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Why study gene expression?

A genome tells us a lot about an organism 

but . . . the picture is still incomplete:

DNA mostly static

Same genome ⇏ same phenotype

Different env. / condition / tissue effect gene expression

Genome effects itself in complicated ways we can’t
always predict

small & large mutations can effect phenotype

a lot of work tying such mutations to e.g. disease



“central dogma” of molecular biology

DNA     ⇒     (m)RNA     ⇒     Protein
transcription translation

Usually interested in protein abundance

Proteins are the workhorses of the cell

They perform most cellular functions

Often, different protein levels ⇒ different function

but . . . measuring proteins directly is difficult
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Proteins are the workhorses of the cell

They perform most cellular functions

Often, different protein levels ⇒ different function

but . . . measuring proteins directly is difficult

RNA abundance can tell us a lot about protein abundance



Alternative Splicing & Isoform Expression

• Sub-sequences of expressed 
genes can be sampled via RNA-
seq (sequencing transcripts)

• Sequencing gives you short 
(35-300bp length “reads”)

• One gene ⇒ many different 

variants (called isoforms)

(A) True Alternative Splicing (B) Alternative Transcript Start Sites (C) Alternative 3' termini
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Figure 5 – (Redrawn from [4, 47]) Transcript structures illustrating 11 distinct types of alternatively included regions
(AIRs) within the genes. (A) Most patterns of alternative splicing lead to distinct RNAs that are distinguished by an
indel. These include alternative donors, alternative acceptors, alternatively included exons, and intron retention. A
fifth pattern of alternative splicing (mutually exclusive cassette exons) leads to two isoforms that differ by a substitution
rather than an indel. (B) 3 classes of alternative transcription start sites. The simplest is staggered transcription
start sites without a difference in splicing. A distinct class, extremely common in human genes, involves alternative
transcription start sites with distinct upstream exons (or sets of exons), which are spliced to a common downstream set
of exons. Finally, transcription initiation within an intron (not necessarily the first intron) can lead to two (or more)
transcripts, each of which has unique sequence. (C) 3 classes of alternative 3′ termini. The simplest is staggered
polyadenylation sites. Alternative terminal exons and 3′ end formation within an intron (not necessarily the last
intron) lead to two (or more) transcripts, each of which has unique sequence.

(e.g. splice junctions, RNA edits). An advantages of our clustering approach is that we can apply many of
the outlier detection techniques that have been developed in the data mining community [17].

For example, k-mers that are far from a cluster center or that are in a low-density region of the space are
outlier candidates. The distance from the center can be defined as simple Euclidean distance or the more
sophisticated Mahalanobis distance [17] that accounts for cluster shape using a co-variance matrix. Dense
regions can be estimated either with a high-dimensional histogram or by looking at the relative distance to
nearest neighbors. See [17] for an extensive discussion of techniques of this sort for outlier detection.

We can also exploit some genomic features to prune k-mers. Well-behaved k-mers should co-cluster
with many of their genomic neighbors. Similarly, a k-mer should co-cluster with many of its “shifts” —
k-mers that overlap it in sequence. K-mers for which these facts are not true ought to be given less weight.

These various filtering strategies and their parameters can be tested as described in section 5.3.

Box E: Annotating cluster types

We want to identify which clusters correspond to AIRs (including novel splice junctions and editing sites or
polymorphisms), and CIRs. Figure 5 shows the great variety of alternative splicing events that can occur.
Many patterns of splicing lead to an indel that will create k-mers that will be co-expressed. Figure 6 gives
a small example of such a situation: the AIR Z induces a cluster z1 corresponding to the k-mers in or
overlapping Z and a cluster z0 corresponding to the excision of AIR Z.

Even in cases where one of two isoforms has no nucleotides that are not present in the other, there will
still be k-mers not found in that other isoform. For example, given the two hypothetical isoforms

1 AAGTGAACAGGTGAGAATTTTTAATCGTTCTAAC
2 AAGTGAACAGGTTCTAAC

and k = 7, isoform 1 differs by an insertion of GTGAGAATTTTTAATC. While isoform 2 has no nucleotides
that are not found in isoform 1, all k-mers spanning the junction are unique to isoform 2 (for k = 7, these are
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2. Objectives

This is a proposal to develop a suite of computational tools based on the representation of raw RNA-seq data
by its component substrings (k-mers), and the evaluation of expression using curated sets of informative k-
mers. In particular, software and algorithms will be developed to support the following three tasks.

