
Searching for
Multiple Patterns

02-714
Slides by Carl Kingsford

Exact Set Matching Problem

• Easy to solve in ∑i(|Pi| + |T|) = O(n + zm)
where n = ∑i|Pi| and m = |T|.

• Can be solved in time O(n + m + k) in several different ways. E.g.:

Aho-Corasick: based on keyword trees

Using suffix trees directly

• Can be solved quickly in practice using Wu-Mandber (a hash-
based method).

Problem. Given a set of patterns P = {P1,...,Pz}, and a text T, find all
exact occurrences of every Pi in T.

Aho-Corasick
A prefix approach

(following Gusfield)

Keyword Tree

Def. A keyword tree K(P) of a set of patterns P is a
tree where:

1. each edge is labeled with a letter
2. edges leading from u to its children all have

different labels
3. there is a function n(i) that gives the node such

that pattern i is spelled out on the unique path
from root to n(i).

P = {abandon, abduct, abacus}

a

b

a

n

d

o

c

u

s

d

u

c

t

n

Aho-Corasick Failure Function
Notation.

L(v) := the string spelled out by the path from the root to node v.
lp(v) := the longest proper suffix of L(v) that is also a prefix of some

pattern in P.
f(v) := the node representing string lp(v) in K(P).

K(P):

v

L(v)
Thm. f(v) always exists and is unique for any
node v in K(P).

Proof: lp(v) is a prefix of a pattern, and every
pattern is represented by a unique path in K(P)
on which every prefix is spelled out.

Aho-Corasick Failure Function
Notation.

L(v) := the string spelled out by the path from the root to node v.
lp(v) := the longest proper suffix of L(v) that is also a prefix of some

pattern in P.
f(v) := the node representing string lp(v) in K(P).

K(P):

lp(v)

v

L(v)
Thm. f(v) always exists and is unique for any
node v in K(P).

Proof: lp(v) is a prefix of a pattern, and every
pattern is represented by a unique path in K(P)
on which every prefix is spelled out.

Aho-Corasick Failure Function
Notation.

L(v) := the string spelled out by the path from the root to node v.
lp(v) := the longest proper suffix of L(v) that is also a prefix of some

pattern in P.
f(v) := the node representing string lp(v) in K(P).

K(P):

lp(v)

v

L(v)
Thm. f(v) always exists and is unique for any
node v in K(P).

Proof: lp(v) is a prefix of a pattern, and every
pattern is represented by a unique path in K(P)
on which every prefix is spelled out.

Aho-Corasick Failure Function
Notation.

L(v) := the string spelled out by the path from the root to node v.
lp(v) := the longest proper suffix of L(v) that is also a prefix of some

pattern in P.
f(v) := the node representing string lp(v) in K(P).

K(P):

lp(v)

v

L(v)

f(v)

Thm. f(v) always exists and is unique for any
node v in K(P).

Proof: lp(v) is a prefix of a pattern, and every
pattern is represented by a unique path in K(P)
on which every prefix is spelled out.

Example K(P) with Failure Functions

a

b

a

n

d

o

c

u

s

d

u

c

t

n

A

C

G

A

C

T

A

C

G

G

A

C

G

C

C

C

C

P = {ACGAC, GACGT, GAACG, CCCC}

Aho-Corasick Search

T

K(P):
i

Walk down string and tree at same time, matching characters:

equal

v

If you get to a node that represents a full pattern, report an occurrence.

If you get stuck at node v, jump to node f(v)

Aho-Corasick Search

T

K(P):
i

Walk down string and tree at same time, matching characters:

equal

lp(v)
v

If you get to a node that represents a full pattern, report an occurrence.

If you get stuck at node v, jump to node f(v)

Aho-Corasick Search

T

K(P):
i

Walk down string and tree at same time, matching characters:

equal

lp(v)
v

u

f(v)=u

If you get to a node that represents a full pattern, report an occurrence.

If you get stuck at node v, jump to node f(v)

Aho-Corasick Search

T

K(P):
i

Walk down string and tree at same time, matching characters:

equal

lp(v)
v

u

f(v)=u

If you get to a node that represents a full pattern, report an occurrence.

If you get stuck at node v, jump to node f(v)

Running Time
Nearly identical analysis to KMP:

Index i into T is never decremented. Every character can be
matched at most once.

Every mismatch results in a “shift” of the pattern of size at ≤ the
number of current matched characters: can have at most O(|T|) total
mismatches.

build the keyword tree

⇒ O(total length of patterns + |T| + # of positions output)

output the positions

search T

Computing f(u)
al

re
ad

y
co

m
pu

te
d

f(u
)

u

v

x

Do a BFS of K(P).

