
Turing Machines & Computability
02-201 / 02-601

The Conceptual Architecture of a Computer

register 0

register 1

register 2

register 3

register n

CPU
w

or
d

1

w
or

d
2

w
or

d
3

w
or

d
4

w
or

d
5

w
or

d
6

w
or

d
7

w
or

d
8

w
or

d
9

w
or

d
10

w
or

d
11

w
or

d
12

w
or

d
13

w
or

d
14

w
or

d
15

w
or

d
m

real

w
or

d
0

PC

^

What kinds of problems can this computer
solve?

What kinds of problems can’t it solve?

The field of computational complexity tries to answer these questions

Turing Machines

Real computers are hard to work with mathematically, so Alan Turing proposed a
simplified model:

Infinitely long tape of cells:

Head can move left or
right along this tape
It can read the value in the
current cell and it
can overwrite that value

Cells can
hold 0 or 1

Head

state

Head contains a single
register called the “state”

A Turing Machine Program:

if symbol == b && state == X {
 write [0 or 1]
 set state to Y
 move [left or right]
} else

if symbol == b && state == X {
 write [0 or 1]
 set state to Y
 move [left or right]
} else

if symbol == b && state == X {
 write [0 or 1]
 set state to Y
 move [left or right]
} else

.

.

.

if state == “HALT” {
 stop
}

for true {

}

• A Turing Machine repeatedly
executes steps.

• At each step, what the machine
does depends only on the symbol
b on the current tape position and
the value of the state register.

• The machine then:
• writes a value to the current

cell,
• changes the value of the state

variable to something, and
• then moves left or right.

Another View

A Turing Machine program is a function:

Set of possible
states (finite)

Symbol on
current position

Set of possible
states (finite)

Symbol
to write

Which
way to
move

t : (S, {0, 1}) ! (S, {0, 1}, {L,R})

For example t(7, 0) might equal (7, 0, R), meaning stay in state 7, write 0 on the tape,
and move one cell to the right

Representing TM functions

t : (S, {0, 1}) ! (S, {0, 1}, {L,R})

We can represent t as a long (but finite) string of bits:

0,0:0,0,L;0,1:1,1,R;2,1:10,1,L …

string of bits representing these characters

Turing Machines Can Solve Anything A Real
Computer Can

• We won’t prove this, but intuitively it should be clear that a TM can
do anything a real computer can.

• Both have finite state (registers in a computer, the “state” in a TM)

• Both have memory (RAM in a computer, the tape in a TM)

• The TM is slower because it doesn’t have random access, but if the
TM wants to access cell i, it just has to move left or right until it is at
cell i.

Church-Turing Thesis

Everything that is efficiently computable is
efficiently computable on a Turing Machine.

Notice that this is much strong than the (true) statement that Turing
machines can solve anything your laptop can.

It talks about all past, current, and future kinds of computers (quantum
computers, kerfloble computers (as yet uninvented), whatever…)

The Set P

You may of heard of the famous P = NP question.

P is the set of YES / NO questions answerable in a
polynomial number of steps on a Turing machine.

If n is the number of bits written on the tape when the
machine is started (the input length) then the machine
must halt in ≤ p(n) steps for some polynomial p

If it halts pointing at 1: the machine answers YES
If it halts pointing at 0: the machine answers NO

P and NP are sets of computational problems

The Halting Problem

Halting Problem: Given a TM t and an initial contents I
on the tape determine if t running on I ever halts (i.e.

reaches the “halt” state within a finite number of steps)

• We can represent t as a long (but finite) string of bits.
• We can represent any Go program as a long (but finite)

string of bits.

• The Halting Problem is itself a computational problem: it’s input is a
description of t and its output is YES or NO.

• It’s a super important one: Will my program hang? Will it get stuck
and never stop?

Is the Halting Problem in P?

The Halting Problem is Uncomputable

There is NO program that can solve the halting problem.

No matter how much finite time you give your computer,
you can’t write a program that will check whether an
arbitrary program will stop.