2.1 Analysis of expression at the RNA level for both known and novel genetic elements
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AT5G461100, positions 2100-2250
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Figure 1 – 15-mer counts for the 8th exon of A.
thaliana gene AT5G461100 over 6 conditions
using RNA-seq data from Filichkin et al. [11].
The alternative splicing of the 2nd-half of the
8th exon is apparent.

We will develop computationally efficient methods using
counts of k-mers within RNA-seq data to assess expression
of gene features at a fine scale (see Figure 1). This formalism
allows simultaneous evaluation of overall expression and alter-
native RNA processing using methods that we anticipate to be
much faster than existing methods.

The methods we will develop are based on JELLY-
FISH [30], a tool for fast, memory-efficient counting of k-mers
in DNA sequences (including FASTQ files derived from RNA-
seq). A k-mer is a substring of length k; JELLYFISH can count
k-mers using an order of magnitude less memory and an order
of magnitude faster than other k-mer counting packages by us-
ing an efficient encoding of a hash table and by exploiting the
“compare-and-swap” CPU instruction to increase parallelism.

By focusing on k-mers, we will replace the gene or the
exon with the included region (IR) as the basic unit of anal-
ysis. Constitutively included regions (CIRs) are those re-
gions found within all RNAs derived from a gene while al-
ternatively included regions (AIR) include conditionally ex-
pressed exons, alternative start sites, splice junctions, RNA-edited sites, etc. — any region of the transcrip-
tome that is present in a transcript sometimes but not others.

2.2 The de novo assembly of transcripts using co-expression data

RNA-seq data allows the de novo assembly of novel transcripts, but this task currently requires high-
performance computing many hours to perform, and accuracy is still lacking. Clustering k-mers allows
reads containing k-mers with similar expression profiles to be assembled first. The development and appli-
cation of methods for clustering many millions of k-mers based on their expression patterns is a central
objective of this proposal. We anticipate that great advantage will be gained by cluster-mediated assembly.
The cluster-based assembly has potential application in other areas, as well, particularly metagenomic DNA
sequence data.

2.3 Creation of profiles for genes and co-regulated alternatively included segments of genes

The development of methods for detection outlier k-mer expression vectors is a central objective of this
proposal. An advantage of our proposed clustering approach is that many existing techniques for outlier
detection [17] can be used to flag k-mers that are not indicative of the known AIR or CIR in which they
are contained based. Such deviations can be due to genomic sequence differences (polymorphisms or mu-
tations), post-transcriptional RNA editing, splicing at previously unannotated sites, or repeated sequences.
These are generally of biological interest, and may reveal novel AIRs or CIRs.
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The Isoform Expression Estimation Problem

• RNA-Seq now standard for gene and isoform 
expression estimation.

• A main use for transcriptome sequencing is estimating 
gene and isoform abundance.

• This leads to the following computational problem:

Given:  • Collection of RNA-Seq reads
   • A set of known transcript sequences

Estimate: • The relative abundance of each transcript



The Standard Paradigm

• Map reads to transcripts using, e.g., Bowtie, BWA, etc.

• Hundreds of millions of “patterns” in a large “text”

• Inexact multi-pattern search

• Tells us where a read could have come from

• Shuffle ambiguously mapped reads around, usually with the goal of 
uniform coverage.

• If a read could have come from many places, we need to assign one

• Under random sampling, transcript should have ∼ uniform “coverage”



The Standard Paradigm

• Estimate abundance via Reads Mapped Per Kilobase Per Million 
Reads (RPKM) [Mortazavi et al., 2008] or FPKM [Trapnell et al., 
2010]

• Main problem with this approach: mapping and “shuffling” step 
can be very computationally intensive. 
For example:

Program Reference Time

RSEM Li et al., BMC Bioinformatics, 2011 days or hours

eXpress Roberts et al., Nature Methods, 2012 days or hours

Cufflinks Trapnell et al., Nature Biotech, 2010 days or hours

Given assignment of reads:



Big Genomic Data

Sequence Read Archive at 
the NCBI stores next 
generation sequence data

It currently contains 1,587 
terrabases of total data

http://www.ncbi.nlm.nih.gov/Traces/sra/

http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/Traces/sra/


Why Speed is Important

• RNA-Seq data collection will take days or weeks, but is 
massively parallel.

