Sailtish: Rapid Alignment-free Quantification
of Isoforms from RNA-Seq Reads

Rob Patro

Joint work with Carl Kingsford (CMU) and Steve Mount (UMD)

Why study gene expression?

A genome tells us a lot about an organism

small & large mutations can effect phenotype

a lot of work tying such mutations to e.g. disease

but ... the picture is still incomplete:

DNA mostly static

Same genome = same phenotype

Different env./ condition / tissue effect gene expression

Genome effects itself in complicated ways we can'’t
always predict

Usually interested in protein abundance

Proteins are the workhorses of the cell
They perform most cellular functions

Often, different protein levels = different function

but ... measuring proteins directly is difficult

“central dogma” of molecular biology

DNA = (m)RNA = Protein

transcription translation

Usually interested in protein abundance

Proteins are the workhorses of the cell
They perform most cellular functions

Often, different protein levels = different function

but ... measuring proteins directly is difficult

“central dogma” of molecular biology

((m)

> —~—

transcription

RNA) = Protein

~ translation

RNA abundance can tell us a lot about protein abundance

Alternative Splicing & Isoform Expression

* Sub-sequences of expressed
genes can be sampled via RNA-

cold

seq (sequencing transcripts)

heat

* Sequencing gives you short sal
(35-300bp length “reads”) drought

, high light
e One gene = many different

control

variants (called isoforms)

(A) True Alternative Splicing (B) Alternative Transcript Start Sites

AT5G461100, positions 2100-2250

(C) Alternative 3' termini

Alt. donor \9 Staggered TSS N — Staggered mmm—m

:—\F

poly -A —\/,_:I

Alternatlve

Alt. Acceptor %J// Alt. first exons E—— /—
last exons —\/_

—\f

Exon inclusion o
vs. skipping —Qf}— Initiation within intron EEEEE—— Poly-A within m——
—\f— :

Intron

retention T T T e .

Alt. Cassette
Exon o

an intron —\/_

he Isoform Expression Estimation Problem

e RNA-Seq now standard for gene and isoform
expression estimation.

* A main use for transcriptome sequencing is estimating
gene and isoform abundance.

* This leads to the following computational problem:

Given: ¢ Collection of RNA-Seq reads
* A set of known transcript sequences

Estimate: ® The relative abundance of each transcript

The Standard Paradigm

e Map reads to transcripts using, e.g., Bowtie, BWA, etc.
 Hundreds of millions of “patterns” in a large “text”
* |nexact multi-pattern search

e Tells us where a read could have come from

e Shuffle ambiguously mapped reads around, usually with the goal of
uniform coverage.

* |faread could have come from many places, we need to assign one

e Under random sampling, transcript should have ~ unitorm “coverage”

The Standard Paradigm

Given assignment of reads:

* Estimate abundance via Reads Mapped Per Kilobase Per Million
Reads (RPKM) [Mortazavi et al., 2008] or FPKM [Trapnell et al.,

2010]

 Main problem with this approach: mapping and “shuftling” step
can be very computationally intensive.
For example:

Program Reference Time
RSEM Li et al., BMC Bioinformatics, 2011 days or hours
eXpress Roberts et al., Nature Methods, 2012 | days or hours
Cufflinks Trapnell et al., Nature Biotech, 2010 | days or hours

terabases

Size,

100C

1,741,360,497,525,392 total bases

Big Genomic Data

SRA database growth

811,675,530,564,535 open access bases

100

10

2003

Total bases
Open access bases

2010

Sequence Read Archive at
the NCBI stores next
generation sequence data

It currently contains 1,587
terrabases of total data

2011 2012 2013
Year http://www.ncbi.nIm.nih.gov/Traces/sra/

http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/Traces/sra/

Why Speed is Important

RNA-Seq data collection will take days or weeks, but is
massively parallel.

Why is it important to estimate expression with low
computational resources?

