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The problem

Problem. Given a set of points S = {p1, . . . , pn} in the plane find
the pair of points {pi , pj} that are closest together.
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Estimate

Let δ(S) be the smallest distance in S . Suppose you had a good
estimate b of δ(S) such that:

b/3 ≤ δ(S) ≤ b

Then you could find the closest points in O(n) time as follows.
Create a grid of boxes of side-length = b:

b

x

neighborhood of x

Compare each point to the points in its neighborhood.
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Why O(n)?

The closest pair of points lie in each other’s neighborhood of the
b-grid:

b

u

δ(S) ≤ b

v

Each grid box contains ≤ 25 points:
b

b/5b√2/5

Largest distance inside of a smaller grid point =
√
2
5 b < b

3 ≤ δ(S).
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Randomized approach to estimating b

While S is not empty:
1. Choose random point xi ∈ S .
2. Compute d(xi ) := smallest distance from xi to any other

point currently in S
3. For all points x ∈ S : If

far d(x) > d(xi ) → throw out x
close d(x) ≤ d(xi )/3 → keep x

medium d(x) > d(xi )/3 but d(x) ≤ d(xi ) → do what you
want.

Return b = d(xi ) = d(x∗) where x∗ := the last xi chosen before S
became empty.

d(xi)

xi

d(x)

x

d(x)

x

d(xi)/3

Random point sets the scale If closest point to x is bigger 
than scale, throw x out

If closest point to x is closer 
than scale / 3, be sure to keep x
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Implementing Step 3

Build a d(xi )/3-grid.

Step 3 Rule: A point x should be thrown out if it’s the only point
in its neighborhood.

This will definitely throw out all points with d(x) > d(xi ):

d(xi)/3

x

y

d(xi)

c

c = (2d(xi)√2)/3
< d(xi)
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Step 3, 2

Step 3 Rule will definitely keep all points with d(x) ≤ d(xi )/3.

d(xi)/3

x

y

radius = d(xi) / 3

d(x)
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b = d(x∗) is a good estimate for δ(S)

We have d(x∗) = b ≤ δ(S) by definition.

Theorem. δ(S) ≥ b/3

Proof. Let (u, v) be the closest pair of points. Since S eventually
becomes empty, u, v are deleted from S at some point. Suppose u
was deleted first, and let j be the stage at which u was deleted. At
that time:

I d(u) ≥ d(xj)/3 because otherwise u would have been kept.

I d(u) = δ(S) because both u, v were in S at the start of stage j .

I d(xj) ≥ d(xi ) because i > j and at stage j we removed all points
with d(x) ≥ d(xj) [rule 3.1] so there are no points left with
d(x) ≥ d(xj) from which xi could have been selected.

So: d(u) = δ(S) ≥ d(xj)/3 ≥ d(xi )/3 = b/3
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Proof: picture

S1 S2 S3 Sj Si* Si*+1… …

x1 x2 x3 xj xi*… …

d(x1) d(x2) d(x3) d(xj) d(xi*)

u
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Runtime Analysis

Let Si be the set of points at stage i .

Let si be |Si |.

Theorem. E[si ] ≤ n
2i−1

Proof. Assume true for i . Then:

E[si+1] = EE[si+1] ≤ E[si/2] =
1

2
E[si ] ≤

1

2

n

2i−1
=

n

2i

Here E[si/2] ≤ si/2 because we chose xi randomly. If you consider
all the points, about half would have larger d(x) and half would be
smaller.
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Runtime, 2

We then have that the total running time is

E

(
i∗∑
i=1

si

)
≤ E

(
n∑

i=1

si

)
=

n∑
i=1

E[si ] ≤
n∑

i=1

n

2i−1
≤ 2n

where i∗ is the number of stages, and the inequalities and
equalities follow from linearity of expectation, the theorem above,
and the sum of a geometric series.
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