
Suffix Trees
02-714

Slides by Carl Kingsford

Preprocessing Strings

• Over the next few lectures, we’ll see several methods for
preprocessing string data into data structures that make many
questions (like searching) easy to answer:

• Suffix Tries

• Suffix Trees

• Suffix Arrays

• Typical setting: A long, known, and fixed text string (like a genome) and
many unknown, changing query strings.

• Allowed to preprocess the text string once in anticipation of the
future unknown queries.

• Data structures will be useful in other settings as well.

Suffix Tries

• A trie, pronounced “try”, is a tree that exploits some
structure in the keys

- e.g. if the keys are strings, a binary search tree would
compare the entire strings, but a trie would look at their
individual characters

- Suffix trie are a space-inefficient data structure to store a string
that allows many kinds of queries to be answered quickly.

- Suffix trees are hugely important for searching large sequences
like genomes. Eg. the basis for a tool called “MUMMer”.

Suffix Tries
s = abaaba$

a b $

$ a

$

b

a

$

a

b

a

$

a

b

a

$

a

b

a

$

SufTrie(s) = suffix trie representing string s.

Edges of the suffix trie are labeled with
letters from the alphabet ∑ (say {A,C,G,T}).

Every path from the root to a solid node
represents a suffix of s.

Every suffix of s is represented by some
path from the root to a solid node.

Why are all the solid nodes leaves?
How many leaves will there be?

Processing Strings Using Suffix Tries

• determine whether q is a substring of T?

• check whether q is a suffix of T?

• count how many times q appears in T?

• find the longest repeat in T?

• find the longest common substring of T and q?

Given a suffix trie T, and a string q, how can we:

Main idea:
every substring of s is a prefix of some suffix of s.

Searching Suffix Triess = abaaba$
a b $

$ a

$

b

a

$

a

b

a

$

a

b

a

$

a

b

a

$

Is “baa” a substring of s?

Follow the path given by
the query string.

After we’ve built the suffix trees,
queries can be answered in time:

O(|query|)
regardless of the text size.

Searching Suffix Triess = abaaba$
a b $

$ a

$

b

a

$

a

b

a

$

a

b

a

$

a

b

a

$

Is “baa” a substring of s?

Follow the path given by
the query string.

After we’ve built the suffix trees,
queries can be answered in time:

O(|query|)
regardless of the text size.

Applications of Suffix Tries (1)

Check whether q is a suffix of T:

Check whether q is a substring of T:

Count # of occurrences of q in T:

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a suffix of T:

Check whether q is a substring of T:
Follow the path for q starting from the root.
If you exhaust the query string, then q is in T.

Count # of occurrences of q in T:

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a suffix of T:
Follow the path for q starting from the root.
If you end at a leaf at the end of q, then q is a suffix of T

Check whether q is a substring of T:
Follow the path for q starting from the root.
If you exhaust the query string, then q is in T.

Count # of occurrences of q in T:

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a suffix of T:
Follow the path for q starting from the root.
If you end at a leaf at the end of q, then q is a suffix of T

Check whether q is a substring of T:
Follow the path for q starting from the root.
If you exhaust the query string, then q is in T.

Count # of occurrences of q in T:
Follow the path for q starting from the root.
The number of leaves under the node you end up in is the
number of occurrences of q.

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a suffix of T:
Follow the path for q starting from the root.
If you end at a leaf at the end of q, then q is a suffix of T

Check whether q is a substring of T:
Follow the path for q starting from the root.
If you exhaust the query string, then q is in T.

Count # of occurrences of q in T:
Follow the path for q starting from the root.
The number of leaves under the node you end up in is the
number of occurrences of q.

Find the longest repeat in T:
Find the deepest node that has at least 2 leaves under it.

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a suffix of T:
Follow the path for q starting from the root.
If you end at a leaf at the end of q, then q is a suffix of T

Check whether q is a substring of T:
Follow the path for q starting from the root.
If you exhaust the query string, then q is in T.