Try many parameters, bias-correction techniques, filterings to gain
confidence in estimates

2. Apply to hundreds of experimental conditions

3. Personalized medicine starting to use RNA-seq as a diagnostic
technique.

4. Start to think of the RNA-seq estimation step as an easy building block
in a larger pipeline.

5. Kant's categorical imperative: if everyone didn’t care about speed,
everything would be slow.

Main idea behind Sailfish

Read mapping is unnecessary:

Replace inexact pattern search with exact sub-pattern counting

Exact sub-pattern is a k-mer (substring of length k)

ATTCGACAGTAGCCATGACTGG

String of length N contains N-k+1 k-mers

We know all meaningtul sub-patterns ahead of time

i a k-mer doesn’t appear in any transcript, it won't affect
quantification

The Standard Paradigm

Pre-process transcripts
(e.g. build BWT)

Align reads to transcripts

Shuffle / allocate reads

Compute abundance

Sailtish (Lightweight) Paradigm

Pre-process transcripts

(e.g. build k-mer index)

Count k-mers in reads

Shuffle / allocate k-mers

Compute abundance

(1) index (per reference & choice of k)

read data
reference [[perfect hash function | (a) } - —
transcripts | —_— —
| | array of k-mer counts | (b) : —_ -
| — _
| [transcript k-mer | _
—_— — | / \ (C,d)l T
S |\ k-mers transcripts }I - —

(2) quant (per set of reads)
unhashable
k-mers \

estimate
abundances

V\ reallocate /
counts A

basedon fr =[fi1, f42,. .., [nr]

reference perfect hash function | (Q)

transcripts

array of k-mer counts | (b)

transcript k-mer

v v (c.d)

k-mers transcripts

(2) quant (per set of reads)
unhashable
k-mers \

estimate
abundances

V\ reallocate /
counts A

basedon ft =[i1, (b2, . . ., [M]

Construction of a Perfect Hash Transcript Index

Domain (e.g. kmers)

all possible k-mers

collisions - different keys with same value

Range (e.g. [0, ml

Hash

maps elements from the domain
into the range

DI])

Construction of a Perfect Hash Transcript Index

Domain (e.g. kmers)

all possible k-mers

Perfect Hash

maps elements from the domain

transcript into the range

kmers

Range (e.g. [0, ml

DI])

Construction of a Perfect Hash Transcript Index

Domain (e.g. kmers)

all possible k-mers o
Minimal
Perfect Hash

maps elements from the domain

transcript into the range

kmers
— I | " |

maps keys to consecutive integers in [0, IDI-1]

Range (e.g. [0, ml

DI])

Domain (e.g. kmers)

Construction of a Perfect Hash Transcript Index

all possible k-mers o
Minimal
Perfect Hash

maps elements from the domain

transcript into the range

kmers

maps keys to consecutive integers in [0, IDI-1]

BZD (Botelho et al.) minimal perfect hash algorithm to construct a compact
function f(kmer) that maps each transcript kmer to an integer in [0, IDI-1].

Range (e.g. [0, ml

sttt | " |

DI])

Benefits of Minimal Perfect Hashing

> Since we know all keys ahead of time, can

construct a compact (low-overhead) hash

Je”yflSh haSh MPH

sorted arra
y (Marcais & K, 2011)

~0.6 us’key | ~0.35 us/’key | ~0.1 us/key

(1) index (per reference & choice of k)

read data
reference [[perfect hash function | (a) } - —
transcripts | —_— —
| | array of k-mer counts | (b) : — —
| — _
| [transcript k-mer | _
—_— — | / \ (C,d)l T
S |\ k-mers transcripts }I - —

V\ reallocate /
counts A

basedon ft =[i1, (b2, . . ., [M]

Parallelism S

s
-
“

-
—"
-
-
-

Reads can be processed in

par]zzflole.l, use of CAS ensures

efficient lock-free count Array of atomics
(CAS)

updates

K-mers are robust to errors

Transcript:
ATCAGACTTACACATGGAGGACTAGCAGATG

Read: ACGCATGGAGGACTAGCAA

A read with errors still has many “good” k-mers

Only k-mers overlapping errors are discarded / mis-counted

(1) index (per reference & choice of k)

read data
reference [[perfect hash function | (a) } - —
transcripts | —_— —
| | array of k-mer counts | (b) : —_ -
| — _
| [transcript k-mer | _
—_— — | / \ (C,d)l T
S |\ k-mers transcripts }I - —

(2) quant (per set of reads)
unhashable
k-mers \

estimate S
abundances \

V\ reallocate /
counts A

based on ft =[i1, (b2, . . ., [M]

Kmer Allocation to Transcripts

kmers in reads and
their counts

31
8/
_)

10
/1
30 Goal: distribute

kmer counts across
16 transcripts so that

each transcript is

covered uniformly
as possible
(maybe at 0)

(i)
Set of all transcripts /
21 21

66

10 10

Elimination of Redundant Information

If kmers k, and ky always occur in the same transcripts at the same rate,
then keeping track of them separately is redundant

aa® J

ka =
ATCCGCA — 2
K = 3
CTGGACA
—o -.;'

Changes to the optimization:
$i| = 8j Ikmers(T) x(8;)=x(8)

Replace kmer & count with those of its equivalence class:

ICD=X (7 ~r(C))

Many Kmers are Redundant in this Way

Example:

* |n the protein-coding Human

transcriptome of 104,770 transcripts & a
set of 150M, 76bp paired-end reads...

