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Preprocessing Strings

• Over the next few lectures, we’ll see several methods for 
preprocessing string data into data structures that make many 
questions (like searching) easy to answer:

• Suffix Tries

• Suffix Trees

• Suffix Arrays

• Typical setting: A long, known, and fixed text string (like a genome) and 
many unknown, changing query strings.

• Allowed to preprocess the text string once in anticipation of the 
future unknown queries.

• Data structures will be useful in other settings as well.



Suffix Tries

• A trie, pronounced “try”, is a tree that exploits some 
structure in the keys

- e.g. if the keys are strings, a binary search tree would 
compare the entire strings, but a trie would look at their 
individual characters

- Suffix trie are a space-inefficient data structure to store a string 
that allows many kinds of queries to be answered quickly.

- Suffix trees are hugely important for searching large sequences 
like genomes. Eg. the basis for a tool called “MUMMer”. 
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SufTrie(s) = suffix trie representing string s. 

Edges of the suffix trie are labeled with 
letters from the alphabet ∑ (say {A,C,G,T}).

Every path from the root to a solid node 
represents a suffix of s.

Every suffix of s is represented by some 
path from the root to a solid node.

Why are all the solid nodes leaves?
How many leaves will there be?



Processing Strings Using Suffix Tries

• determine whether q is a substring of T?

• check whether q is a suffix of T?

• count how many times q appears in T?

• find the longest repeat in T?

• find the longest common substring of T and q?

Given a suffix trie T, and a string q, how can we:

Main idea: 
every substring of s is a prefix of some suffix of s.
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Is “baa” a substring of s?

Follow the path given by 
the query string.

After we’ve built the suffix trees, 
queries can be answered in time:

O(|query|)
regardless of the text size.
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Applications of Suffix Tries (1)

Check whether q is a suffix of T:

Check whether q is a substring of T:

Count # of occurrences of q in T:

Find the longest repeat in T:

Find the lexicographically (alphabetically) first suffix:
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Check whether q is a suffix of T:
Follow the path for q starting from the root. 
If you end at a leaf at the end of q, then q is a suffix of T

Check whether q is a substring of T:
Follow the path for q starting from the root. 
If you exhaust the query string, then q is in T.

Count # of occurrences of q in T:
Follow the path for q starting from the root. 
The number of leaves under the node you end up in is the 
number of occurrences of q.
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Applications of Suffix Tries (1)

Check whether q is a suffix of T:
Follow the path for q starting from the root. 
If you end at a leaf at the end of q, then q is a suffix of T

Check whether q is a substring of T:
Follow the path for q starting from the root. 
If you exhaust the query string, then q is in T.

Count # of occurrences of q in T:
Follow the path for q starting from the root. 
The number of leaves under the node you end up in is the 
number of occurrences of q.

Find the longest repeat in T:
Find the deepest node that has at least 2 leaves under it.

Find the lexicographically (alphabetically) first suffix:
Start at the root, and follow the edge labeled with the 
lexicographically (alphabetically) smallest letter.



Suffix Links
• Suffix links connect node 

representing “xα” to a node 
representing “α”.

• Most important suffix links are 
the ones connecting suffixes of 
the full string (shown at right).

• But every node has a suffix link.

• Why?

• How do we know a node 
representing α exists for 
every node representing xα?
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A node represents the prefix of some 
suffix:

The node’s suffix link should link to the 
prefix of the suffix s that is 1 character 
shorter.

Since the suffix trie contains all 
suffixes, it contains a path representing 
s, and therefore contains a node 
representing every prefix of s.

s
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Applications of Suffix Tries (II)

Find the longest common substring of T and q:

a

b

b

a

a

a

a
a

b

bb

a

aa

abaaba$

$

$$

$

$

$

$

T = abaaba$
q = bbaa



Applications of Suffix Tries (II)

Find the longest common substring of T and q:
Walk down the tree following q. 
If you hit a dead end, save the current depth, 
and follow the suffix link from the current 
node.
When you exhaust q, return the longest 
substring found.
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Constructing Suffix Tries
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To convert SufTrie(S[0..i-1]) → SufTrie(s[0..i]), add character s[i] to all the suffixes:

cabaa

s = abbacabaa

Suppose we want to build suffix trie for string:

We will walk down the string from left to right:

building suffix tries for s[0], s[0..1], s[0..2], ..., s[0..n]

To build suffix trie for s[0..i], we 
will use the suffix trie for s[0..i-1] 

built in previous step 

abbacabaa
i=4

Need to add nodes for 
the suffixes:

Purple are suffixes that 
will exist in 
SufTrie(s[0..i-1]) Why?