Count # of occurrences of q in T:
Follow the path for q starting from the root.
The number of leaves under the node you end up in is the
number of occurrences of q.

Find the longest repeat in T:
Find the deepest node that has at least 2 leaves under it.

Find the lexicographically (alphabetically) first suffix:
Start at the root, and follow the edge labeled with the
lexicographically (alphabetically) smallest letter.

Suffix Links
• Suffix links connect node

representing “xα” to a node
representing “α”.

• Most important suffix links are
the ones connecting suffixes of
the full string (shown at right).

• But every node has a suffix link.

• Why?

• How do we know a node
representing α exists for
every node representing xα?

s = abaaba$
a b $

$ a

$

b

a

$

a

b

a

$

a

b

a

$

a

b

a

$

Suffix Triess = abaaba$
a b $

$ a

$

b

a

$

a

b

a

$

a

b

a

$

a

b

a

$

abaaba$

A node represents the prefix of some
suffix:

The node’s suffix link should link to the
prefix of the suffix s that is 1 character
shorter.

Since the suffix trie contains all
suffixes, it contains a path representing
s, and therefore contains a node
representing every prefix of s.

s

Suffix Triess = abaaba$
a b $

$ a

$

b

a

$

a

b

a

$

a

b

a

$

a

b

a

$

abaaba$

A node represents the prefix of some
suffix:

The node’s suffix link should link to the
prefix of the suffix s that is 1 character
shorter.

Since the suffix trie contains all
suffixes, it contains a path representing
s, and therefore contains a node
representing every prefix of s.

s

Applications of Suffix Tries (II)

Find the longest common substring of T and q:

a

b

b

a

a

a

a
a

b

bb

a

aa

abaaba$

$

$$

$

$

$

$

T = abaaba$
q = bbaa

Applications of Suffix Tries (II)

Find the longest common substring of T and q:
Walk down the tree following q.
If you hit a dead end, save the current depth,
and follow the suffix link from the current
node.
When you exhaust q, return the longest
substring found.

a

b

b

a

a

a

a
a

b

bb

a

aa

abaaba$

$

$$

$

$

$

$

T = abaaba$
q = bbaa

Constructing Suffix Tries

abba

abbac
bbac
bac
ac
c

To convert SufTrie(S[0..i-1]) → SufTrie(s[0..i]), add character s[i] to all the suffixes:

cabaa

s = abbacabaa

Suppose we want to build suffix trie for string:

We will walk down the string from left to right:

building suffix tries for s[0], s[0..1], s[0..2], ..., s[0..n]

To build suffix trie for s[0..i], we
will use the suffix trie for s[0..i-1]

built in previous step

abbacabaa
i=4

Need to add nodes for
the suffixes:

Purple are suffixes that
will exist in
SufTrie(s[0..i-1]) Why?

How can we find these
suffixes quickly?

abba

abbac
bbac
bac
ac
c

To convert SufTrie(S[0..i-1]) → SufTrie(s[0..i]), add character s[i] to all the suffixes:

cabaa

s = abbacabaa

Suppose we want to build suffix trie for string:

We will walk down the string from left to right:

building suffix tries for s[0], s[0..1], s[0..2], ..., s[0..n]

To build suffix trie for s[0..i], we
will use the suffix trie for s[0..i-1]

built in previous step

abbacabaa
i=4

Need to add nodes for
the suffixes:

Purple are suffixes that
will exist in
SufTrie(s[0..i-1]) Why?

How can we find these
suffixes quickly?

abbac
bbac
bac
ac
c

abbacabaa
i=4

Need to add nodes for
the suffixes:

Purple are suffixes that
will exist in
SufTrie(s[0..i-1]) Why?

