Randomized Algorithms: Closest Pair of Points

Slides by Carl Kingsford

May 2, 2014

Based on Khuller and Matias

The problem

Problem. Given a set of points $S = \{p_1, \dots, p_n\}$ in the plane find the pair of points $\{p_i, p_j\}$ that are closest together.

-

Estimate

Let $\delta(S)$ be the smallest distance in S. Suppose you had a good estimate b of $\delta(S)$ such that:

$$b/3 \le \delta(S) \le b$$

Then you could find the closest points in O(n) time as follows. Create a grid of boxes of side-length = b:

Compare each point to the points in its neighborhood.

.

Why O(n)?

The closest pair of points lie in each other's neighborhood of the *b*-grid:

Each grid box contains \leq 25 points:

Largest distance inside of a smaller grid point $=\frac{\sqrt{2}}{5}b<\frac{b}{3}\leq\delta(S)$.

.

Randomized approach to estimating b

While *S* is not empty:

- 1. Choose random point $x_i \in S$.
- 2. Compute $d(x_i) :=$ smallest distance from x_i to any other point currently in S
- 3. For all points $x \in S$: If

far
$$d(x) > d(x_i) \rightarrow throw \ out \ x$$

close $d(x) \le d(x_i)/3 \rightarrow keep \ x$
medium $d(x) > d(x_i)/3 \ but \ d(x) \le d(x_i) \rightarrow do \ what \ you$
want.

Return $b = d(x_i) = d(x^*)$ where $x^* :=$ the last x_i chosen before Sbecame empty.

than scale, throw x out

If closest point to x is closer

than scale / 3, be sure to keep x

Implementing Step 3

Build a $d(x_i)/3$ -grid.

Step 3 Rule: A point *x* should be thrown out if it's the only point in its neighborhood.

This will definitely throw out all points with $d(x) > d(x_i)$:

Step 3, 2

Step 3 Rule will definitely keep all points with $d(x) \le d(x_i)/3$.

$$b = d(x^*)$$
 is a good estimate for $\delta(S)$

We have $d(x^*) = b \le \delta(S)$ by definition.

Theorem.
$$\delta(S) \geq b/3$$

Proof. Let (u, v) be the closest pair of points. Since S eventually becomes empty, u, v are deleted from S at some point. Suppose u was deleted first, and let j be the stage at which u was deleted. At that time:

- ▶ $d(u) \ge d(x_i)/3$ because otherwise u would have been kept.
- ▶ $d(u) = \delta(S)$ because both u, v were in S at the start of stage j.
- ▶ $d(x_j) \ge d(x_i)$ because i > j and at stage j we removed all points with $d(x) \ge d(x_j)$ [rule 3.1] so there are no points left with $d(x) \ge d(x_j)$ from which x_i could have been selected.

So:
$$d(u) = \delta(S) \ge d(x_i)/3 \ge d(x_i)/3 = b/3$$

Proof: picture

g

Runtime Analysis

Let S_i be the set of points at stage i.

Let s_i be $|S_i|$.

Theorem.
$$\mathbb{E}[s_i] \leq \frac{n}{2^{i-1}}$$

Proof. Assume true for *i*. Then:

$$\mathbb{E}[s_{i+1}] = \mathbb{E}\mathbb{E}[s_{i+1}] \le \mathbb{E}[s_i/2] = \frac{1}{2}\mathbb{E}[s_i] \le \frac{1}{2}\frac{n}{2^{i-1}} = \frac{n}{2^i}$$

Here $\mathbb{E}[s_i/2] \leq s_i/2$ because we chose x_i randomly. If you consider all the points, about half would have larger d(x) and half would be smaller.

Runtime, 2

We then have that the total running time is

$$\mathbb{E}\left(\sum_{i=1}^{i^*} s_i\right) \leq \mathbb{E}\left(\sum_{i=1}^{n} s_i\right) = \sum_{i=1}^{n} \mathbb{E}[s_i] \leq \sum_{i=1}^{n} \frac{n}{2^{i-1}} \leq 2n$$

where i^* is the number of stages, and the inequalities and equalities follow from linearity of expectation, the theorem above, and the sum of a geometric series.