How can we find these 
suffixes quickly?
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Need to add nodes for 
the suffixes:

Purple are suffixes that 
will exist in 
SufTrie(s[0..i-1]) Why?

How can we find these 
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Where is the new 
deepest node? (aka 

longest suffix)

How do we add the 
suffix links for the 

new nodes?
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To build SufTrie(s[0..i]) from SufTrie(s[0..i-1]):

CurrentSuffix = longest (aka deepest suffix)

Repeat:
Add child labeled s[i] to CurrentSuffix.
Follow suffix link to set CurrentSuffix to next 
shortest suffix.

Add suffix links connecting nodes you just added in 
the order in which you added them.

In practice, you add these links as you go 
along, rather than at the end.

until you reach the 
root or the current 
node already has an 

edge labeled s[i] 
leaving it.

Because if you 
already have a node 

for suffix αs[i]
then you have a 
node for every 
smaller suffix.



Python Code to Build a Suffix Trie

def build_suffix_trie(s):
    """Construct a suffix trie."""
    assert len(s) > 0

    # explicitly build the two-node suffix tree
    Root = SuffixNode()      # the root node
    Longest = SuffixNode(suffix_link = Root)
    Root.add_link(s[0], Longest)
    
    # for every character left in the string
    for c in s[1:]:
        Current = Longest; Previous = None
        while c not in Current.children:

            # create new node r1 with transition Current -c->r1
            r1 = SuffixNode()
            Current.add_link(c, r1)

            # if we came from some previous node, make that
            # node's suffix link point here
            if Previous is not None:
                Previous.suffix_link = r1

            # walk down the suffix links
            Previous = r1
            Current = Current.suffix_link

        # make the last suffix link
        if Current is Root:
            Previous.suffix_link = Root
        else:
            Previous.suffix_link = Current.children[c]

        # move to the newly added child of the longest path
        # (which is the new longest path)
        Longest = Longest.children[c]
    return Root

class SuffixNode:
    def __init__(self, suffix_link = None):
        self.children = {}
        if suffix_link is not None:
           self.suffix_link = suffix_link
        else:
           self.suffix_link = self

    def add_link(self, c, v):
        """link this node to node v via string c"""
        self.children[c] = v

s[0]
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How many nodes can a suffix trie 
have?

• s = anbn will have 

• 1 root node
• n nodes in a path of “b”s
• n paths of n+1 “b” nodes

• Total = n(n+1)+n+1 = O(n2) 
nodes.

• This is not very efficient.

• How could you make it 
smaller?
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So... we have to “trie” again...

Space-Efficient Suffix Trees



A More Compact Representation

• Compress paths where 
there are no choices.

• Represent sequence 
along the path using a 
range [i,j] that refers to 
the input string s.

s = abaaba$
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Space usage:

• In the compressed representation:

- # leaves = O(n) [one leaf for each position in the string]

- Every internal node is at least a binary split.

- Each edge uses O(1) space.

• Therefore, # number of internal nodes is about equal 
to the number of leaves.

• And # of edges ≈ number of leaves, and space per 
edge is O(1).

• Hence, linear space.



Constructing Suffix Trees - 
Ukkonen’s Algorithm

• The same idea as with the suffix trie 
algorithm.

• Main difference: not every trie node is 
explicitly represented in the tree.

• Solution: represent trie nodes as pairs (u, 
α), where u is a real node in the tree and 
α is some string leaving it.

• Some additional tricks to get to O(n) 
time. (We’ll talk about these later.)

s = abab

abab
bab

suffix_link[v] = (u, ab)

v

u



Storing more than one string with
Generalized Suffix Trees



Constructing Generalized Suffix 
Trees

Goal. Represent a set of strings P = {s1, s2, s3, ..., sm}.

Example. att, tag, gat

Simple solution: 
(1) build suffix tree for string aat#1tag#2gat#3
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Constructing Generalized Suffix 
Trees

Goal. Represent a set of strings P = {s1, s2, s3, ..., sm}.

