
More Exact Matching
(Following Gusfield Chapter 2)



Knuth-Morris-Pratt

|P| = n

|T| = m



Knuth-Morris-Pratt (KMP)
• Shift by more than 1 place, if possible, upon mismatch.

Def. spmi(P) = the length of the longest substring of P that ends at i > 
1 and matches a prefix of P and such that P[i+1] ≠ P[spmi + 1]. 
(“spm” stands for suffix, prefix, mismatch.) 
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⟹ can shift by: i - spmi

KMP Algorithm: Suppose mismatch at i+1 of P:
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y ⟹ can set new p to spmp-1 +1

c = p = 1    // ptrs into T and P, respectively

while c ≤ |T| - |P| + p:

while P[p] = T[c] and p ≤ n: // compare P and T

p++

c++

if p = |P| + 1: print “Found at”, c - |P|   // if found

if p = 1: // failure at start means inc c

c++

else:

p = spmp-1 + 1   // “shift” by n - spmp-1 (even if p=n+1)

c

new p



KMP Running Time

Pseudocode runs in O(|T|) time (making at most 2|T| comparisons):

• Every character is matched at most once (might be mismatched 
more than once) [Proof: c is never decremented.]

• At any time t, there are qt ≤ |P| characters that have been 
compared in P and are currently matching.

• Each mismatch can be “charged” to a some shift of P (because 
when there is a mismatch, we shift).

• When we shift |P|, we shift it by ≤ qt  so a mismatch can be 
“charged” so some matches we already performed. 

• So total # of mismatches < |T|.

• Therefore: O(2|T|) for the pseudocode on previous page.



Recall: Fundamental Preprocessing

• P = “aardvark”: Z2 = 1, Z6 = 1

• P = “alfalfa”: Z4 = 4

• P = “photophosphorescent”: Z6 = Z10 = 3

Def. Zi(P) = the length of the longest substring of P that 
starts at i > 1 and matches a prefix of P.
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Computing spmi for KMP

f(j) = f(j2)j

Z-boxes

j2

f(j) = the right end of the Z-box (if any) that starts at j.

g(i) = min {j : f(j) = i} or 0 if empty set.

Thm. spmi = Zg(i) if g(i) > 0 otherwise 0 
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Zg(i)Proof.

P[g(i)..i] = P[1..Zg(i)] by the definition of Z. 

Also, P(i+1) ≠ P[Zg(i)+1], otherwise Zg(i) would be bigger.

So, spmi ≥ Zg(i). But it can’t be longer, because otherwise g(i) would be smaller.



Boyer-Moore



Boyer-Moore Main Ideas

• For a given shift, compare P to T from right to left.

• Two rules for shifting:

(1) Bad Character Rule

(2) Good Suffix Rule 
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Bad Character Rule

• When a mismatch occurs at pattern position i:

Def. Ri(x) = position of the rightmost occurrence of character x before position i.
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Ri(a) = Ri(T[k])

shift by i - Ri(T[k]) characters so that the next occurrence of T[k] in the 
pattern is underneath position k in T.

(Called the “bad character rule” because it fires on a mismatch, but really it 
shifts so that the next good character matches.)



• Array R[i,x] would depend on the size of the alphabet, which is 
undesirable.

• Better to use a collection of lists (total size < O(|P|)):

- Occur[x] = positions where x occurs in P in  decreasing order.

• To find Ri(x):
- scan down list x until you find first index < i

• Time: at most O(|P| - i) time, since if mismatch
occurred at position i then there can be at most
|P| - i items on the list that are ≥ i. 

• Only call this routine after matching O(|P| - i) characters, 
so at most doubles the running time.

Computing Ri(x)

Def. Ri(x) = position of the rightmost occurrence of character x before position i.



Good Shift Rule

P:
α

P:

T:
x||||||||

α
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Case (A):

Shift so that the rightmost occurrence of matched 
suffix with different preceding character is aligned 
to matched part of T.

xy

P:
α

Case (B):
β longest proper prefix of P that matches a suffix 
of α. Shift so that the prefix β matches the suffix β 
that was matched to T. 

x

ββ

might overlap

Case (C):

tt’

If not (A) or (B), shift |P| places.

Apply these cases in order:



Processing the good suffix rule

• Case (A): shift by n - L(i).

• Case (B): if L(i) = 0: shift by n - l(i) places.

• If match: shift by n - l(2) places.

Def. L(i) = largest index such that P[i..n] matches suffix of P[1..L(i)] and P[i-1] ≠ 
the character preceding that suffix (0 if no such index exists).
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L(i) i n

Def. l(i) = size of largest suffix of P[i..n] that equals some prefix of P 
(0 if none exists).

P:
β

l(i) i n

β



Computing L(i)

Def. Nj(P) = length of longest suffix of P[1..j] that is also a suffix of P.
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j
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Recall: Def. Zi(P) = the length of the longest substring of P that starts at i > 1 and 
matches a prefix of P.

P:
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i
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Nj(P) and Zi(P) are reverses of each other:
Nj(P) = Zn-j+1(Pr), where Pr is P reversed. Can compute in O(n) time using Z-algorithm on Pr.



Computing L(i), continued

• L(i) = largest index j such that P[i..n] matches suffix of P[1..L(i)] and P[i-1] ≠ 
the character preceding that suffix.

• Nj(P) = length of longest suffix of P[1..j] that is also a suffix of P.

⟹ L(i) = largest index j such that Nj(P) = |P[i..n]| = n - i + 1

• x ≠ y because otherwise Nj(P) would be longer.
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|P[i..n]|
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Compute Nj[P] via Z-Algorithm for all j.
Initialize L[i] = 0 for all i.
for j = 1 to n - 1:

i = n - Nj[P] + 1
L[i] = j



Boyer-Moore

• Worst case running time = O(nm) since might shift by 1 every time.

• Despite this, Boyer-Moore often the best choice in practice because on real 
texts the running time is often sublinear (since the heuristics allow skipping 
a lot of characters).

• Extensions exist that guarantee O(|P| + |T|) running time.

k = 1

while k < |T| - |P| + 1:

Compare P to T[k..|P|] from right to left.

s = max { bad character rule, good suffix rule, 1 }

k += s


