Suffix Trees

02-714
Slides by Carl Kingsford

Preprocessing Strings

* Opver the next few lectures, we’ll see several methods for
preprocessing string data into data structures that make many
questions (like searching) easy to answer:

o Suffix Tries
o Suffix Trees

e Suffix Arrays

* Typical setting: A long, known, and fixed text string (like a genome) and
many unknown, changing query strings.

e Allowed to preprocess the text string once in anticipation of the
future unknown queries.

 Data structures will be useful in other settings as well.

Suffix Tries

® A trie, pronounced “try”, is a tree that exploits some
structure in the keys

- e.g.if the keys are strings, a binary search tree would
compare the entire strings, but a trie would look at their
individual characters

- Sutfix trie are a space-inefficient data structure to store a string
that allows many kinds of queries to be answered quickly.

~ Suffix trees are hugely important for searching large sequences
like genomes. Eg. the basis for a tool called “MUMMer”.

s = abaaba$

4

a

2
S .

b

?
;
®

fE
v d
§>$
:

$

®

0
;

Q

$

®

Suffix Tries

SufTrie(s) = suffix trie representing string s.

Edges of the suffix trie are labeled with
letters from the alphabet > (say {A,C,G,T}).

Every path from the root to a solid node
represents a suffix of s.

Every suffix of s is represented by some
path from the root to a solid node.

Why are all the solid nodes leaves!?
How many leaves will there be!?

Processing Strings Using Suffix Tries

Given a suffix trie T, and a string q, how can we:

* determine whether q is a substring of T?
 check whether q is a suffix of T?

* count how many times q appears in T?

* find the longest repeat in T?

* find the longest common substring of T and q?

Main idea:
every substring of s is a prefix of some suffix of s.

s = abaaba$ /Q\
ﬁf "3? """

Searching Suffix Tries

Is “baa” a substring of s?

Follow the path given by
the query string.

After we’ve built the suffix trees,
queries can be answered in time:

O(|query|)
regardless of the text size.

s = abaaba$ /Q\ . SedrChlng SUFﬁX TT'IQS
}Rl ae Is “baa” a substring of s!?
b a
SO B
. Ci) x Follow the path given by
b .S .
;5 CP ‘ Q the query string.
s 7 ;
s 4]
b “ 9
#} 3» d; After we've built the suffix trees,
) 6 queries can be answered in time:
5 R O(|queryl)
’ regardless of the text size.
$

Applications of Suffix Tries (1)

Check whether q is a substring of T:

Check whether q is a suffix of T:

Count # of occurrences of qinT:

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a substring of T:

Follow the path for g starting from the root.
If you exhaust the query string, then qisinT.

Check whether q is a suffix of T:

Count # of occurrences of qinT:

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a substring of T:

Follow the path for g starting from the root.
If you exhaust the query string, then qisinT.

Check whether q is a suffix of T:

Follow the path for q starting from the root.
If you end at a leaf at the end of g, then q is a suffix of T

Count # of occurrences of qinT:

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a substring of T:

Follow the path for g starting from the root.
If you exhaust the query string, then qisinT.

Check whether q is a suffix of T:

Follow the path for q starting from the root.
If you end at a leaf at the end of g, then q is a suffix of T

Count # of occurrences of qinT:

Follow the path for q starting from the root.
The number of leaves under the node you end up in is the
number of occurrences of q.

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a substring of T:

Follow the path for g starting from the root.
If you exhaust the query string, then qisinT.

Check whether q is a suffix of T:

Follow the path for q starting from the root.
If you end at a leaf at the end of g, then q is a suffix of T

Count # of occurrences of qinT:

Follow the path for q starting from the root.
The number of leaves under the node you end up in is the
number of occurrences of q.

Find the longest repeat in T:
Find the deepest node that has at least 2 leaves under it.

Find the lexicographically (alphabetically) first suffix:

Applications of Suffix Tries (1)

Check whether q is a substring of T:

Follow the path for g starting from the root.
If you exhaust the query string, then qis inT.