• Why is it important to estimate expression with low 
computational resources?

1. Try many parameters, bias-correction techniques, filterings to gain 
confidence in estimates

2. Apply to hundreds of experimental conditions

3. Personalized medicine starting to use RNA-seq as a diagnostic 
technique. 

4. Start to think of the RNA-seq estimation step as an easy building block 
in a larger pipeline.

5. Kant’s categorical imperative: if everyone didn’t care about speed, 
everything would be slow.



Main idea behind Sailfish

Read mapping is unnecessary: 

Replace inexact pattern search with exact sub-pattern counting

We know all meaningful sub-patterns ahead of time

ATTCGACAGTAGCCATGACTGG

Exact sub-pattern is a k-mer (substring of length k)

...

If a k-mer doesn’t appear in any transcript, it won’t affect 
quantification

String of length N contains N-k+1 k-mers



The Standard Paradigm Sailfish (Lightweight) Paradigm

Pre-process transcripts
(e.g. build BWT)

Pre-process transcripts
(e.g. build k-mer index)

Align reads to transcripts Count k-mers in reads

Shuffle / allocate reads

Compute abundance

Shuffle / allocate k-mers

Compute abundance
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Domain (e.g. kmers)

all possible k-mers

Range (e.g. [0, m|D|])

im
ag

e

Hash

maps elements from the domain
into the range

collisions - different keys with same value

Construction of a Perfect Hash Transcript Index
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Domain (e.g. kmers)

all possible k-mers

Range (e.g. [0, m|D|])

im
ag

e

Hash

maps elements from the domain
into the range

collisions - different keys with same value

Perfect
Minimal

maps keys to consecutive integers in [0, |D|-1]

Construction of a Perfect Hash Transcript Index

transcript
kmers

BZD (Botelho et al.) minimal perfect hash algorithm to construct a compact 
function f(kmer) that maps each transcript kmer to an integer in [0, |D|-1].



Since we know all keys ahead of time, can 
construct a compact (low-overhead) hash 

Memory

Time
sorted array Jellyfish hash

(Marçais & K, 2011)
MPH

~0.6 μs/key ~0.35 μs/key ~0.1 μs/key

Benefits of Minimal Perfect Hashing
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GAAGAAATGGGTGGTATTACACAGACACCATA

hash

300

100

20

42

230

128

Reads can be processed in 
parallel, use of CAS ensures 

efficient lock-free count 
updates

Array of atomics 
(CAS)

Parallelism



ATCAGACTTACACATGGAGGACTAGCAGATG

ACGCATGGAGGACTAGCAA
. . .

Transcript:

Read:

A read with errors still has many “good” k-mers

Only k-mers overlapping errors are discarded / mis-counted

K-mers are robust to errors
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Kmer Allocation to Transcripts

Set of all transcripts

31
87
10
71
30
16

kmers in reads and 
their counts

.

.

.
.
.
.

1010

21 21

66

Goal: distribute 
kmer counts across 
transcripts so that 
each transcript is 
covered uniformly 

as possible 
(maybe at 0)

t
71

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = { s

j

2 kmers(T ) | c(s
j

) = c(s
i

)} . When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
i

]) = Â
s

j

2[s
i

]CR
�
h(s

j

)
�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j , i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, (2)

where µ
i

is

µ
i

=
Â[s

j

]✓t

i

a( j , i)

l̂

i

. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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Elimination of Redundant Information

If kmers ka and kb always occur in the same transcripts at the same rate, 
then keeping track of them separately is redundant

ATCCGCA

CTGGACA

ka

kb

Set of all transcripts

Changes to the optimization:

Replace kmer & count with those of its equivalence class:
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� � �� � t � � c(s) � �� � � � � � � � � � ��� � � s � � � � � � � �� �� � � � � � �� � t 2 T � � � � � �� � � � � �� � �� � � � � �� � � � � �

� � � � � s i �� � �� � � � � [s i ] = { s j 2 kmers(T ) | c(s j ) = c(s i )} � � � � � � � � � � � � �� � �� � � � � � � � � � � � � �
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� � � � � �� � � � � � �� �� � � � � ��� �� � T ([s i ]) = Âs j 2 [s i ] C R
�

h (s j )
�

� � � � �� �� � �� �� � � � � � � � � � � � � � � �� R
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e n t r y t o f c ( s ) g i v e s h o w m a n y t i m e s s a p p e a r s i n t r a n s c r i p t t 2T . T h e n t h e e q u i v a l e n c e c l a s s o f a

k - m e r s

i

i s g i v e n b y [ s
i

] = { s

j

2k m e r s ( T ) | c ( s

j

) = c ( s

i

) } . W h e n p e r f o r m i n g t h e E M p r o c e d u r e ,

w e w i l l a l l o c a t e c o u n t s t o t r a n s c r i p t s a c c o r d i n g t o t h e s e t o f e q u i v a l e n c e c l a s s e s r a t h e r t h a n t h e f u l l

s e t o f t r a n s c r i p t s . W e w i l l l e t T ( [ s
i

] ) = Â
s

j

2[ s
i

] C R
�
h ( s

j

)
�

d e n o t e t h e t o t a l c o u n t o f k - m e r s i n R

t h a t o r i g i n a t e f r o m e q u i v a l e n c e c l a s s [ s
i

] . W e s a y t h a t t r a n s c r i p t t c o n t a i n s e q u i v a l e n c e c l a s s [ s ] i f

[ s ] i s a s u b s e t o f t h e m u l t i s e t o f k - m e r s o f t a n d d e n o t e t h i s b y [ s ] ✓ t .

Estimating abundances via an EM algorithm. T h e E M a l g o r i t h m ( A l g o . 1 ) a l t e r n a t e s b e t w e e n

e s t i m a t i n g t h e f r a c t i o n o f c o u n t s o f e a c h o b s e r v e d k - m e r t h a t o r i g i n a t e s f r o m e a c h t r a n s c r i p t ( E -

s t e p ) a n d e s t i m a t i n g t h e r e l a t i v e a b u n d a n c e s o f a l l t r a n s c r i p t s g i v e n t h i s a l l o c a t i o n ( M - s t e p ) .

T h e E - s t e p o f t h e E M a l g o r i t h m c o m p u t e s t h e f r a c t i o n o f e a c h k - m e r e q u i v a l e n c e c l a s s ’ t o t a l

c o u n t t h a t i s a l l o c a t e d t o e a c h t r a n s c r i p t . F o r e q u i v a l e n c e c l a s s
⇥
s

j

⇤
a n d t r a n s c r i p t t

i

, t h i s v a l u e i s

c o m p u t e d b y

a ( j , i ) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t ◆ [ s

j

] µ̂
t

, ( 1 )

w h e r e µ̂
i

i s t h e c u r r e n t l y e s t i m a t e d r e l a t i v e a b u n d a n c e o f t r a n s c r i p t i . T h e s e a l l o c a t i o n s a r e t h e n

u s e d i n t h e M - s t e p o f t h e a l g o r i t h m t o c o m p u t e t h e r e l a t i v e a b u n d a n c e o f e a c h t r a n s c r i p t . T h e

r e l a t i v e a b u n d a n c e o f t r a n s c r i p t i i s e s t i m a t e d b y

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, ( 2 )

w h e r e µ
i

i s

µ
i

=
Â[ s

j

] ✓ t

i

a ( j , i )

ˆ
l

i

. ( 3 )

T h e v a r i a b l e ˆ
l

i

d e n o t e s t h e a d j u s t e d l e n g t h o f t r a n s c r i p t i a n d i s s i m p l y ˆ
l

i

= l

i

� k + 1 w h e r e l

i

i s t h e

l e n g t h o f t r a n s c r i p t i i n n u c l e o t i d e s .
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Many Kmers are Redundant in this Way

• In the protein-coding Human 
transcriptome of 104,770 transcripts & a 
set of 150M, 76bp paired-end reads...

• 72,627,992 unique 20-mers that appear 
can be collapsed into just 468,616 
equivalence classes.

Example:



Savings in Memory are Substantial

• Collapsing redundant kmers takes memory usage 
from ~60GB on the human transcript set to ~6GB.

• This enables the computation to be carried out on a 
modern laptop.

• Since we’re keeping track of fewer variables (kmers), 
the algorithm also becomes faster!

• Each iteration goes from ≈ 15s to 1s.