° 72,627,992 unique 20-mers that appear
can be collapsed into just 468,616
equivalence classes.

Savings in Memory are Substantial

* Collapsing redundant kmers takes memory usage
from ~60GB on the human transcript set to ~6GB.

e This enables the computation to be carried out on a
modern laptop.

Bonus:

* Since we're keeping track of fewer variables (kmers),
the algorithm also becomes faster!

e FEach iteration goes from =~ 15s to 1s.

Expectation Maximization for Quantification

E-Step

Expectation Maximization for Quantification

E-Step

Allocation of kmer to transcript

Expectation Maximization for Quantification

E-Step

Allocation of kmer to transcript Noymalized mean transcript coverage

N g

2> M

K
<
>

Expectation Maximization for Quantification

E-Step

Allocation of kmer to transcript

N

Normalized mean transcript coverage

—

/Count of this k-mer class

Expectation Maximization for Quantification

E-Step

T (|s;))
OC(],Z) — A
ZZ‘Q[S]'] My
M-Step
Hi = ~

Expectation Maximization for Quantification
E-Step
o(j,i) =

M-Step
Estimated mean coverage

of transcript \L Z[Sj] i, o(j,i)

Mi)= A

Expectation Maximization for Quantification

E-Step A
T ([s)])
OC(],Z) o 7
ZZ‘Q[S]'] 'ut
M-Step
of k-mer /
Estimated mean coverage transcript

of transcript \,}\ Z[Sj] - o(j,i)
= —F

Expectation Maximization for Quantification

E-Step A
T ([s)])
OC(],Z) o 7
ZZ‘Q[S]'] 'ut
M-Step
| of k-mer /
Estimated mean coverage transcript

of transcript \,__E\ Z[Sj] - o(j,i)
= —F

Transcript length

Expectation Maximization for Quantification

M-Step

E- .
P o T (]s]) Ls|c ®Uh1)

(04]) = ~] — —
(J, i) Zo[sj] 0, U i

Expectation Maximization for Quantification

M-Step

E-S ..
P . T ([s;]) Ls;|ch a(ji)

OC(],i) —

th [Sj] ﬁt ul - Z\l

Iterative optimization (EM):

Estimate allocations &(-,) based on means (uy)

L‘ Use allocations to estimate means/

wo Step EM for Improved Speed

Pachter (2011) shows that under the assumption that reads are drawn
from transcripts in proportion to its abundance, these EM-type
procedures will converge to the true abundance.

Actually use (Varadhan & Roland, 2008) two-step EM procedure to
speed up convergence.

 |dea: compute a couple of steps of EM to estimate a “gradient”
between solutions and use that to take bigger steps when

warranted.

 Allows us to do the equivalent of a thousand EM steps in the time
it takes for a few tens of EM steps.

Finally, we can estimate abundance

Different measures of abundance

Transcripts Per Million (TPM)
TPM; = 10°1;

Reads Per Kilobase per Million mapped reads (RPKM)

G .
j 109%i 9.
ll’/lO3 l; ~ 10 lul p— ‘
RPKM; = - = — ~ — where, N = Y101 T([si])

106

Benefits of the Sailfish Approach

* Quantification without mapping

e Avoids error correction (b/c bad kmers tossed; frugal data
usage)

* Massively parallel (exploits many-core machines and scales well
by operating on small atomic units at a time.)

e Spends a bit of memory to gain time (uses = 8gb for entire
human transcriptome; 256gb, 32-core machines now $7.5k)

“Lightweight Algorithms”
a. “Simpler” algorithms (fast better than best)
b. Frugal use of data (use only the units of data necessary)
c. Use many cores
d. Use “lots” of memory (trade memory for time; memory now cheap)

NSF Workshop in Algorithms in the Field: "Almost all the big impact algorithms operate in pseudo-linear or better time."

