More Exact Matching

(Following Gusfield Chapter 2)

Knuth-Morris-Pratt

 $|P| = n$ |T| = *m*

Knuth-Morris-Pratt (KMP)

• Shift by more than 1 place, if possible, upon mismatch.

Def. $spm_i(P)$ = the length of the longest substring of *P* that *ends* at *i* > 1 and matches a prefix of *P* and such that $P[i+1] \neq P[spm_i+1]$. ("*spm*" stands for suffix, prefix, mismatch.)

KMP Algorithm: Suppose mismatch at *i*+1 of *P*:

 $p = spm_{p-1} + 1$ // "shift" by $n - spm_{p-1}$ (even if $p=n+1$)

KMP Running Time

Pseudocode runs in O(|*T*|) time (making at most 2|*T*| comparisons):

- Every character is *matched* at most once (might be *mismatched* more than once) [Proof: *c* is never decremented.]
- At any time *t*, there are $q_t \leq |P|$ characters that have been compared in P and are currently matching.
- Each mismatch can be "charged" to a some shift of P (because when there is a mismatch, we shift).
- When we shift $|P|$, we shift it by $\leq q_t$ so a mismatch can be "charged" so some matches we already performed.
- So total $\#$ of mismatches < |T|.
- Therefore: O(2*|T|*) for the pseudocode on previous page.

Recall: Fundamental Preprocessing

Def. $Z_i(P)$ = the length of the longest substring of *P* that starts at *i* > 1 and matches a prefix of *P*.

- $P = "aardvark": Z_2 = 1, Z_6 = 1$
- $P = "alfalfa": Z_4 = 4$
- $P =$ "photophosphorescent": $Z_6 = Z_{10} = 3$

Computing spmi for KMP

f(*j*) = the right end of the Z-box (if any) that starts at *j*.

 $g(i) = \min \{j : f(j) = i\}$ or 0 if empty set.

 $P[g(i)..i] = P[1..Z_{g(i)}]$ by the definition of *Z*.

Also, $P(i+1) \neq P[Z_{g(i)}+1]$, otherwise $Z_{g(i)}$ would be bigger.

So, $spm_i \geq Z_{g(i)}$. But it can't be longer, because otherwise $g(i)$ would be smaller.

Boyer-Moore

Boyer-Moore Main Ideas

• For a given shift, compare *P* to *T* from *right to left.*

thequickbrownfox crown **x||||**

- Two rules for shifting:
	- (1) Bad Character Rule
	- (2) Good Suffix Rule

Bad Character Rule

Def. $R_i(x)$ = position of the rightmost occurrence of character *x* before position *i*.

• When a mismatch occurs at pattern position *i*:

shift by i - $R_i(T[k])$ characters so that the next occurrence of $T[k]$ in the pattern is underneath position *k* in *T*.

(Called the "bad character rule" because it fires on a mismatch, but really it shifts so that the next *good* character matches.)

Computing Ri(x)

Def. $R_i(x)$ = position of the rightmost occurrence of character *x* before position *i*.

- Array *R*[*i*,*x*] would depend on the size of the alphabet, which is undesirable.
- Better to use a collection of lists (total size $\langle O(|P|)$):
	- $Occur[x] = positions where x occurs in P in decreasing order.$
- To find $R_i(x)$:
	- scan down list x until you find first index $$
- <u>Time</u>: at most $O(|P| i)$ time, since if mismatch occurred at position *i* then there can be at most $|P|$ - *i* items on the list that are $\ge i$.
- Only call this routine after *matching* O(*|P| i*) characters, so at most doubles the running time.

Good Shift Rule

Case (C): If not (A) or (B), shift |*P*| places.

Processing the good suffix rule

Def. $L(i)$ = largest index such that *P*[*i*..*n*] matches suffix of *P*[1..*L*(*i*)] and *P*[*i*-1] ≠ the character preceding that suffix (o if no such index exists).

Def. $l(i)$ = size of largest suffix of $P[i..n]$ that equals some *prefix* of P (0 if none exists).

- Case (A): shift by *n L*(*i*).
- Case (B): if $L(i) = o$: shift by $n l(i)$ places.
- If match: shift by $n l(2)$ places.

Computing L(i)

Def. $N_j(P)$ = length of longest suffix of $P[1..j]$ that is also a suffix of P .

<u>Recall:</u> **Def.** $Z_i(P)$ = the length of the longest substring of *P* that starts at *i* > 1 and matches a prefix of *P*.

 $N_i(P)$ and $Z_i(P)$ are reverses of each other: $N_j(P) = Z_{n-j+1}(P^r)$, where P^r Can compute in O(n) time using Z-algorithm on P^r. *.*

Computing L(i), continued

 $L(i)$ = largest index *j* such that *P*[*i*..*n*] matches suffix of *P*[1..*L*(*i*)] and *P*[*i*-1] \neq the character preceding that suffix.

$$
P: \frac{N_j(P)}{\mathbf{y} \mid \alpha} \qquad \frac{|P[i..n]|}{\alpha}
$$
\n
$$
L(i) = j \qquad i \qquad n
$$

- $N_i(P)$ = length of longest suffix of $P[1..j]$ that is also a suffix of P.
- $\implies L(i) =$ largest index *j* such that $N_i(P) = |P[i..n]| = n i + 1$
- $\mathbf{x} \neq \mathbf{y}$ because otherwise $N_i(P)$ would be longer.

```
Compute N_j[P] via Z-Algorithm for all j.
Initialize L[i] = 0 for all i.
for j = 1 to n - 1:
  i = n - N_j[P] + 1L[i] = j
```
Boyer-Moore

$$
k = 1
$$
\nwhile $k < |T| - |P| + 1$:

\nCompare P to $T[k \cdot |P|]$ from right to left.

\n $s = \max \{ \text{ bad character rule, good suffix rule, 1} \}$

\n $k \leftarrow s$

- Worst case running time = $O(nm)$ since might shift by 1 every time.
- Despite this, Boyer-Moore often the best choice in practice because on real texts the running time is often sublinear (since the heuristics allow skipping a lot of characters).
- Extensions exist that guarantee $O(|P| + |T|)$ running time.