How can we find these
suffixes quickly?

a b

ba

a

b

b

a

c

a b

ba

a

b

b

a

c

c

c

c

SufTrie(abba) SufTrie(abbac)

Where is the new
deepest node? (aka

longest suffix)

How do we add the
suffix links for the

new nodes?

abbac
bbac
bac
ac
c

abbacabaa
i=4

Need to add nodes for
the suffixes:

Purple are suffixes that
will exist in
SufTrie(s[0..i-1]) Why?

How can we find these
suffixes quickly?

a b

ba

a

b

b

a

c

a b

ba

a

b

b

a

c

c

c

c

SufTrie(abba) SufTrie(abbac)

Where is the new
deepest node? (aka

longest suffix)

How do we add the
suffix links for the

new nodes?

To build SufTrie(s[0..i]) from SufTrie(s[0..i-1]):

CurrentSuffix = longest (aka deepest suffix)

Repeat:
Add child labeled s[i] to CurrentSuffix.
Follow suffix link to set CurrentSuffix to next
shortest suffix.

Add suffix links connecting nodes you just added in
the order in which you added them.

In practice, you add these links as you go
along, rather than at the end.

until you reach the
root or the current
node already has an

edge labeled s[i]
leaving it.

Because if you
already have a node

for suffix αs[i]
then you have a
node for every
smaller suffix.

Python Code to Build a Suffix Trie

def build_suffix_trie(s):
 """Construct a suffix trie."""
 assert len(s) > 0

 # explicitly build the two-node suffix tree
 Root = SuffixNode() # the root node
 Longest = SuffixNode(suffix_link = Root)
 Root.add_link(s[0], Longest)

 # for every character left in the string
 for c in s[1:]:
 Current = Longest; Previous = None
 while c not in Current.children:

 # create new node r1 with transition Current -c->r1
 r1 = SuffixNode()
 Current.add_link(c, r1)

 # if we came from some previous node, make that
 # node's suffix link point here
 if Previous is not None:
 Previous.suffix_link = r1

 # walk down the suffix links
 Previous = r1
 Current = Current.suffix_link

 # make the last suffix link
 if Current is Root:
 Previous.suffix_link = Root
 else:
 Previous.suffix_link = Current.children[c]

 # move to the newly added child of the longest path
 # (which is the new longest path)
 Longest = Longest.children[c]
 return Root

class SuffixNode:
 def __init__(self, suffix_link = None):
 self.children = {}
 if suffix_link is not None:
 self.suffix_link = suffix_link
 else:
 self.suffix_link = self

 def add_link(self, c, v):
 """link this node to node v via string c"""
 self.children[c] = v

s[0]

current

Prev

longest

s[i]

s[i]

u

s[i]

s[i]

current

Prev

longest

s[i]

s[i] u

s[i]

s[i]

s[i]

current

Prev

longest
s[i]

s[i]

s[i]

s[i]

s[i]boundary path

a

a

a

a

a

b

b

ab

a

a

a

b

b

ab

a

b

b

a

a

Note: there's already a path for
suffix "a", so we don't change it (we

just add a suffix link to it)

aba

a

a

a

b

b

ab

a

b

b

a

a

Note: there's already a path for
suffix "a", so we don't change it (we

just add a suffix link to it)

aba

a

b

b

a

a

a

a
a

abaa

a

a

a

b

b

ab

a

b

b

a

a

Note: there's already a path for
suffix "a", so we don't change it (we

just add a suffix link to it)

aba

a

b

b

a

a

a

a
a

abaa

a

b

b

a

a

a

a
a

abaab

b

bb

a

a

a

b

b

ab

a

b

b

a

a

Note: there's already a path for
suffix "a", so we don't change it (we

just add a suffix link to it)

aba

a

b

b

a

a

a

a
a

abaa

a

b

b

a

a

a

a
a

abaab

b

bb

a

b

b

a

a

a

a
a

abaaba

b

bb

a

aa

a

a

a

b

b

ab

a

b

b

a

a

Note: there's already a path for
suffix "a", so we don't change it (we

just add a suffix link to it)

aba

a

b

b

a

a

a

a
a

abaa

a

b

b

a

a

a

a
a

abaab

b

bb

a

b

b

a

a

a

a
a

abaaba

b

bb

a

aa

a

b

b

a

a

a

a
a

b

bb

a

aa

abaaba$

$

$$

$

$

$

$

How many nodes can a suffix trie
have?