Check whether q is a suffix of T:

Follow the path for g starting from the root.
If you end at a leaf at the end of g, then q is a suffix of T

Count # of occurrences of qinT:

Follow the path for q starting from the root.
The number of leaves under the node you end up in is the
number of occurrences of q.

Find the longest repeat in T:
Find the deepest node that has at least 2 leaves under it.

Find the lexicographically (alphabetically) first suffix:

Start at the root, and follow the edge labeled with the
lexicographically (alphabetically) smallest letter.

s = abaaba$ /Q\ Suffix Links
}R/ 3 ae ----- {>’ e Suffix links connect node

representing “xX”’ to a node
representing “&”. v

* Most important suffix links are

a b “‘ $.
;5 CP ‘ ? the ones connecting suffixes of

9 b the full string (shown at right).
JEES

q§ > 3 e But every node has a suffix link.

b " i d> e Why?

¢ L $ * How do we know a node

a ‘ representing & exists for
QS ~ every node representing X!
$

s = abaaba$ /Q\ : SUFﬁX TrIeS
b

a

R
S &G

A node represents the prefix of some

suffix;

abaaba$

—

\

—

S
The node’s suffix link should link to the
prefix of the suffix s that is | character

shorter.

Since the suffix trie contains all
suffixes, it contains a path representing
s, and therefore contains a node
representing every prefix of s.

s = abaaba$ /Q\ : SUFﬁX TrIeS
b

a

Y
S &G

A node represents the prefix of some

suffix;

abaaba$

—

\

—

S
The node’s suffix link should link to the
prefix of the suffix s that is | character

shorter.

Since the suffix trie contains all
suffixes, it contains a path representing
s, and therefore contains a node
representing every prefix of s.

Applications of Suffix Tries (II)

abaaba$

Find the longest common substring of T and q: e

T = abaaba$ o i R o
—_ V~~) “~~~ .
q = bbaa

Applications of Suffix Tries (II)

abaaba$

Find the longest common substring of T and q:

Walk down the tree following g. o $ 4,
If you hit a dead end, save the current depth, P "
and follow the suffix link from the current

4 T , a "“ ““\
node. S a \Q O— 8 —®
When you exhaust g, return the longest 25 A, < Al
substring found. v

T = abaaba$ b,d R o 3 \Q\
S N R

. -~
S . . S . ’ .
— S . - . .

- a :

I R ° ‘ '

. “.~ .

.
. ® - .
. -~

S -
e -

Constructing Suffix Tries

Suppose we want to build suffix trie for string:

s = abbacabaa

We will walk down the string from left to right:
abbac
—

building suffix tries for s[0], s[0..1], s[0..2], ..., s[0..n]

~—

To build suffix trie for s[0..i], we
will use the suffix trie for s[0..i-1]
built in previous step

To convert SufTrie(S[0..i-1]) = SufTrie(s[0..i]), add character s[i] to all the suffixes:

abbac Purple are suffixes that
abbac Needtoaddnodesfor ~ bbac et
i=4 the suffixes: bac ufTrie(s[0..i-1])
aC How can we find these

C suffixes quickly?

Suppose we want to build suffix trie for string:

s = abbacabaa

We will walk down the string from left to right:
abbac
—

building suffix tries for s[0], s[0..1], s[0..2], ..., s[0..n]

~—

To build suffix trie for s[0..i], we
will use the suffix trie for s[0..i-1]
built in previous step

To convert SufTrie(S[0..i-1]) = SufTrie(s[0..i]), add character s[i] to all the suffixes:

abbac - Purple are suffixes that

abbac Need toadd nodes for ~ bbac & & et
i=4 the suffixes: bac ufTrie(s[0..i-1])

acC How can we find these
C suffixes quickly?

abbac Purple are suffixes that

abba Need to add nodes for bbac will exist in
. , SufTrie(s[0..i-1])
i=4 the suffixes: bac
aC How can we find these
C suffixes quickly?

SufTrie(abba) SufTrie(abbac)

abbac - Purple are suffixes that

abba Need to add nodes for bbac * will exist in
. , SufTrie(s[0..i-1])
i=4 the suffixes: bac
aC How can we find these
C suffixes quickly?

