
02-713 Homework #10: Linear Programming
Due: Apr. 28 by 9:30am

Don’t look up solutions in the web. The point of these homeworks is to prepare for the exams. You may
talk with your classmates about these problems, but you must write up your solutions independently,
without using common notes or worksheets. You must indicate at the top of your homework with whom
you worked. Your write up should be clear and concise. It should be submitted via Autolab (https:
//autolab.cs.cmu.edu/02713-s14/) as a typeset PDF.

1. “Thom’s Problem.” On graduate school visit days, professors need to meet with visiting students to
explain to them how great CMU is. Visiting students have certain professors they want to meet with
and professors have certain visiting students they want to impress. Over visit day, there are meetings
at various fixed time slots, and some professors and students are only available at certain times. Your
task is to find an assignment of students, professors, and times that allows as many meetings to take
place as possible.

More formally, we have:

• A set of visiting students S = {s1, . . . , sm}.
• A set of professors P = {p1, . . . , tn}.
• A set of time slots T = {t1, . . . , ta}.

• A collection of sets Api ⊆ T , where Api gives the time slots that professor pi is available.

• A collection of sets Asi ⊆ T , where Asi gives the time slots that student si is available.

• A collection of sets Mpi
⊆ S, where Mpi

gives the students with whom professor pi is interested
in meeting.

• A collection of sets Msi ⊆ P , where Msi gives the professors that visiting student si wants to
meet.

Professor pi will only meet with students on her list Mpi and student si will only meet with professors
on their list Msi . (We’ll relax these requirements later.) A meeting can only happen at time ti if both
the student and professor are available. At any time, each student can meet with at most 1 professor
and each professor can meet with at most 1 student.

Example input:

x x x

St
ev

e
To

m
U

ri
W

ei
Xi

n
Ya

ng
Zh

an
g

Prof. Abe
Prof. Bob
Prof. Carl

Prof. Dave

x x x

x x x

x x x x x x x

P

S

= MAbe xSteve
Tom

Uri
Wei
Xin

Yang
Zhang

Pr
of

. A
be

Pr
of

. B
ob

Pr
of

. C
ar

l
Pr

of
. D

av
e

x x

x x x

x

= MSteve x x

x x x

x x

x x x

Prof. Abe
Prof. Bob
Prof. Carl

Prof. Dave
Steve

Tom
Uri

Wei
Xin

Yang
Zhang

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x x

x x x x x

2:
00

-2
:3

0

2:
30

-3
:0

0

3:
00

-3
:3

0

3:
30

-4
:0

0

4:
00

-4
:3

0

Professor Meeting Preferences: Student Meeting Preferences: Everyone's availability:

= AAbe

= ASteve x

x

x

T

1

(a) Write an integer linear program that finds maximum the number of (prof, student, time) meetings
that can happen.

(b) Explain how to get the actual meeting schedule from your integer linear program.

(c) Suppose you are now also given, for each professor, a “bigshot score” bpi that is a positive number
that says how important it is to satisfy that professor’s demands. For every meeting that professor pi
takes with a student in her preference list Mpi

, we get bpi
points. Describe how to modify your integer

linear program to find a schedule that maximizes the number of bigshot points your schedule gets.

(d) One more extension: visit days are successful if students meet with a lot of people, even if neither
the student or the professor put one another in their preference lists. Describe how to modify your
integer linear program so that you get bpi

points if you schedule one of professor pi’s meetings with a
student on her list Mpi

but only 1 point if you schedule her with someone who is not on her preference
list. Assume now that students will meet with anyone they are assigned to, but the time constraints
must still be satisfied.

2. “Greg’s problem (sort of).” You have two images A and B. Within each image are sets of points
PA = {pA1 , . . . , pAm} and PB = {pB1 , . . . , pBn }. Each point has a label `(pi), and several points will have
the same labels. You are given a set E ⊆ PA × PB of pairs of points that are allowed to be assigned
to each other.

You want to assign points in PA to points in PB subject to the following conditions:

(1) all points in A must be assigned to some point in B (some points in B might go assigned though).

(2) two points pAi , pBj can be assigned to each other only if (pAi , p
B
j) ∈ E.

(3) two points pAi , pBj can be assigned to one another only if they have the same label: `(pAi) = `(pBj).

(4) several points from A can be be assigned to a single point in B, but we require that the number of
points assigned to points with the same label in B to differ by at most 1 (including those to which
we assign 0 points). That is, if 2 points from A are assigned to point pB1 then if `(pB3) = `(pB1), we
can’t assign 4 points from A to pB3 . Another example: if we assign 0 points to pB7 then no other
point with the same label can be assigned more than 1 point from A.

(a) Give a network flow (or circulations with demands-type) formulation to find the assignments that
satisfy the above constraints or report that no such assignment exists.

(b) Give a linear program to solve the same problem.

3. Programming problem; 02-713 only. This is a flashback to dynamic programming, and isn’t
directly connected with LP or network flows. Suppose you are trying to find where genes are in a
long string of DNA d. Researchers have created a number of programs that predict possible gene
locations, but they often include a lot of false and contradictory predictions. Suppose you are given a
set G = {(si, ei, ri)} of predictions where 0 ≤ si < |d| is the start of predicted gene i, 1 ≤ ei < |d| is the
end of the predicted gene, and 0 < ri < 1 is probability that the prediction is correct. The predicted
genes in G can overlap, but in real genomes overlapping genes are somewhat rare (they actually happen,
but for the purposes of this problem, assume that they do not).

Write a Python program that implements a dynamic programming algorithm to find a subset G ⊆ G
of predictions such that (1) no pair of predictions in G overlap, and (2)

∑
g∈G rg is maximized. (For

simplicity, we are dealing with only 1 strand of DNA at a time.)

Input: A file containing |G| lines of the form 10 100 0.234, meaning that a gene was predicted to go
from position 10 to position 100 with probability 0.234.

2

Output: A series of lines of the form Include: 10 100 0.234, meaning to include the gene with
those parameters. A single line of the form Sum Probability: 0.01, that gives the sum of the
probabilities of the chosen set of genes.

Technicalities: Your program should be called choosegenes.py. You can use matplotlib, numpy, or
networkx, or anything in the python standard library. Otherwise, you can use no other code that you
didn’t write.

3