• s = anbn will have

• 1 root node
• n nodes in a path of “b”s
• n paths of n+1 “b” nodes

• Total = n(n+1)+n+1 = O(n2)
nodes.

• This is not very efficient.

• How could you make it
smaller?

s = aaabbb a

b

b

b

b

b

b

b

b

b

a

b

b

b

a

So... we have to “trie” again...

Space-Efficient Suffix Trees

A More Compact Representation

• Compress paths where
there are no choices.

• Represent sequence
along the path using a
range [i,j] that refers to
the input string s.

s = abaaba$
 1234567

a
ba

$

$

$

ba

$

aba$
aba$

aba$

s = abaaba$
 1234567

6:6
5:6

7:7

7:7

7:7

5:6

7:7

4:7
4:7

4:7

Space usage:

• In the compressed representation:

- # leaves = O(n) [one leaf for each position in the string]

- Every internal node is at least a binary split.

- Each edge uses O(1) space.

• Therefore, # number of internal nodes is about equal
to the number of leaves.

• And # of edges ≈ number of leaves, and space per
edge is O(1).

• Hence, linear space.

Constructing Suffix Trees -
Ukkonen’s Algorithm

• The same idea as with the suffix trie
algorithm.

• Main difference: not every trie node is
explicitly represented in the tree.

• Solution: represent trie nodes as pairs (u,
α), where u is a real node in the tree and
α is some string leaving it.

• Some additional tricks to get to O(n)
time. (We’ll talk about these later.)

s = abab

abab
bab

suffix_link[v] = (u, ab)

v

u

Storing more than one string with
Generalized Suffix Trees

Constructing Generalized Suffix
Trees

Goal. Represent a set of strings P = {s1, s2, s3, ..., sm}.

Example. att, tag, gat

Simple solution:
(1) build suffix tree for string aat#1tag#2gat#3

#3

#3

t

#3

a

at#3

#2gat#3

g

g#2gat#3
t

#2gat#3

ag#2gat#3

#1tag#2gat#3

#1tag#2gat#3

#1tag#2gat#3
#3

at#1tag#2gat#3

Constructing Generalized Suffix
Trees

Goal. Represent a set of strings P = {s1, s2, s3, ..., sm}.

Example. att, tag, gat

Simple solution:
(1) build suffix tree for string aat#1tag#2gat#3

#3

#3

t

#3

a

at#3

#2gat#3

g

g#2gat#3
t

#2gat#3

ag#2gat#3

#1tag#2gat#3

#1tag#2gat#3

#1tag#2gat#3
#3

at#1tag#2gat#3

#3

#3

t

#3

a

at#3

#2

g

g#2
t

#2

ag#2

#1

#1

#1
#3

at#1

(2) For every leaf node, remove
any text after the first # symbol.

Applications of Generalized Suffix
Trees

Longest common substring of S and T:

Determine the strings in a database {S1, S2, S3, ..., Sm} that contain
query string q:

Applications of Generalized Suffix
Trees

Longest common substring of S and T:

Build generalized suffix tree for {S, T}
Find the deepest node that has has descendants from both
strings (containing both #1 and #2)

Determine the strings in a database {S1, S2, S3, ..., Sm} that contain
query string q:

Applications of Generalized Suffix
Trees

Longest common substring of S and T:

Build generalized suffix tree for {S, T}
Find the deepest node that has has descendants from both
strings (containing both #1 and #2)

Determine the strings in a database {S1, S2, S3, ..., Sm} that contain
query string q:

Build generalized suffix tree for {S1, S2, S3, ..., Sm}
Follow the path for q in the suffix tree.
Suppose you end at node u: traverse the tree below u, and
output i if you find a string containing #i.