SufTrie(abba) SufTrie(abbac)

To build SufTrie(s[0..i]) from SufTrie(s[O0..i-1]):

Because if you
already have a node
for suffix xsJi]

then you have a
node for every
smaller suffix.

CurrentSuffix = longest (aka deepest suffix)

Repeat:

Add child labeled s[i] to CurrentSuffix.

Follow suffix link to set CurrentSuffix to next
shortest suffix.

Add suffix links connecting nodes you just added in
the order in which you added them.

Python Code to Build a Suffix Trie

class SuffixNode:

def

def

__init (self, suffix link = None):

self.children = {}
if suffix link is not None:
self.suffix link = suffix link
else:
self.suffix link = self

add link(self, c, v):
"""link this node to node v via string c
self.children[c] = v

mon

def build suffix trie(s):

Construct a suffix trie. R
assert len(s) > 0 “)
’

explicitly build the two-node suffix tree
Root = SuffixNode() # the root node
Longest = SuffixNode(suffix link = Root)
Root.add 1link(s[0], Longest)

for every character left in the string
for ¢ in s[1:]:
Current = Longest; Previous = None
while ¢ not in Current.children:

create new node rl with transition Current -c->rl
rl = SuffixNode()
Current.add link(c, rl)

if we came from some previous node, make that
node's suffix link point here
if Previous is not None:

Previous.suffix link = rl

walk down the suffix links
Previous = rl
Current = Current.suffix link

make the last suffix link

if Current is Root:
Previous.suffix link

else:
Previous.suffix link

Root

Current.children[c]

move to the newly added child of the longest path
(which is the new longest path)
Longest = Longest.children[c]

return Root

longest

.
.
.
\'

e}
current

s[i] 7

s[i] R

B' Prev

boundary path\

.
.
.
.
.
-
.
.
\‘

s[i]

|Onges\B“"‘”_”_

longest

N

-
.
.
.
\’

s[i]

.
.
.
-
.
.
.
.
.
.
.

current

.
.
.

current

Prev

. :
.
.

Note: there's already a path for
suffix "a", so we don't change it (we
just add a suffix link to it)

Note: there's already a path for

suffix "a", so we don't change it (we

just add a suffix link to it)

Note: there's already a path for

suffix "a", so we don't change it (we

just add a suffix link to it)

Note: there's already a path for

suffix "a", so we don't change it (we

just add a suffix link to it)

Note: there's already a path for
suffix "a", so we don't change it (we
just add a suffix link to it)

How many nodes can a suffix trie

have?
s = aaabbb 2 b e s=a"b" will have
/Qa \Q e | root node
b b * nnodes ina path of “b”’s
gf p\ \Q e n paths of n+| “b” nodes
b a
b

ﬁ ¢ p bi e Total = n(n+l)+n+l = O(n?)
. b

nodes.
b ¢ §§ e This is not very efficient.
¢ - !
‘ ¢ e How could you make it
smaller?
b

So... we have to “trie” again...

Space-Efficient Suffix Trees

A More Compact Representation

s = abaabad s = abaaba$
/{ ba /(56
o $ s e 7:7
aba$
aba$ 4-7
{ T
¢ \
v R
e Compress paths where * Represent sequence
there are no choices. along the path using a

range [i,j] that refers to
the input string s.

Space usage:

e In the compressed representation:
- # leaves = O(n) [one leaf for each position in the string]
- Every internal node is at least a binary split.

- Each edge uses O(1) space.

® Therefore, # number of internal nodes is about equal
to the number of leaves.

e And # of edges = number of leaves, and space per
edge is O(1).

e Hence, linear space.

Constructing Suffix Trees -
Ukkonens Algorithm

The same idea as with the suffix trie
algorithm.

Main difference: not every trie node is
explicitly represented in the tree.

Solution: represent trie nodes as pairs (u,
X), where u is a real node in the tree and
X is some string leaving it.

Some additional tricks to get to O(n)
time. (We'll talk about these later.)

suffix_link[v] = (u, ab)

Storing more than one string with
Generalized Suffix Trees

Constructing Generalized Suffix
Trees

Goal. Represent a set of strings P = {s|, s, s3, ..., Sm}.