Let’s prove that now.

Proof

1010101000100101…

Suppose there is a program that solves the halting problem:

1101010111100010…
0100100100101010…
0100000001001011…
1111001010101100…
1110010101001001…

.

.

.

All the possible inputs I to a TM 
(an infinite, but countable, number of them)

All the possible programs t

halt(t, I)

Consider all the possible inputs of halt:

Proof

1010101000100101…

Suppose there is a program that solves the halting problem:

1101010111100010…
0100100100101010…
0100000001001011…
1111001010101100…
1110010101001001…

.

.

.

All the possible inputs I to a TM 
(an infinite, but countable, number of them)

All the possible programs t
halt(t, I)

halt(t, I)

Consider all the possible inputs of halt:

1010101000100101…
1101010111100010…
0100100100101010…
0100000001001011…
1111001010101100…
1110010101001001…

.

.

.

Let q be the following program:
func q(t) { if halt(t, t)==1 { for {} } }

t1

Note that every t is also a valid input I: both are just strings of bits, so each t
appears someplace as a column:

t2
t3
t4
t5

t6

t1 t2t3 t4t5 t6

q is a TM that takes as input a
program t, and if t halts on input t,  
q doesn’t halt, otherwise q halts

Since q is a program, it must appear someplace in the list of programs (rows).

Where is q?

Suppose q = t4 (say)

1010101000100101…
1101010111100010…
0100100100101010…
0100000001001011…
1111001010101100…
1110010101001001…

.

.

.

t1
t2
t3
t4
t5

t6

t1 t2t3 t4t5 t6

q=

What does q(q) do (i.e. t4(t4))?

• If q halts (as determined by halt(q,q)), q does the opposite: it runs forever.

• If q doesn’t halt, q halts.

⇒ q does the opposite of q, a contradiction!

Let q be the following program:
func q(t) { if halt(t, t)==1 { for {} } }

⇒ our assumption that halt(t, I) exists is false.
⇒ q can’t appear in the list of programs

Suppose q = t4 (say)

1010101000100101…
1101010111100010…
0100100100101010…
0100000001001011…
1111001010101100…
1110010101001001…

.

.

.

t1
t2
t3
t4
t5

t6

t1 t2t3 t4t5 t6

q=

What does q(q) do (i.e. t4(t4))?

• If q halts (as determined by halt(q,q)), q does the opposite: it runs forever.

• If q doesn’t halt, q halts.

⇒ q does the opposite of q, a contradiction!

halt(t4, t4)

Let q be the following program:
func q(t) { if halt(t, t)==1 { for {} } }

⇒ our assumption that halt(t, I) exists is false.
⇒ q can’t appear in the list of programs

The Limits of Computers

• Every program either halts on I or not (true)

• But it’s not possible to write a program to determine this in general.

• There are problems that computers cannot solve.

• In fact, most questions about programs are undecidable!  
(makes writing an autograder a pretty hard problem… since we
can’t have a problem “will halt”)

The set NP

t0 : (S, {0, 1}) ! (S, {0, 1}, {L,R})

Let’s extend what we mean by a TM program to have two functions:

t1 : (S, {0, 1}) ! (S, {0, 1}, {L,R})

At every step, it can either use t0 or t1 to decide what to do.

Suppose an all powerful being tells the computer which one to use at each step.

This is called a non-deterministic Turing machine.

NP is the set of YES / NO questions answerable in a
polynomial number of steps on a non-deterministic
Turing machine.

P=NP? is the question: does this all powerfull being help?

P=NP?

• Intuitively, having an all powerful being give you hints about what to
do at every step seems like it should expand the set of questions
you can answer efficiently.

• There are many (many, thousands) of problems for which we have
efficient non-deterministic programs, but can’t find a regular one.

• On the other hand, no one can prove that non-deterministic TMs
can do more than regular ones.

Computational Complexity

• Computational complexity is the field concerned with answering
these types of questions.

• Huge amount currently not known about what kinds of problems
can be solved in polynomial time.

