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The Conceptual Architecture of  a Computer
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What kinds of  problems can this computer 
solve?

What kinds of  problems can’t it solve?

The field of computational complexity tries to answer these questions



Turing Machines

Real computers are hard to work with mathematically, so Alan Turing proposed a 
simplified model:

Infinitely long tape of cells:

Head can move left or 
right along this tape 
It can read the value in the 
current cell and it 
can overwrite that value

Cells can 
hold 0 or 1

Head

state

Head contains a single 
register called the “state”



A Turing Machine Program:

if symbol == b && state == X {
    write [0 or 1]
    set state to Y
    move [left or right]
} else

if symbol == b && state == X {
    write [0 or 1]
    set state to Y
    move [left or right]
} else

if symbol == b && state == X {
    write [0 or 1]
    set state to Y
    move [left or right]
} else

.

.

.

if state == “HALT” {
   stop
}

for true {

}

• A Turing Machine repeatedly 
executes steps. 

• At each step, what the machine 
does depends only on the symbol 
b on the current tape position and 
the value of the state register. 

• The machine then:  
• writes a value to the current 

cell,  
• changes the value of the state 

variable to something, and  
• then moves left or right.  



Another View

A Turing Machine program is a function:

Set of possible 
states (finite)

Symbol on 
current position

Set of possible 
states (finite)

Symbol 
to write

Which 
way to 
move

t : (S, {0, 1}) ! (S, {0, 1}, {L,R})

For example t(7, 0) might equal (7, 0, R), meaning stay in state 7, write 0 on the tape, 
and move one cell to the right



Representing TM functions

t : (S, {0, 1}) ! (S, {0, 1}, {L,R})

We can represent t as a long (but finite) string of bits:

0,0:0,0,L;0,1:1,1,R;2,1:10,1,L …

string of bits representing these characters



Turing Machines Can Solve Anything A Real 
Computer Can

• We won’t prove this, but intuitively it should be clear that a TM can 
do anything a real computer can. 

• Both have finite state (registers in a computer, the “state” in a TM)  

• Both have memory (RAM in a computer, the tape in a TM) 

• The TM is slower because it doesn’t have random access, but if the 
TM wants to access cell i, it just has to move left or right until it is at 
cell i.



Church-Turing Thesis

Everything that is efficiently computable is 
efficiently computable on a Turing Machine.

Notice that this is much strong than the (true) statement that Turing 
machines can solve anything your laptop can. 

It talks about all past, current, and future kinds of computers (quantum 
computers, kerfloble computers (as yet uninvented), whatever…)



The Set P

You may of heard of the famous P = NP question.

P is the set of YES / NO questions answerable in a 
polynomial number of steps on a Turing machine.

If n is the number of bits written on the tape when the 
machine is started (the input length) then the machine 
must halt in ≤ p(n) steps for some polynomial p

If it halts pointing at 1: the machine answers YES 
If it halts pointing at 0: the machine answers NO

P and NP are sets of computational problems



The Halting Problem

Halting Problem: Given a TM t and an initial contents I 
on the tape  determine if t running on I ever halts (i.e. 

reaches the “halt” state within a finite number of steps)

• We can represent t as a long (but finite) string of bits. 
• We can represent any Go program as a long (but finite) 

string of bits.

• The Halting Problem is itself a computational problem: it’s input is a 
description of t and its output is YES or NO. 

• It’s a super important one: Will my program hang? Will it get stuck 
and never stop?

Is the Halting Problem in P?



The Halting Problem is Uncomputable

There is NO program that can solve the halting problem.

No matter how much finite time you give your computer, 
you can’t write a program that will check whether an 
arbitrary program will stop.

Let’s prove that now.



Proof

1010101000100101…

Suppose there is a program that solves the halting problem:

1101010111100010…
0100100100101010…
0100000001001011…
1111001010101100…
1110010101001001…

.

.

.

All the possible inputs I to a TM 
(an infinite, but countable, number of them)

All the possible programs t

halt(t, I)

Consider all the possible inputs of halt:
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1010101000100101…
1101010111100010…
0100100100101010…
0100000001001011…
1111001010101100…
1110010101001001…

.

.

.

Let q be the following program: 
func q(t) { if halt(t, t)==1 { for {} } }

t1

Note that every t is also a valid input I: both are just strings of bits, so each t 
appears someplace as a column:

t2
t3
t4
t5

t6

t1 t2t3 t4t5 t6

q is a TM that takes as input a 
program t, and if t halts on input t,  
q doesn’t halt, otherwise q halts

Since q is a program, it must appear someplace in the list of programs (rows).

Where is q?



Suppose q = t4 (say)

1010101000100101…
1101010111100010…
0100100100101010…
0100000001001011…
1111001010101100…
1110010101001001…

.

.

.

t1
t2
t3
t4
t5

t6

t1 t2t3 t4t5 t6

q=

What does q(q) do (i.e. t4(t4))?

• If q halts (as determined by halt(q,q)), q does the opposite: it runs forever. 

• If q doesn’t halt, q halts.

⇒ q does the opposite of q, a contradiction!

Let q be the following program: 
func q(t) { if halt(t, t)==1 { for {} } }

⇒ our assumption that halt(t, I) exists is false.
⇒ q can’t appear in the list of programs
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• If q halts (as determined by halt(q,q)), q does the opposite: it runs forever. 

• If q doesn’t halt, q halts.

⇒ q does the opposite of q, a contradiction!

halt(t4, t4)

Let q be the following program: 
func q(t) { if halt(t, t)==1 { for {} } }

⇒ our assumption that halt(t, I) exists is false.
⇒ q can’t appear in the list of programs



The Limits of  Computers

• Every program either halts on I or not (true) 

• But it’s not possible to write a program to determine this in general. 

• There are problems that computers cannot solve. 

• In fact, most questions about programs are undecidable!  
(makes writing an autograder a pretty hard problem… since we 
can’t have a problem “will halt”)



The set NP

t0 : (S, {0, 1}) ! (S, {0, 1}, {L,R})

Let’s extend what we mean by a TM program to have two functions:

t1 : (S, {0, 1}) ! (S, {0, 1}, {L,R})

At every step, it can either use t0 or t1 to decide what to do.

Suppose an all powerful being tells the computer which one to use at each step.

This is called a non-deterministic Turing machine.

NP is the set of YES / NO questions answerable in a 
polynomial number of steps on a non-deterministic 
Turing machine.

P=NP? is the question: does this all powerfull being help?



P=NP?

• Intuitively, having an all powerful being give you hints about what to 
do at every step seems like it should expand the set of questions 
you can answer efficiently. 

• There are many (many, thousands) of problems for which we have 
efficient non-deterministic programs, but can’t find a regular one. 

• On the other hand, no one can prove that non-deterministic TMs 
can do more than regular ones.



Computational Complexity

• Computational complexity is the field concerned with answering 
these types of questions. 

• Huge amount currently not known about what kinds of problems 
can be solved in polynomial time.