Example. att, tag, gat

Simple solution:
(1) build suffix tree for string aat# tagt,gat#s;

#4tag#-gat#
1 2 3
—O
#zgat#3
t
7
O— "3 O/ at#3

ag#ogatig

a

t
O C{ A ti# tag# ogati 5

#3
#4tag#ogati g

o O

Constructing Generalized Suffix
Trees

Goal. Represent a set of strings P = {s|, s, s3, ..., Sm}.

Example. att, tag, gat

Simple solution:
(1) build suffix tree for string aat# tagt,gat#; (2) For every leaf node, remove
any text after the first # symbol.

#4tag#ogati g

—O
#59 at#3
t
i
ag#ogatig ag #,
O #itag#ogatts ghogatiis O/ 4
1
O t

C{ Aatﬁ tag#,gati O

#3
#4tag#ogati g

o O

Applications of Generalized Suffix
Trees

Longest common substring of S and T:

Determine the strings in a database {S|, Sy, S3, ..., Sm} that contain
query string q:

Applications of Generalized Suffix
Trees

Longest common substring of S and T:

Build generalized suffix tree for {S,T}
Find the deepest node that has has descendants from both
strings (containing both #, and #,)

Determine the strings in a database {Si, S, S3, ..., Sm} that contain
query string q:

Applications of Generalized Suffix
Trees

Longest common substring of S and T:

Build generalized suffix tree for {S, T}
Find the deepest node that has has descendants from both

strings (containing both #, and #,)

Determine the strings in a database {Si, S, S3, ..., Sm} that contain
query string q:
Build generalized suffix tree for {Si, S2, S3, ..., Sm}

Follow the path for q in the suffix tree.
Suppose you end at node u: traverse the tree below u, and

output i if you find a string containing #.

Longest Common Extension

Longest common extension:We are given strings S and T. In the future, many pairs (i,j) will be
provided as queries, and we want to quickly find:

the longest substring of S starting at i that matches a substring of T starting at j.

LCE(i,j i
. (i, - TLCL()

| J

Build generalized suffix tree for S and T.

Preprocess tree so that lowest common
ancestors (LCA) can be found in constant time.

LCAi,j)
Create an array mapping suffix numbers to leaf
nodes.
Given query (i,j): j i\i\

Find the leaf nodes for i and j . \
Return string of LCA for i and j A

Longest Common Extension

Longest common extension:We are given strings S and T. In the future, many pairs (i,j) will be
provided as queries, and we want to quickly find:

the longest substring of S starting at i that matches a substring of T starting at j.

LCE(j i
S (i) T TLC&])

| J

Build generalized suffix tree for SandT. O(|S| + |T|)

Preprocess tree so that lowest common O(|S| + [T])
ancestors (LCA) can be found in constant time.

LCAi,j)
Create an array mapping suffix numbers to leaf
nodes. O(IS[+ [T1)
Given query (i,)): ik 3
Find the leaf nodes for i and j O(l) " \

Return string of LCAforiandj O(l) PR

Using LCE to Find Palindromes

Maximal even palindrome at position i: the longest string to the left and right so that the left
half is equal to the reverse of the

Sb

T mmm = the reverse of mam
|

X FYy

Goal: find all maximal palindromes in S.

Using LCE to Find Palindromes

Maximal even palindrome at position i: the longest string to the left and right so that the left
half is equal to the reverse of the

S - —X:ﬁy
L

mmm = the reverse of
|

Goal: find all maximal palindromes in S.

Construct S", the reverse of S.

Preprocess S and S"so that LCE queries can be solved in constant time (previous slide).
LCE(i, n-i) is the length of the longest palindrome centered at i.

For every position i:
Compute LCE(i, n-i)

Using LCE to Find Palindromes

Maximal even palindrome at position i: the longest string to the left and right so that the left
half is equal to the reverse of the

S - —X:ﬁy
L

mmm = the reverse of
|

Goal: find all maximal palindromes in S.

Construct S, the reverse of S. O(|S|)

Preprocess S and S'so that LCE queries can be solved in constant time (previous slide). O(|S|)
LCE(i, n-i) is the length of the longest palindrome centered at i.

