 while p != nil and p.key != K:
 q = p
 if p.key < K:
 p = p.right
 else if p.key > K:
 p = p.left

 if p != nil: error DUPLICATE

 N = new Node(K)
 if q.key > K:
 q.left = N
 else:
 q.right = N

BST Insert

11

8

6

3

5

9

4

nil

2

q

p

Same idea as BST Find

insert(T, K):
 q = NULL
 p = T
 while p != nil and p.key != K:
 q = p
 if p.key < K:
 p = p.right
 else if p.key > K:
 p = p.left

 if p != nil: error DUPLICATE

 N = new Node(K)
 if q.key > K:
 q.left = N
 else:
 q.right = N

BST Insert

11

8

6

3

5

9

4

nil

2

q

p

Same idea as BST Find

1

BST FindMin

2 11

8

6

3

5

4

1
11

8

6

4

5

3

1

BST FindMin

2 11

8

6

3

5

4

Walk left until you can’t go left any more

1
11

8

6

4

5

3

1

BST FindMin

2 11

8

6

3

5

4

Walk left until you can’t go left any more

1
11

8

6

4

5

3

BST Delete

2

3

5

6

2

3

5

4 2

3

5

Node is a leaf: Node has 1 child:

2

3

5 5

2

4

2

3

5

6

4

Node has 2
children:

BST Delete

2

3

5

6

2

3

5

4 2

3

5

Node is a leaf: Node has 1 child:

2

3

5 5

2

4

2

3

5

6

4

Node has 2
children:

BST Delete

2

3

5

6

2

3

5

4 2

3

5

Node is a leaf: Node has 1 child:

2

3

5 5

2

4

2

3

5

6

4

Node has 2
children:

BST Operations Summary

• Find: walk left or right according to the key
comparison.

• Insert: Put the new node where a Find for it would
have fallen off the tree.

• Delete:

- If deleting a leaf, just remove it.

- If deleting a node u with 1 child, move that child up to be a
child of u’s parent.

- If deleting a node u with 2 children: find the smallest key in
the subtree rooted at u, delete it, and replace u with that key.

• What’s the worst possible insertion order?

• What’s the best possible insertion order?

Binary Tree Representation

key

*left_child *right_child

key

*left_child *right_child

key

*left_child *right_child

key

*left_child *right_child

key

*left_child *right_child

nil nil nil nil

nil nil

BST Find Code

type BSTNode struct {
 key int
 left, right *BSTNode
}

func BSTFind(root *BSTNode, k int) *BSTNode {
 if root != nil {
 if k == root.key { return root }
 if k < root.key { return BSTFind(root.left, k) }
 if k > root.key { return BSTFind(root.right, k) }
 }
 return nil
}

Recursive implementation:

How much memory is used?

A node contains the data (here key)
plus pointers to the left and right
children.

BST Find: Non-recursive

func BSTFind(root *BSTNode, k int) (*BSTNode, *BSTNode) {
 var parent *BSTNode = nil
 for root != nil {
 if k == root.key { return parent, root }
 parent = root
 if k < root.key {
 root = root.left
 } else if k > root.key {
 root = root.right
 }
 }
 return parent, root
}

We update “root” so that it points to the current node:
Also extended so that this returns both the node and it’s parent

BST Insert Code

func BSTInsert(root *BSTNode, k int) (*BSTNode, bool) {
 newNode := CreateBSTNode(k)
 if root == nil { return newNode, true }

 parent, current := BSTFind(root, k)
 // if key is already in the tree, report error
 if current != nil { return root, false}

 if newNode.key < parent.key {
 parent.left = newNode
 } else {
 parent.right = newNode
 }

 return root, true
}

Decide if new node should
be a left or right child of
where we fell off the tree

BST FindMin Code

func BSTFindMin(root *BSTNode) *BSTNode {
 if root == nil { return nil }
 for root.left != nil {
 root = root.left
 }
 return root
}

Look ahead: will going left
make us fall off the tree?

BST Delete
Code

func BSTDelete(root *BSTNode, k int) (*BSTNode, bool) {
 if root == nil { return nil, false }
 parent, current := BSTFind(root, k)
 if current == nil { return root, false } // didn’t find

 var pPointer **BSTNode // !!!
 if parent != nil {
 if current.key < parent.key {
 pPointer = &parent.left
 } else {
 pPointer = &parent.right
 }
 }

 switch {
 case current.left != nil && current.right != nil:
 min := BSTFindMin(current)
 BSTDelete(current, min.key)
 current.key = min.key
 case current.left == nil && current.right == nil:
 *pPointer = nil
 case current.left != nil:
 *pPointer = current.left
 case current.right != nil:
 *pPointer = current.right
 }

 return root, true
}

Find the node to
delete and its parent

Coding jujutsu: pPointer is a pointer
to the pointer in the parent that we
have to change during the delete

The delete cases depend on
which children exist in the node
we are deleting

Summary

• Binary search trees are a fundamental data structure supporting
the “dictionary” (aka map, associative array) operations.

• The requirement that the keys be unique is not crucial: it just adds
a few more special cases to the code.

• The running time of all the operations is proportional to the height
of the tree.

