
Four Russians’
Speedup

02-714
Slides by Carl Kingsford

Block Edit Distance

Block Edit Distance

Block Edit Distance

Block Edit Distance

Block Edit Distance

Block Edit Distance

Block Edit Distance

Block Edit Distance

Block Edit Distance

Block Edit Distance

Block Edit Distance

t

Block Edit Distance

t

n

Block Function

,,f()
Assume we have a function of the following form:

If we can compute f faster than O(t2), we win.

We will see how to compute it in O(t) time.

Assumptions

We’re computing the plain edit distance: gaps and
mismatches cost 1 and matches cost 0.

The alphabet Σ is a constant size.

n = k(t-1) for some k (that is the blocks perfectly tile
the matrix, with a single overlapping row and
column between each adjacent pair)

Precomputing f
The way we compute f fast is to precompute f(x) for all
possible x = (∟ , 〰, ︴).

How may different x values are there?

(n+1)2t|Σ|2t

Every cell contains
a number between

0 and n.

This many pairs of
strings, each of

length t.

Computing each would take O(t2) time, taking in total
O((n+1)2t|Σ|2tt2) = O(n2) time. Bad!

Offset Encoding
The trick to making it work is realizing that in fact there are fewer possible
functionally different inputs to x.

The elements of the rows and columns in the input are not independent.

Lemma. Adjacent values of D in a row, column, or
diagonal differ by at most 1.

Notation. D is the matrix and D(i,j) is the value at position i,j.

Consider element q of row i:
• D(i,q) ≤ D(i,q-1)+1 because we can always insert a gap if we

wanted to.
• Suppose we throw away character q to consider D(i, q-1):

• If character q is matched, the edit distance increases by ≤ 1
(we can align what is was matched to against a gap):
D(i,q-1) ≤ D(i,q)+1

• If character q is not matched, the edit distance goes down
(by 1 since we eliminate a gap): D(i,q-1) ≤ D(i,q)

• Therefore: D(i,q-1) -1 ≤ D(i,q)

Offset Encoding, II

Can encode a row of the matrix as an initial value plus a
sequence of -1,0,1:

Example. 567767 → 5 1 1 0 -1 1

Definition. An offset vector is the encoding of a row or
column as above, except that the first entry is set to 0.

Example. 567767 → 0 1 1 0 0 -1 1

So: given the first value C and the offset vector, you can
reconstruct the row or column.

Offset Encoding, III
Thm. Given only the offset vectors of and

one can compute the offset vectors of

C+3 C+2 C+1 C+2

C+2 C+1 C+1 C+1

C+1 C+1 C C+1

C C C+1 C+2

1

1

1

00 0 1 1

c b a c
b

a

b

a

Offset Encoding, III
Thm. Given only the offset vectors of and

one can compute the offset vectors of

C+3 C+2 C+1 C+2

C+2 C+1 C+1 C+1

C+1 C+1 C C+1

C C C+1 C+2

1

1

1

0

0 0 1 1
c b a c

b

a

b

a

Offset Encoding, III
Thm. Given only the offset vectors of and

one can compute the offset vectors of

C+3 C+2 C+1 C+2

C+2 C+1 C+1 C+1

C+1 C+1 C C+1

C C C+1 C+2

1

1

1

0

0 0 1 1
c b a c

b

a

b

a

Offset Encoding, III
Thm. Given only the offset vectors of and

one can compute the offset vectors of

C+3 C+2 C+1 C+2

C+2 C+1 C+1 C+1

C+1 C+1 C C+1

C C C+1 C+2

1

1

1

0

0 0 1 1

0 -1 -1 1

c b a c
b

a

b

a

Offset Encoding, III
Thm. Given only the offset vectors of and

one can compute the offset vectors of

C+3 C+2 C+1 C+2

C+2 C+1 C+1 C+1

C+1 C+1 C C+1

C C C+1 C+2

1

1

1

0

0 0 1 1

0 -1 -1 1

1

0

-1

0

c b a c
b

a

b

a

Preprocessing Time

There are 22(t-1) offset vectors.

Setting t = log 2|Σ| n, this becomes O(n(log n)2)

There are 22(t-1)|Σ|2t possible inputs x to f.

Computing all values of f(x) takes now time O((2|Σ|)2t t2).

Storing f for quick access
We have 22(t-1)|Σ|2t possible inputs x to f.

How do we store the values f(x) so we can access f(x) in
time O(t)?

Storing f for quick access
We have 22(t-1)|Σ|2t possible inputs x to f.

How do we store the values f(x) so we can access f(x) in
time O(t)?

Depth ≈ 3t = O(t)

Total Running time

O(n2 / log n + n(log n)2) = O(n2 / log n) FTW!

We have O(n2 / t2) blocks to compute.

Accessing f(x) for each takes time O(t), so our time to
“fill in” the matrix is O(tn2/t2) = O(n2/t)

With t = O(log n) the total time is:

(In the RAM model, where we can access things of size log n in
constant time, we get the even better time of O(n2 / log2 n))

In Practice

Often useful to take t = some constant instead of log n.

Doesn’t give you an asymptotic speed up, but now runs
in time O(n2 / t) so the constant factor is better.