For every position i: O(|S)) L
Compute LCE(i,n-i) O(l) Total time = O(|3])

Match Statistics

e

Def. msxy(i) := the longest substring of X that starts at i and matches

someplace in Y.

Algorithm sketch to compute msXY(i) in O(IXI + [YI) time and O(IXI + IYl) space:

Build suffix tree Ty for Y. O(Y]) time

Compute msxy(1) by querying for X in Ty.)
The depth of the node where you stop is msxy(1).

Fori=2...IXI: } O(IXI) time
Follow the suffix link from where you stopped.
Continue searching for X where you left off.)

msxy(i) = the depth where the search gets stuck

Can also compute pxv(i) := one of the location in Y where a matching substring

of length msxy(i) occurs.

Space-efficient LCE

To find LCE(i,j):

i msxy(i)

msxv(i)

J p(i)
Idea. The string in Y starting at p(i) is a proxy for the string in X starting at i.

1. Get pxy(i).
2. Compute LCE(p(i), j) using the old LCE algorithm.
3. Return min {msxv(i), LCE(p(i), j)}-

Note that you need the suffix tree only for the smaller of the two strings.

Space-efficient LCE

To find LCE(i,j):

I msxy (i)
X
LCE(p(i), j) .
msxy(i)
Y A e /_
| |
J p(i)

Idea. The string in Y starting at p(i) is a proxy for the string in X starting at i.

1. Get pxy(i).
2. Compute LCE(p(i), j) using the old LCE algorithm.
3. Return min {msxv(i), LCE(p(i), j)}-

Note that you need the suffix tree only for the smaller of the two strings.

Space-efficient LCE

To find LCE(i,j):

I msxy (i)
X
LCE(p(i), j) .
msxy(i)
Y A e /_
| |
J p(i)

Idea. The string in Y starting at p(i) is a proxy for the string in X starting at i.

1. Get pxy(i).
2. Compute LCE(p(i), j) using the old LCE algorithm.
3. Return min {msxv(i), LCE(p(i), j)}-

Note that you need the suffix tree only for the smaller of the two strings.

kK-mismatch using LCE
j=1

P\ =

\
LCE(j+LCE(,j)+1, i+LCE(i,j)+1)

T Z »/

|

I
Checking whether there is a k-mismatch of P starting at position i of T:

j=1 // position in P

c =0 // number of mismatches found so far

repeat until c > k:
j += LCE(i,))+1 // O(1)-time longest match in Pand T @ (i,)
i += LCE(i,j)+1
It j = IPI+1: return True // we've matched all of P
c++

return False

Finding all k-mismatches of P in T therefore takes O(kITI)-time.

Some implementation tricks and variants

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed

string” character

Alc|D|E]|S

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed

string” character

Alc|D|E]|S

_®

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed

string” character

Alc|D|E]|S
@

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed
string” character TToTeTs

_®

\\‘

m |€<—F0 |m

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed

string” character AlclD|E]S

_®

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed

string” character AlclD|E]S

_®

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed
string” character TToTeTs

_®

/f‘*\\
A|J|C|IDIEI|S$ A|JC|IDIJE]|S$
I I
A|J|C|IDIEI|S$ A|J|C|IDIJE]|S$

ace, add, added,

Alphabet = ACDE,
cede, dad, deed

special $ “end of

string” character AlclD|E]Ss
L@

/f‘*\\
A|lC|ID|E]|S A|JC|IDIJE]|S$
I I
A|CID|E]|$ A|J|C|IDIJE]|S$

ace, add, added,

Alphabet = ACDE,
cede, dad, deed

special $ “end of

* 77
string” character AlclD|E]S
/’.
Alc|D]|E

il B

o

O |«<——e |O

E]l$

g
ACDE$

Alphabet = ACDE, ace, add, added,

special $ “end of cede, dad, deed

string” character TToTeTs
Alc|D|E

B

L

O |«<—e |O

=

/ =

ace, add, added,

Alphabet = ACDE,
cede, dad, deed

special $ “end of

* 77
string” character AlclD|E]S
/’.
Alc|D]|E

il B

o

O |«<——e |O

E]l$

g
AC E$

O<T1° |o

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed
string” character TToTeTs
/’. ’
Alc|D|E