Bonus:



Expectation Maximization for Quantification

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
j

) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
i

]) = Â
s

j

2[s
i

]CR
�
h(s

j

)
�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, (2)

where µ
i

is

µ
i

=
Â[s

j

]✓t

i

a( j, i)

l̂

i

. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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Expectation Maximization for Quantification

Allocation of kmer to transcript

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
j

) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
i

]) = Â
s

j
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]CR
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h(s

j

)
�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, (2)

where µ
i

is

µ
i

=
Â[s

j

]✓t

i

a( j, i)

l̂

i

. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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Expectation Maximization for Quantification

Allocation of kmer to transcript Normalized mean transcript coverage

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
j

) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
i

]) = Â
s

j

2[s
i

]CR
�
h(s

j

)
�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, (2)

where µ
i

is

µ
i

=
Â[s

j

]✓t

i

a( j, i)

l̂

i

. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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Expectation Maximization for Quantification

Allocation of kmer to transcript Normalized mean transcript coverage

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
j

) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
i

]) = Â
s

j

2[s
i

]CR
�
h(s

j

)
�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, (2)

where µ
i

is

µ
i

=
Â[s

j

]✓t

i

a( j, i)

l̂

i

. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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Expectation Maximization for Quantification

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
j

) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
i

]) = Â
s

j

2[s
i

]CR
�
h(s

j

)
�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, (2)

where µ
i

is

µ
i

=
Â[s

j

]✓t

i

a( j, i)

l̂

i

. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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M-Step

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
j

) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
i

]) = Â
s

j

2[s
i

]CR
�
h(s

j

)
�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, (2)

where µ
i

is

µ
i

=
Â[s

j

]✓t

i

a( j, i)

l̂

i

. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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Expectation Maximization for Quantification

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
j

) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
i

]) = Â
s

j

2[s
i

]CR
�
h(s

j

)
�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
t

j

2T µ
j

, (2)

where µ
i

is

µ
i

=
Â[s

j

]✓t

i

a( j, i)

l̂

i

. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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M-Step

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
j

) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
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�

denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
s

j

⇤
)

Â
t◆[s

j

] µ̂
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, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The

relative abundance of transcript i is estimated by

µ̂
i

=
µ

i

Â
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j

2T µ
j

, (2)

where µ
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is

µ
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=
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. (3)

The variable l̂

i

denotes the adjusted length of transcript i and is simply l̂

i

= l

i

�k+1 where l

i

is the

length of transcript i in nucleotides.
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Expectation Maximization for Quantification

We then apply an expectation-maximization algorithm to obtain estimates of the relative abun-

dance of each transcript. We define a k-mer equivalence class as the set of all k-mers that appear in

the same set of transcripts with the same frequency. In other words, let c(s) be a vector that so that

entry t of c(s) gives how many times s appears in transcript t 2 T . Then the equivalence class of a

k-mer s

i

is given by [s
i

] = {s

j

2 kmers(T ) | c(s
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) = c(s
i

)}. When performing the EM procedure,

we will allocate counts to transcripts according to the set of equivalence classes rather than the full

set of transcripts. We will let T ([s
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denote the total count of k-mers in R

that originate from equivalence class [s
i

]. We say that transcript t contains equivalence class [s] if

[s] is a subset of the multiset of k-mers of t and denote this by [s] ✓ t.

Estimating abundances via an EM algorithm. The EM algorithm (Algo. 1) alternates between

estimating the fraction of counts of each observed k-mer that originates from each transcript (E-

step) and estimating the relative abundances of all transcripts given this allocation (M-step).

The E-step of the EM algorithm computes the fraction of each k-mer equivalence class’ total

count that is allocated to each transcript. For equivalence class
⇥
s

j

⇤
and transcript t

i

, this value is

computed by

a( j, i) =
µ̂

i

T (
⇥
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⇤
)
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j

] µ̂
t

, (1)

where µ̂
i

is the currently estimated relative abundance of transcript i. These allocations are then

used in the M-step of the algorithm to compute the relative abundance of each transcript. The
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Expectation Maximization for Quantification

Iterative optimization (EM): 

Use allocations to estimate means 

Estimate allocations α( . , . ) based on means (μt)
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Two Step EM for Improved Speed

• Pachter (2011) shows that under the assumption that reads are drawn 
from transcripts in proportion to its abundance, these EM-type 
procedures will converge to the true abundance.