Performance on Human Brain Tissue

C
a . 10
. o EEE alignment
E 46.55h quantification
s
3 -~ 3 15.72h
o 10 :
10.19h
-10 W 6.20nh 6.75h
b
: >
-10 -5
1 gPCR(log,) ’ = 2.27h
" £, 02
£
w
b s : - c
=
0.26h
- 10
& 10' | 0.12h
=
¥ 5 1
(a8
o . l
: 10°
5 10 15 *’cﬁh W2 o
Ground Truth(log,) 6‘?—‘*‘:& @ ej"Q O}‘i“\\(\ 63\\& © @‘#‘Q Qoﬁ%‘\\{\
d -
Human Brain Tissue
Sailfish RSEM eXpress Cufflinks
Pearson 0.86 0.83 0.86 0.86
Spearman 0.85 0.81 0.86 0.86
RMSE 1.69 1.86 1.69 1.67

medPE 31.60 36.63 32.73 30.75

82M reads, each 35bp long Bullard et al, 2010; MACQ Consortium, 2006

Performance on Universal Human Reference Tissue

104 ;
Bl alignment

35.60h quantification -

=
(@)
w

8.60h

2.60h

'_I
o
N

Time in minutes

SRX016367

C,o‘\’\\\(\\L

Sailfish RSEM eXpress Cufflinks

Pearson 0.87 0.85 0.87 0.87
Spearman 0.88 0.85 0.88 0.88
RMSE 1.64 1.81 1.65 1.68
medPE 2995 3477 31.03 27.33

93M reads, each 35bp long

Simulated Data?

e gRT-PCR data is great, but it may be too easy:

» Relatively few genes to compare against
» Transcript quantification aggregated to the gene level

* Most methods have been validated on synthetic data as well:

» From simulation, get a ground truth abundance
» Can compare transcript-level quantification

» Can compare effects of different experimental variables (e.g. read length,
of reads, paired-end) on quantification

* Many previous approaches (RSEM, eXpress) roll their own
read simulators.

» They assume their generative graphical model when producing
sequences — is this begging the question?

Flux Simulator (Griebel et al. NAR, 2012)

Not based on the specific generative model of any RNA-seq
estimation method

In-depth comparison against multiple real datasets

Can control many various experimental variables: fragmentation,
selection/amplitication, sequencing

« | Expression
7~ | Profile [PRO]

Expressed
Transcriptome

In put Genomic Sequence [FASTA]
and Transcript Annotation [GTF]

Transcript 1
Transcript 2
Transcript 3

$}ONpPoid 9jeipawialiu]

Output Reads and Mappings [sAM]
- CNAGGANGCNAGTANG...
I~ CANTCNAGCANTCNAG...
(- CNAGGAGATCNAGNAG... 4
/ Library [LIB]
= — “«— N s :
—_— ——— —_ N . - Fragment 1
< NN Fragment 2
< AN Fragment 3
N\ S
" E Sequencing :

RPKM(log,)

Pearson

Spearman

Sailfish

201

eXpress

0 c35round10Truth(10g2) > Ground %?uth(k};) " Ground Truth(log,)
Sailfish RSEM eXpress Cufflinks
0.92 0.92 0.90 0.91
0.94 0.93 0.92 0.93

Simulated Data

/5M 76bp x2 paired-end reads

Time in minutes

=
o
W

=
o
N

=
o
=

100 i

Cufflinks

0 5 10 15 20

Ground Truth(log,)

EEl alignment _
quantification

15.72h

6.20h 6.75h

Synthetc\ I .

0.26h

N

e‘l\Q(e N

0 W
RO P2
6’6\ * C/\{\

Use of Multicore Architecture

Even using only 4
cores, Sailfish is
about 25 times faster

than RSEM using 32
cores.

Even using only 4
cores, and not
counting mapping
time, Sailfish is 7.7
times faster than
RSEM

20

Minutes

—

15

10

£} Total Sailfish Time

38

16

Processor Cores

32

Gigabytes

4.5

w

N
ol

Memory Usage

B Approximate RAM Used

RSEM eXpress Sailfish

92,542,365 reads; universal human reference tissue.

Sailfish

Sailtish is a far faster approach for quantitying the abundance
of known transcripts.

A good example of a "lightweight” algorithm whose design is
matched to both modern hardware configurations (multicore,
large memory) and modern data sizes (big).

Sailtish is open source, available at http://www.cs.cmu.edu/
~ckingst/software/sailfish (It's written in C++11.)

{
Ly

arXiv:1308.3700

http://arxiv-web3.library.cornell.edu/abs/1308.3700
http://arxiv-web3.library.cornell.edu/abs/1308.3700
http://www.cs.cmu.edu/~ckingsf/software/sailfish
http://www.cs.cmu.edu/~ckingsf/software/sailfish
http://www.cs.cmu.edu/~ckingsf/software/sailfish
http://www.cs.cmu.edu/~ckingsf/software/sailfish