B

A

O |«<—e |O

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed
string” character TToTeTs
/’. ’
A[C|D|E]|S

e A[C|D|E]|S
Alc|D|E|S Alc|D|E[S Alclolels

| |
A|lC|D|E]S A|lCc|D|E[S

ace, add, added,

Alphabet = ACDE,
special $ “end of cede, dad, deed
string” character T T
/’. ’
Alc|D|E]|S
H . Alc|D[E]|S
z/ \\\\\\\‘ I
Alc|DlE]|S Alc|plE]S aTcTolels
o B
A|C|IDIJE]S A|lC|D|E]|S Alclolels

ace, add, added,

Alphabet = ACDE,
special $ “end of cede, dad, deed
string” character T T
/’. ’
Alc|D|E]|S
H . Alc|D[E]|S
z/ \\\\\\\‘ I
Alc|DlE]|S Alc|plE]S aTcTolels
I I '
A|C|IDIJE]S A|lC|D|E]|S ~1clo .

'
0
()
A \
>
(@]
m
A
./’.
)
(ol
o
A
>
@)
O &1 |m
m

Alphabet = ACDE, ace, add, added,
special $ “end of cede, dad, deed
string” character TToTeTs
/’. ’
Alc|D|E]S

- Alc|[D|E]S
Alc|[plE]|S Alc|D|E|S ZTcTolels

? ? ’

l l |
A|ICIDIE|S A|C|ID|E|S$ ~lclo s

'
()
()
A \
>
@)
m
A
./’.
)
(ol
o
A
>
@)
O 1o |m
m
—0 |&A

j——

ace, add, added,

Alphabet = ACDE,
special $ “end of cede, dad, deed
string” character T T
“ 1 .‘\;\k
Alc|D|E]S
H . Alc|[D|E]S
z/ \\\\\\\‘ I
Alc|plE]S Alc|plE]S Tclolels
B B
A|C|IDIJE]S A|lC|D|E]|S ~1clo .

'
0
()
A \
>
(@]
m
A
./’.
)
(ol
o
A
>
@)
O &1 |m
m
—0 |A

T

Alphabet = ACDE,

special $ “end of
string” character

DIEI[S$

ace, add,

cede,

added,

dad, deed

A

DIEI[S

_®

e | *+——

;

Al C
e
.l B A|lC|D|E]|$
/ \ I Al C
I I |
Alclplels A[CIDI|E|S A[C|IDI[E|S$
/ /* ?
neannRen it
ace$ add$ e e R
: (s :
A|C|IDIJE]| $ l
(cede$)

Alphabet = ACDE,

special $ “end of
string” character

DIEI[S$

ace, add,

cede,

added,

dad, deed

A

DIEI[S

_®

e | *+——

;

Al C /
e
4 N A|lC|D|E]|$
l ?
I I ’ A D| E
Alclplels A[CIDI|E|S A[C|IDI[E|S$
/ / * ?
neannRen it
ace$ add$ e e R
: (s :
A|C|IDIJE]| $ l
(cede$)

Alphabet = ACDE,

special $ “end of
string” character

DIEI[S$

ace, add,

cede,

added,

dad, deed

A

DIEI[S

_®

e | *+——

;

Al C /
o
9 N A|lC|D|E]| $
l *
. ° ’ A D|IE| $
| 1 i :
Alclplels A[CIDI|E|S A[C|IDI[E|S$
///) ‘K//,w L ! "@ﬁ'
neannRen it
ace$ add$ e e R
: (8, r
A|C|ID|E| $ l
(cede$)