Longest Common Extension
Longest common extension: We are given strings S and T. In the future, many pairs (i,j) will be
provided as queries, and we want to quickly find:

the longest substring of S starting at i that matches a substring of T starting at j.

TS

i j

LCE(i,j) LCE(i,j)

j i

LCA(i,j)

i j

Build generalized suffix tree for S and T.

Preprocess tree so that lowest common
ancestors (LCA) can be found in constant time.

Create an array mapping suffix numbers to leaf
nodes.

Given query (i,j):
Find the leaf nodes for i and j
Return string of LCA for i and j

Longest Common Extension
Longest common extension: We are given strings S and T. In the future, many pairs (i,j) will be
provided as queries, and we want to quickly find:

the longest substring of S starting at i that matches a substring of T starting at j.

TS

i j

LCE(i,j) LCE(i,j)

j i

LCA(i,j)

i j

Build generalized suffix tree for S and T.

Preprocess tree so that lowest common
ancestors (LCA) can be found in constant time.

Create an array mapping suffix numbers to leaf
nodes.

Given query (i,j):
Find the leaf nodes for i and j
Return string of LCA for i and j

O(1)
O(1)

O(|S| + |T|)

O(|S| + |T|)

O(|S| + |T|)

Using LCE to Find Palindromes
Maximal even palindrome at position i: the longest string to the left and right so that the left
half is equal to the reverse of the right half.

S

i

Goal: find all maximal palindromes in S.

x y x ≠ y

= the reverse of

Using LCE to Find Palindromes
Maximal even palindrome at position i: the longest string to the left and right so that the left
half is equal to the reverse of the right half.

S

i

Goal: find all maximal palindromes in S.

x y x ≠ y

Construct Sr, the reverse of S.

Preprocess S and Sr so that LCE queries can be solved in constant time (previous slide).

LCE(i, n-i) is the length of the longest palindrome centered at i.

For every position i:
Compute LCE(i, n-i)

Sr

n - i

y x x ≠ y

= the reverse of

Using LCE to Find Palindromes
Maximal even palindrome at position i: the longest string to the left and right so that the left
half is equal to the reverse of the right half.

S

i

Goal: find all maximal palindromes in S.

x y x ≠ y

Construct Sr, the reverse of S.

Preprocess S and Sr so that LCE queries can be solved in constant time (previous slide).

LCE(i, n-i) is the length of the longest palindrome centered at i.

For every position i:
Compute LCE(i, n-i)

Sr

n - i

y x x ≠ y

= the reverse of

O(|S|)
O(1)

O(|S|)

O(|S|)

Total time = O(|S|)

Match Statistics
Def. msXY(i) := the longest substring of X that starts at i and matches
someplace in Y.

Algorithm sketch to compute msXY(i) in O(|X| + |Y|) time and O(|X| + |Y|) space:

Build suffix tree TY for Y.
Compute msXY(1) by querying for X in TY.
The depth of the node where you stop is msXY(1).

For i = 2...|X|:
Follow the suffix link from where you stopped.
Continue searching for X where you left off.
msXY(i) = the depth where the search gets stuck

O(|X|) time

O(|Y|) time

Can also compute pXY(i) := one of the location in Y where a matching substring
of length msXY(i) occurs.

Space-efficient LCE

j

Y

X

i

p(i)

msXY(i)

msXY(i)

To find LCE(i,j):

1. Get pXY(i).
2. Compute LCE(p(i), j) using the old LCE algorithm.
3. Return min {msXY(i), LCE(p(i), j)}.

Idea. The string in Y starting at p(i) is a proxy for the string in X starting at i.

Note that you need the suffix tree only for the smaller of the two strings.