• Standard BSTs don’t do anything to keep the height small.

More about trees

Binary Tree Traversals

H I J

D E F

B

G

C

A

inorder: HDIBEAJFCG
preorder: ABEHIECFJG
postorder: HIDEBJFGCA

func traverse(T *Node) {
 if(T != nil) {
 PREORDER(T);
 traverse(T.left);
 INORDER(T);
 traverse(T.right);
 POSTORDER(T);
 }
}

How much space is used?

Basic Properties

• Every node except the root has exactly one parent.

• A tree with n nodes has n-1 edges  
(every node except the root has an edge to its
parent).

• There is exactly one path from the root to each node.
(Suppose there were 2 paths, then some node along
the 2 paths would have 2 parents.)

Binary Trees – Definition

• An ordered tree is a tree for which the order of the
children of each node is considered important.

• A binary tree is an ordered tree such that each node
has ≤ 2 children.

• Call these two children the left and right children.

r1 r2 r3 r4

r

r1 r2r3r4

r

≠

Example Binary Trees

Only left
child

Only right
child

Single
node

Empty
Binary

Tree

Λ

Small binary tree:

The edge cases:

Extended Binary Trees

Replace each missing
child with external node

Do you need a special
flag to tell which nodes

are external?

Every internal node has exactly 2 children.

Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree –
let’s us distinguish different instances of Λ.

Extended binary treeBinary tree

of External Nodes in Extended Binary Trees

Thm. An extended binary tree with n internal nodes has
n+1 external nodes.

Proof. By induction on n.  
X(n) := number of external nodes in binary tree with
n internal nodes.

Base case: X(0) = 1 = n + 1.

Induction step: Suppose theorem is true for all i < n.
Because n ≥ 1, we have:

Extended binary tree

k nodes (for
some 0 ≤ k < n)

n-k-1
nodes

X(n) = X(k) + X(n-k-1)
= k+1 + n-k-1 + 1
= n + 1 ☐

Alternative Proof

Thm. An extended binary tree with n internal nodes has n+1 external nodes.

Proof. Every node has 2 children pointers, for a total of 2n pointers.

Every node except the root has a parent, for a total of n - 1 nodes with parents.

These n - 1 parented nodes are all children, and each takes up 1 child pointer.

Thus, there are n + 1 null pointers.

Every null pointer corresponds to one external node by construction. ☐

(pointers) - (used child pointers) = (unused child pointers)
2n - (n-1) = n + 1

Full and Complete Binary Trees

• If every node has either 0 or 2 children, a binary tree is called full.

• If the lowest d-1 levels of a binary tree of height d are filled and
level d is partially filled from left to right, the tree is called
complete.

• If all d levels of a height-d binary tree are filled, the tree is called
perfect.

full complete perfect

Unfortunately, different authors
use different tree terminology

Nodes in a Perfect Tree of Height h

Thm. A perfect tree of height h has 2h+1 - 1 nodes.

Proof. By induction on h.

Let N(h) be number of nodes in a perfect tree of height h.

Base case: when h = 0, tree is a single node. N(0) = 1 = 20+1 - 1.

Induction step: Assume N(i) = 2i+1 - 1 for 0 ≤ i < h.

A perfect binary tree of height h consists of 2 perfect binary trees of
height h-1 plus the root:

N(h) = 2 × N(h - 1) + 1
= 2 × (2h-1+1 - 1) + 1
= 2 × 2h - 2 + 1
= 2h+1 - 1 ☐

2h are leaves
2h - 1 are internal nodes

Full Binary Tree Theorem

Thm. In a non-empty, full binary tree, the number of internal nodes is always 1 less
than the number of leaves.

Proof. By induction on n.  
L(n) := number of leaves in a non-empty, full tree of n internal nodes.

Base case: L(0) = 1 = n + 1.

Induction step: Assume L(i) = i + 1 for i < n.

Given T with n internal nodes, remove two sibling leaves.

T’ has n-1 internal nodes, and by induction hypothesis, L(n-1) = n leaves.

Replace removed leaves to return to tree T.  
Turns a leaf into an internal node, adds two new leaves.

Thus: L(n) = n + 2 - 1 = n + 1.

Array Implementation for Complete Binary Trees

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H I J K L M

D E F

B

G

C

A

left(i): 2i if 2i ≤ n otherwise 0
right(i): (2i + 1) if 2i + 1 ≤ n otherwise 0
parent(i): ⎣i/2⎦ if i ≥ 2 otherwise 0

Mapping
of nodes to
integers

1
2 3

4

Summary

• Trees are an incredibly common way to organize data:
• folders on your hard drives
• URLs: http://www.cs.cmu.edu/~ckingsf/software/sailfish
• BST, Splay trees, AVL trees, B-trees, Quad-trees, kd-trees, red-black trees, M-trees, …

probably thousands of variants that are good for different data and different queries.

• Binary trees in particular are nice because each node partitions the
data into 2 subsets and because there are nice relationships
between # of nodes and # of leaves, etc.

• Typically, trees are represented using nodes & pointers, though this
does not have to be the case.

http://www.cs.cmu.edu/~ckingsf/software/sailfish