Alphabet = ACDE,
special $ “end of
string” character

—

ace, add,

cede,

added,
dad, deed

A

D

_®

e | *1T—

$
o
4 N A|C|DJE]|$
/ \ o A|J|C|IDIE]S$
l *
A|C|D|E]| $ AICIDIE]S Alc|D|E]|S$ l
’ ¢ o A DIEI|$
l l l ;
A|lC|D|E]|S$ AJCIDIJE]S$ Alc|DlE]S
/ LLL 1. :
A|J|C|IDIE|S$ l
ace$ add$ A|C|IDIE]|S
: <) r
A|J|C|IDIJE]|S$ l
I (cede$)

ace, add, added,

Alphabet = ACDE,
cede, dad, deed

special $ “end of

string” character AlclD|E]S
’.,.\\&
/ A
Alc|plE]|s /
e
? N A[C|ID|E|S$
. Alc|plE]s
l ?
A|[C|ID|E]|S AICIDIEI]S Alc|D|E]|S$ l
. . . Alc|p|E|s
| l | ’
Alc|D|E]|S AICIDIE]S Alc|D|E]|S
/ ELL 1 :
!

O<T1° |o
I—

Alphabet = ACDE,
special $ “end of
string” character

il B

—

ace,
cede,

add,

added,
dad, deed

A

D

_®

e [

L

Alc|ID|E]$ D|E
I I
Alc|D|E]|S$ Alc|D]|E
i
Alc|ID|E]$
!

A $
AlclID|E]|S ’//P

’ Alc|ID|E]S$ D

l *

$ Alc|pl|E]|s l
° A DIE|S$ D
i p *
$ Alc|D|E]|S$ l

Alphabet = ACDE,
special $ “end of
string” character

—

ace, add,

added,

cede, dad, deed
A D|E|S
“ 1l .‘\&

$
o
B A|C|D|E|$
’ Alc|ID|E]|S$ C|DIE
! i '
A|C|D|E]|S$ AICIDIEIS Alc|D|E]|S$ l
’ ¢ o A D|IE|$ C|D]J]E
l l l ? ?
A|JC|D|EI|$ A|J|C|IDI|E]| $ Alc|ID|E]|$ - l
/ /* ? dad$ C1D E
A|C|IDIE]S A|C|DIE]$ /
1 1
A|J|C|IDIJE]|S$
I (cede$)

Generalized Tries Can Be Compress Too:

A lot of nodes were non-discriminatory: they didn’t
discriminate between two keys:

A
Lo

// | i
n/ »\ AR

/

>
N
—
lﬁ\
)
5 /"Iﬁ
&
_/
>
N
J «—eo
P
)
5
__/
IS

Only store the discriminatory nodes

Generalized Tries Can Be Compress Too:

A lot of nodes were non-discriminatory: they didn’t
discriminate between two keys:

A
Lo

/] | i
n/ »\ R

/

b
2
1'||
r*\
i
2 L
&
__/
b
2
J {—teo mn
P
)
5
__/
e

Only store the discriminatory nodes

Patricia Tries

Practical Algorithm to
Retrieve Information Coded
in Alphanumeric

Same tree, but only storing the discriminatory nodes.

BUT: now have to store the
the node is testing

before, a node at depth d tested position d, but now
that isn’t true: we can skip over positions

LA

C

LO

?

DIEILlZ |
.~\>

|

LA

N D

d
()

.\
(added$) (add$)

r‘”/(L) _,A —lo : N
’\.\

Also: now you must CHECK whether
a leaf you reach matches the query.

E.g. what if we searched for cedar.

Saving Space #2

Store nodes in a 2-d
table.

table size = |). | = size of
the alphabet by number
of nodes n

Each entry contains the
index of the node it
“points to”

Uses O(log n) space
instead of the size of the
pointer (e.g. 32 or 64 bits)

General trick: you ensure
nodes are contained in
some region of memory
of size M.

(@

A

A\~

T E

Saving Space #3

® Replace ALS DL E S

o with |A D

! !

>NULL

! !

e ateach node

Array at each node becomes a linked list.
Saves space when the branching factor is low

don’t need to store an entry for each character in
the alphabet)

Also imagine a hybrid method, using arrays at
nodes with high branching factors

de la Brandais tree

Recap

Suffix tries natural way to store a string -- search, count
occurrences, and many other queries answerable easily.

But they are not space efficient: O(n?) space.

Suffix trees are space optimal: O(n), but require a little more
subtle algorithm to construct.

Suffix trees can be constructed in O(n) time using Ukkonen’s
algorithm.

Similar ideas can be used to store sets of strings.