Space-efficient LCE

j

Y

X

i

p(i)

msXY(i)

msXY(i)
LCE(p(i), j)

To find LCE(i,j):

1. Get pXY(i).
2. Compute LCE(p(i), j) using the old LCE algorithm.
3. Return min {msXY(i), LCE(p(i), j)}.

Idea. The string in Y starting at p(i) is a proxy for the string in X starting at i.

Note that you need the suffix tree only for the smaller of the two strings.

Space-efficient LCE

j

Y

X

i

p(i)

msXY(i)

msXY(i)
LCE(p(i), j)

To find LCE(i,j):

1. Get pXY(i).
2. Compute LCE(p(i), j) using the old LCE algorithm.
3. Return min {msXY(i), LCE(p(i), j)}.

Idea. The string in Y starting at p(i) is a proxy for the string in X starting at i.

Note that you need the suffix tree only for the smaller of the two strings.

k-mismatch using LCE

T

Checking whether there is a k-mismatch of P starting at position i of T:

j = 1 // position in P
c = 0 // number of mismatches found so far
repeat until c > k:

j += LCE(i,j)+1 // O(1)-time longest match in P and T @ (i,j)
i += LCE(i,j)+1
If j ≥ |P|+1: return True // we’ve matched all of P
c++

return False

P

i

j=1

x

z
LCE(j+LCE(i,j)+1, i+LCE(i,j)+1)

Finding all k-mismatches of P in T therefore takes O(k|T|)-time.

Some implementation tricks and variants

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

ace$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $A C D E $

A C D E $

ace$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

A C D E $

A C D E $

ace$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$

A C D E $

A C D E $

ace$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

A C D E $

ace$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

A C D E $

A C D E $

ace$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

A C D E $

ace, add, added,
cede, dad, deed

Alphabet = ACDE,
special $ “end of
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

A C D E $

deed$

ace, add, added,
cede, dad, deed

Generalized Tries Can Be Compress Too:

A C D E $

A C D E $

A C D E $

A C D E $

add$

A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

A C D E $

deed$

A lot of nodes were non-discriminatory: they didn’t
discriminate between two keys:

Only store the discriminatory nodes

Generalized Tries Can Be Compress Too:

A C D E $

A C D E $

A C D E $

A C D E $

add$

A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

A C D E $

deed$

A lot of nodes were non-discriminatory: they didn’t
discriminate between two keys:

Only store the discriminatory nodes

Patricia Tries

A C D E $

A C D E $

A C D E $

add$added$

ace$

cede$
A C D E $

dad$
deed$

Same tree, but only storing the discriminatory nodes.

BUT: now have to store the index of the character
position the node is testing

before, a node at depth d tested position d, but now
that isn’t true: we can skip over positions

1

2

4

2

Also: now you must CHECK whether
a leaf you reach matches the query.

E.g. what if we searched for cedar.

Practical Algorithm to
Retrieve Information Coded
in Alphanumeric

Saving Space #2

• Store nodes in a 2-d
table.

• table size = |∑| = size of
the alphabet by number
of nodes n

• Each entry contains the
index of the node it
“points to”

• Uses O(log n) space
instead of the size of the
pointer (e.g. 32 or 64 bits)

• General trick: you ensure
nodes are contained in
some region of memory
of size M.

A C D E $

Saving Space #3

• Replace

• with

• at each node

A C D E $

A D $
NULL

Array at each node becomes a linked list.

Saves space when the branching factor is low

don’t need to store an entry for each character in
the alphabet)

Also imagine a hybrid method, using arrays at
nodes with high branching factors

de la Brandais tree

Recap

• Suffix tries natural way to store a string -- search, count
occurrences, and many other queries answerable easily.

• But they are not space efficient: O(n2) space.

• Suffix trees are space optimal: O(n), but require a little more
subtle algorithm to construct.

• Suffix trees can be constructed in O(n) time using Ukkonen’s
algorithm.

• Similar ideas can be used to store sets of strings.