• Actually use (Varadhan & Roland, 2008) two-step EM procedure to 
speed up convergence.

• Idea: compute a couple of steps of EM to estimate a “gradient” 
between solutions and use that to take bigger steps when 
warranted.

• Allows us to do the equivalent of a thousand EM steps in the time 
it takes for a few tens of EM steps.



implemented or tested bias correction for these features.

Computing RPKM and TPM. Sailfish outputs both Reads Per Kilobase per Million mapped

reads (RPKM) and Transcripts Per Million (TPM) as quantities predicting the relative abundance

of different isoforms. The RPKM estimate is the most commonly used, and is ideally 109 times

the rate at which reads are observed at a given position, but the TPM estimate has also become

somewhat common [5, 17]. Given the relative transcript abundances µ̂
i

estimated by the EM

procedure described above, the TPM for transcript i is given by
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. (4)
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Computing Accuracy Metrics. Since the RPKM (and TPM) measurements are only relative

estimates of isoform abundance, it is essential to put the ground-truth and estimated relative abun-

dances into the same frame of reference before computing our validation statistics. While this cen-

tering procedure will not effect correlation estimates, it is important to perform before computing

RMSE and medPE. Let X = {x

i

}M

i=1 denote the ground-truth isoform abundances and Y = {y

i

}M

i=1

denote the estimated abundances. We transform the estimated abundances by aligning their cen-

troid with that of the ground-truth abundances; specifically, we compute the centroid-adjusted

abundance estimates as Y
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� w}M

i=1 where w =
�
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i=i

x

i

�ÂM

i=1 y
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�
/M. It is these centroid

adjusted abundance estimates on which we compute all statistics.

Simulated Data. The simulated RNA-seq data was generated by the FluxSimulator [3] v1.2

with the parameters listed in Supplementary Note 3. This resulted in a dataset of 150M, 76 base-
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Different measures of abundance

Transcripts Per Million (TPM)

Reads Per Kilobase per Million mapped reads (RPKM)

where, 



Benefits of the Sailfish Approach

• Quantification without mapping

• Avoids error correction (b/c bad kmers tossed; frugal data 
usage)

• Massively parallel (exploits many-core machines and scales well 
by operating on small atomic units at a time.)

• Spends a bit of memory to gain time (uses ≈ 8gb for entire 
human transcriptome; 256gb, 32-core machines now $7.5k)

“Lightweight Algorithms”
a. “Simpler” algorithms (fast better than best)
b. Frugal use of data (use only the units of data necessary)
c. Use many cores
d. Use “lots” of memory (trade memory for time; memory now cheap)

NSF Workshop in Algorithms in the Field: "Almost all the big impact algorithms operate in pseudo-linear or better time."



Performance on Human Brain Tissue

82M reads, each 35bp long

Figure-2 (Kingsford)

Bullard et al, 2010; MACQ Consortium, 2006



Supplementary Figure 4: Correlation with qPCR on universal human
reference tissue

Sailfish RSEM eXpress Cufflinks

Sailfish RSEM eXpress Cufflinks

Pearson 0.87 0.85 0.87 0.87

Spearman 0.88 0.85 0.88 0.88

RMSE 1.64 1.81 1.65 1.68

medPE 29.95 34.77 31.03 27.33

Supplementary Figure 4: The accuracy of four methods on a second dataset from the MACQ [12]
study. The reads for this experiment were taken from SRA accession SRX016367 (⇡ 93M reads)
and are from a mixture of different tissues (i.e. the Universal Human Reference or UHR). The
same set of reference transcripts were used as in Fig. 2 of the main text. The relative accuracy
and performance of the methods is similar to what we observed in the other MACQ dataset, with
Sailfish, eXpress and Cufflinks all achieving comparable accuracy (all slightly more accurate than
RSEM). Sailfish is ⇡ 26 times faster then Cufflinks, the closest method in terms of speed.
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Supplementary Figure 4: The accuracy of four methods on a second dataset from the MACQ [12]
study. The reads for this experiment were taken from SRA accession SRX016367 (⇡ 93M reads)
and are from a mixture of different tissues (i.e. the Universal Human Reference or UHR). The
same set of reference transcripts were used as in Fig. 2 of the main text. The relative accuracy
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Sailfish, eXpress and Cufflinks all achieving comparable accuracy (all slightly more accurate than
RSEM). Sailfish is ⇡ 26 times faster then Cufflinks, the closest method in terms of speed.
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Simulated Data?