Example. att, tag, gat

Simple solution: 
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#3

#3

t

#3

a

at#3

#2gat#3

g

g#2gat#3
t

#2gat#3

ag#2gat#3

#1tag#2gat#3

#1tag#2gat#3

#1tag#2gat#3
#3

at#1tag#2gat#3

#3

#3

t

#3

a

at#3

#2

g

g#2
t

#2

ag#2

#1

#1

#1
#3

at#1

(2) For every leaf node, remove 
any text after the first # symbol.



Applications of Generalized Suffix 
Trees

Longest common substring of S and T:

Determine the strings in a database {S1, S2, S3, ..., Sm} that contain 
query string q:



Applications of Generalized Suffix 
Trees

Longest common substring of S and T:

Build generalized suffix tree for {S, T}
Find the deepest node that has has descendants from both 
strings (containing both #1 and #2)

Determine the strings in a database {S1, S2, S3, ..., Sm} that contain 
query string q:



Applications of Generalized Suffix 
Trees

Longest common substring of S and T:

Build generalized suffix tree for {S, T}
Find the deepest node that has has descendants from both 
strings (containing both #1 and #2)

Determine the strings in a database {S1, S2, S3, ..., Sm} that contain 
query string q:

Build generalized suffix tree for {S1, S2, S3, ..., Sm}
Follow the path for q in the suffix tree.
Suppose you end at node u: traverse the tree below u, and 
output i if you find a string containing #i.



Longest Common Extension
Longest common extension: We are given strings S and T. In the future, many pairs (i,j) will be 
provided as queries, and we want to quickly find: 

the longest substring of S starting at i that matches a substring of T starting at j.

TS

i j

LCE(i,j) LCE(i,j)

j i

LCA(i,j)

i j

Build generalized suffix tree for S and T.

Preprocess tree so that lowest common 
ancestors (LCA) can be found in constant time.

Create an array mapping suffix numbers to leaf 
nodes.

Given query (i,j):
Find the leaf nodes for i and j
Return string of LCA for i and j



Longest Common Extension
Longest common extension: We are given strings S and T. In the future, many pairs (i,j) will be 
provided as queries, and we want to quickly find: 

the longest substring of S starting at i that matches a substring of T starting at j.

TS

i j

LCE(i,j) LCE(i,j)

j i

LCA(i,j)

i j

Build generalized suffix tree for S and T.

Preprocess tree so that lowest common 
ancestors (LCA) can be found in constant time.

Create an array mapping suffix numbers to leaf 
nodes.

Given query (i,j):
Find the leaf nodes for i and j
Return string of LCA for i and j

O(1)
O(1)

O(|S| + |T|)

O(|S| + |T|)

O(|S| + |T|)



Using LCE to Find Palindromes
Maximal even palindrome at position i: the longest string to the left and right so that the left 
half is equal to the reverse of the right half.

S

i

Goal: find all maximal palindromes in S.

x y x ≠ y

= the reverse of
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half is equal to the reverse of the right half.

S

i

Goal: find all maximal palindromes in S.

x y x ≠ y

Construct Sr, the reverse of S.

Preprocess S and Sr so that LCE queries can be solved in constant time (previous slide).

LCE(i, n-i) is the length of the longest palindrome centered at i.

For every position i:
Compute LCE(i, n-i)

Sr

n - i

y x x ≠ y

= the reverse of



Using LCE to Find Palindromes
Maximal even palindrome at position i: the longest string to the left and right so that the left 
half is equal to the reverse of the right half.

S

i

Goal: find all maximal palindromes in S.

x y x ≠ y

Construct Sr, the reverse of S.

Preprocess S and Sr so that LCE queries can be solved in constant time (previous slide).

LCE(i, n-i) is the length of the longest palindrome centered at i.

For every position i:
Compute LCE(i, n-i)

Sr

n - i

y x x ≠ y

= the reverse of

O(|S|)
O(1)

O(|S|)

O(|S|)

Total time = O(|S|)



Match Statistics
Def. msXY(i) := the longest substring of X that starts at i and matches 
someplace in Y. 

Algorithm sketch to compute msXY(i) in O(|X| + |Y|) time and O(|X| + |Y|) space:

Build suffix tree TY for Y.
Compute msXY(1) by querying for X in TY.
The depth of the node where you stop is msXY(1). 

