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Something completely different...

Semi-numerical string matching:

Instead of focusing on comparing characters, think of string as a 
sequence of bits or numbers and use arithmetic operations to 
search for patterns.

Two algorithms:
• Rabin-Karp 
• Shift-And

Both tend to be better for short patterns.



Rabin-Karp
(Following CLR Chapter 34)



Characters as digits

• Assume ∑ = {0,...,9}

• Then a string can be thought of as the decimal representation of a 
number:

• In general, if |∑| = d, a string represents a number in base d.

• Let p = the number represented by query P.

• Let ts = the number represented by the |P| digits of T that start at 
position s.

427328

P occurs at position s of T ⇔ p = ts.



ts = 10(ts-1 - 10m-1T[s-1]) + T[s+m-1]

Computing p and ts

• Use Horner’s rule to compute p in time O(|P|=m):

p = P[m] + 10(P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10P[1])...)

427328 = (8+10(2+10(3+10(7+10(2 + 10 × 4)))))

“Left 
shift” by 1 

digit

• Example:

remove high-
order digit

add next digit of 
T as the low-
order digit

• t0 can be computed the same way in time O(|P|=m).

shift left 
by 1 digit

• ts can be computed from ts-1 in O(1) time:



Rabin-Karp

Problem: p and ts might be huge numbers.

Solution: compute everything modulo some prime q.

• If 10q is ≤ word size, then p mod q and ts mod q can be computed in 
a single word. 

• If p occurs at ts, then p ≣ ts (mod q)

New problem:  If p ≣ ts (mod q), it doesn’t necessarily mean there is a 
match at s.

New solution: if p ≣ ts (mod q), check match explicitly.

Compute p.

Iteratively compute ts.

Output s when ts = p.

Worst-case runtime = O(mn), if every position is a match or false 
positive.



Rabin-Karp Notes

• If your pattern is very small, don’t need to use the (mod q) trick, and you 
can avoid false positive matches.

• You can also pick several different primes q1, q2,..., qk  and then require 
that:

p ≣ ts (mod q1)

p ≣ ts (mod q2)

⋮

p ≣ ts (mod qk)



Shift-And
(Following Gusfield Chapter 4)



Shift-And Algorithm

M = 

p1

p2

p3

p4

...
pn

t1  t2   t3   t4   t5   t6   t7   t8 ... tm

1
1    if P[1..i] = T[ending @ j]
0   otherwise

M[i,j] = (P[i] = T[j]) and (P[1..i-1] = T[ending @ j-1]) 

P:
T:

i

j

M[i,j] := 1 iff prefix i of P matches a substring of T ending at j:

Decompose computation of M[i,j]:

M[i-1, j-1]

1’s in last row 
will indicate 

where P 
matches T.



Computing M by columns
M[i,j] = P[i] = T[j] and P[1..i-1] = T[ending @ j-1] 

M[i-1, j-1]

Def. UP(x) = |P|-bit vector where ith entry is 1 if P[i] = x, 0 otherwise.

M[•,j] = UP(T[j]) & (1; M[•,j-1])

1 where 
P[i] = T[j]

previous column of 
M, shifted down by 1 
(prepended with a 1)

jth column 
of M

Compute columns of M left to right:

0
0
1
1

&
1
1
0
1

0
0
0
1

=
first entry always 1 
because red 
condition is empty 
for i = 1.



Shift-And Time & Space

• Only the current and previous columns of M are needed, so space is 
O(|P|).

• Worst case running time O(|P| × |T|).

• But if |P| in bits ≤ computer word, each column of M can be computed 
in constant time, leading to an O(|T|) algorithm.



Extension to approximate matching

M0

M1

M2

Mk

.

.

.

j

Ml[i,j] = ith prefix of P 
matches suffix ending at j of T 

with ≤ l mismatches.

Ml[j] = Ml-1[j] or (bs(Ml(j-1)) and U(T(j))) or Ml-1[j-1]

i-1 characters of P match 
with ≤ l mismatches and 

jth character matches.

ith prefix of P 
matches string 
ending at j with 
≤ l-1 mismatches

ith prefix of P 
matches string 

ending at j-1 with 
≤ l-1 mismatches

bs(v) := (1; v) truncated to n dimensions.



Seminumerical Matching

Often effective when pattern is small.

Asymptotically, not the best run time, but if operations can be done 
fast in hardware, these algorithms can be good choices.

Also, provide a different perspective on the string matching problem.