• qRT-PCR data is great, but it may be too easy:
‣ Relatively few genes to compare against
‣ Transcript quantification aggregated to the gene level

• Most methods have been validated on synthetic data as well:
‣ From simulation, get a ground truth abundance

‣ Can compare transcript-level quantification

‣ Can compare effects of different experimental variables (e.g. read length, 
# of reads, paired-end) on quantification

• Many previous approaches (RSEM, eXpress) roll their own 
read simulators.
‣ They assume their generative graphical model when producing 

sequences – is this begging the question?



Not based on the specific generative model of any RNA-seq 
estimation method

In-depth comparison against multiple real datasets

Can control many various experimental variables: fragmentation, 
selection/amplification, sequencing

Flux Simulator (Griebel et al. NAR, 2012)



Supplementary Figure 3: Correlation plots with qPCR on human brain
tissue and synthetic data
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Supplementary Figure 3: Correlation plots of RSEM, eXpress and Cufflinks for the data pre-
sented in Fig. 2. Each column is labeled with the method whose output was used to produce that
column’s plots. The top row of plots show the correlation between the computed RPKM and the
qPCR-based expression estimates for the human brain tissue. The bottom row of plots shows the
correlation between the computed RPKM and the true abundance of each transcript on the syn-
thetic dataset. To generate the results shown here, eXpress was run using its default streaming
expression estimation algorithm. As reported in Methods, additional batch EM iterations improve
eXpress’s accuracy, but come at the cost of a substantial increase in runtime.
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b

d
Human Brain Tissue Synthetic

Sailfish RSEM eXpress Cufflinks Sailfish RSEM eXpress Cufflinks

Pearson 0.86 0.83 0.86 0.86 0.92 0.92 0.64 0.91
Spearman 0.85 0.81 0.86 0.86 0.94 0.93 0.66 0.93

RMSE 1.69 1.86 1.69 1.67 1.26 1.24 2.80 1.31
medPE 31.60 36.63 32.73 30.75 4.24 5.97 26.44 6.76

Figure 2: (a) The correlation between qPCR estimates of gene abundance (x-axis) and the es-
timates of Sailfish. The ground-truth results are taken from the microarray quality control study
(MAQC) [12]. The results shown here are for the human brain tissue and the RNA-seq based
estimates were computed using the reads from SRA accession SRX016366. The set of transcripts
used in this experiment were the curated RefSeq [9] genes (accession prefix NM) from hg18. (b)
The correlation between the actual number of transcript copies in a simulated dataset (x-axis) and
the abundance estimates of Sailfish. The transcripts used in this experiment were all Ensembl [2]
transcripts from hg19 that were annotated with a coding feature (CDS). (c) The total time taken
by each method, Sailfish, RSEM, eXpress and Cufflinks, to estimate isoform abundance on each
dataset. The total time taken by a method is the height of the corresponding bar, and the total is
further broken down into the time taken to perform read-alignment (for Sailfish, we instead mea-
sured the time taken to count the k-mers in the read set) and the time taken to quantify abundance
given the aligned reads (or k-mer counts). All tools were run in multi-threaded mode (where ap-
plicable) and were allowed to use up to 16 threads. The table (d) gives the accuracy of each of
the methods on both datasets, as measured by the Pearson and Spearman correlation coefficients,
root-mean-square error (RMSE) and median percentage error (medPE).
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Use of Multicore Architecture
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Memory Usage
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Sailfish

arXiv:1308.3700

• Sailfish is a far faster approach for quantifying the abundance 
of known transcripts. 

• A good example of a “lightweight” algorithm whose design is 
matched to both modern hardware configurations (multicore, 
large memory) and modern data sizes (big).

• Sailfish is open source, available at http://www.cs.cmu.edu/
~ckingsf/software/sailfish (It’s written in C++11.)

http://arxiv-web3.library.cornell.edu/abs/1308.3700
http://arxiv-web3.library.cornell.edu/abs/1308.3700
http://www.cs.cmu.edu/~ckingsf/software/sailfish
http://www.cs.cmu.edu/~ckingsf/software/sailfish
http://www.cs.cmu.edu/~ckingsf/software/sailfish
http://www.cs.cmu.edu/~ckingsf/software/sailfish