For i = 2...|X|:
Follow the suffix link from where you stopped.
Continue searching for X where you left off.
msXY(i) = the depth where the search gets stuck

O(|X|) time

O(|Y|) time

Can also compute pXY(i) := one of the location in Y where a matching substring 
of length msXY(i) occurs.



Space-efficient LCE

j

Y

X

i

p(i)

msXY(i)

msXY(i)

To find LCE(i,j):

1. Get pXY(i).
2. Compute LCE(p(i), j) using the old LCE algorithm.
3. Return min {msXY(i), LCE(p(i), j)}.

Idea. The string in Y starting at p(i) is a proxy for the string in X starting at i.

Note that you need the suffix tree only for the smaller of the two strings.
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k-mismatch using LCE

T

Checking whether there is a k-mismatch of P starting at position i of T:

j = 1    // position in P
c = 0   // number of mismatches found so far
repeat until c > k:

j += LCE(i,j)+1      // O(1)-time longest match in P and T @ (i,j)
i += LCE(i,j)+1
If j ≥ |P|+1: return True              // we’ve matched all of P
c++

return False

P

i

j=1

x

z
LCE(j+LCE(i,j)+1, i+LCE(i,j)+1)

Finding all k-mismatches of P in T therefore takes O(k|T|)-time.



Some implementation tricks and variants



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

ace, add, added, 
cede, dad, deed
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A C D E $

A C D E $A C D E $

A C D E $

ace$

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

A C D E $

A C D E $

ace$

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$

A C D E $

A C D E $

ace$

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

A C D E $

ace$

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

A C D E $

A C D E $

ace$

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

A C D E $

ace, add, added, 
cede, dad, deed



Alphabet = ACDE, 
special $ “end of 
string” character

A C D E $

A C D E $

A C D E $

A C D E $

add$A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

A C D E $

deed$

ace, add, added, 
cede, dad, deed



Generalized Tries Can Be Compress Too:

A C D E $

A C D E $

A C D E $

A C D E $

add$

A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

A C D E $

deed$

A lot of nodes were non-discriminatory: they didn’t 
discriminate between two keys:

Only store the discriminatory nodes



Generalized Tries Can Be Compress Too:

A C D E $

A C D E $

A C D E $

A C D E $

add$

A C D E $

A C D E $

added$

A C D E $

A C D E $

ace$

A C D E $

A C D E $

A C D E $

A C D E $

cede$

A C D E $

A C D E $

A C D E $

dad$

A C D E $

A C D E $

A C D E $

deed$

A lot of nodes were non-discriminatory: they didn’t 
discriminate between two keys:

Only store the discriminatory nodes



Patricia Tries

A C D E $

A C D E $

A C D E $

add$added$

ace$

cede$
A C D E $

dad$
deed$

Same tree, but only storing the discriminatory nodes.

BUT: now have to store the index of the character 
position the node is testing

before, a node at depth d tested position d, but now 
that isn’t true: we can skip over positions

1

2

4

2

Also: now you must CHECK whether 
a leaf you reach matches the query.

E.g. what if we searched for cedar.

Practical Algorithm to 
Retrieve Information Coded 
in Alphanumeric



Saving Space #2

• Store nodes in a 2-d 
table.

• table size = |∑| = size of 
the alphabet by number 
of nodes n

• Each entry contains the 
index of the node it 
“points to”

• Uses O(log n) space 
instead of the size of the 
pointer (e.g. 32 or 64 bits)

• General trick: you ensure 
nodes are contained in 
some region of memory 
of size M.

A C D E $



Saving Space #3

• Replace 

• with 

• at each node

A C D E $

A D $
NULL

Array at each node becomes a linked list. 

Saves space when the branching factor is low

don’t need to store an entry for each character in 
the alphabet)

Also imagine a hybrid method, using arrays at 
nodes with high branching factors

de la Brandais tree



Recap

• Suffix tries natural way to store a string -- search, count 
occurrences, and many other queries answerable easily.

• But they are not space efficient: O(n2) space.

• Suffix trees are space optimal: O(n), but require a little more 
subtle algorithm to construct.

• Suffix trees can be constructed in O(n) time using Ukkonen’s 
algorithm.

• Similar ideas can be used to store sets of strings.