Assume we’ve computed f(v) for all u at fewer than
k hops from the root.

We want to compute f(u) for u at k+1 hops from the
root.

Let v be the parent of u and x be the
character on the (v,u) edge.

We know f(v).

Traverse the chain of f(v), f(f(v)), f(f(f(v)), etc.
until you find a node with a child edge
labeled x.

Set f(u) equal to that node.

Idea: f(v) is the longest suffix of L(v) that matches a prefix of a pattern, f(f(v)) is the longest
suffix of L(f(v)) that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x.

Computing f(u)
al

re
ad

y
co

m
pu

te
d

f(u
)

u

v

x

f(v)

Do a BFS of K(P).

Assume we’ve computed f(v) for all u at fewer than
k hops from the root.

We want to compute f(u) for u at k+1 hops from the
root.

Let v be the parent of u and x be the
character on the (v,u) edge.

We know f(v).

Traverse the chain of f(v), f(f(v)), f(f(f(v)), etc.
until you find a node with a child edge
labeled x.

Set f(u) equal to that node.

Idea: f(v) is the longest suffix of L(v) that matches a prefix of a pattern, f(f(v)) is the longest
suffix of L(f(v)) that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x.

Computing f(u)
al

re
ad

y
co

m
pu

te
d

f(u
)

u

v

x

f(v)

Do a BFS of K(P).

Assume we’ve computed f(v) for all u at fewer than
k hops from the root.

We want to compute f(u) for u at k+1 hops from the
root.

Let v be the parent of u and x be the
character on the (v,u) edge.

We know f(v).

Traverse the chain of f(v), f(f(v)), f(f(f(v)), etc.
until you find a node with a child edge
labeled x.

Set f(u) equal to that node.

Idea: f(v) is the longest suffix of L(v) that matches a prefix of a pattern, f(f(v)) is the longest
suffix of L(f(v)) that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x.

Computing f(u)
al

re
ad

y
co

m
pu

te
d

f(u
)

u

v

x

x

f(v)

Do a BFS of K(P).

Assume we’ve computed f(v) for all u at fewer than
k hops from the root.

We want to compute f(u) for u at k+1 hops from the
root.

Let v be the parent of u and x be the
character on the (v,u) edge.

We know f(v).

Traverse the chain of f(v), f(f(v)), f(f(f(v)), etc.
until you find a node with a child edge
labeled x.

Set f(u) equal to that node.

Idea: f(v) is the longest suffix of L(v) that matches a prefix of a pattern, f(f(v)) is the longest
suffix of L(f(v)) that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x.

Computing f(u)
al

re
ad

y
co

m
pu

te
d

f(u
)

u

v

x

x

f(v)

Do a BFS of K(P).

Assume we’ve computed f(v) for all u at fewer than
k hops from the root.

We want to compute f(u) for u at k+1 hops from the
root.

Let v be the parent of u and x be the
character on the (v,u) edge.

We know f(v).

Traverse the chain of f(v), f(f(v)), f(f(f(v)), etc.
until you find a node with a child edge
labeled x.

Set f(u) equal to that node.

Idea: f(v) is the longest suffix of L(v) that matches a prefix of a pattern, f(f(v)) is the longest
suffix of L(f(v)) that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x.

Running time of computing the f(u)

lp(vi)

Consider path v1,...,vk from root to u.

lp increases by at most 1 when we go from vi to vi+1

lp decreases by at least 1 when we follow an f(v) link.

u

lp is never negative.

root u

va
lu

e
of

 lp
(v

)

So we can “charge” the cost of following the
link to the cost of just walking down the path.

Therefore running time =
O(total size of keyword tree) =
O(size of pattern set)

One Bug: If Pi is a substring of Pj

T
Pi

Pj

suffix of L(v) = Pi

v

If you follow chain of failure links from v, you
eventually find a node that represents Pi.

v represents a full pattern := v is labeled as a full pattern, or there is some
node labeled as a full pattern reachable following failure links from v.

One Bug: If Pi is a substring of Pj

T
Pi

Pj

suffix of L(v) = Pi

v

If you follow chain of failure links from v, you
eventually find a node that represents Pi.

v represents a full pattern := v is labeled as a full pattern, or there is some
node labeled as a full pattern reachable following failure links from v.

One Bug: If Pi is a substring of Pj

T
Pi

Pj

suffix of L(v) = Pi

v

If you follow chain of failure links from v, you
eventually find a node that represents Pi.

v represents a full pattern := v is labeled as a full pattern, or there is some
node labeled as a full pattern reachable following failure links from v.

Wu-Mandber
A suffix approach

Wu-Mandber: Check

Pi

Length = b

PotentialP:

h()

List of patterns whose last
block hashes here.

T

i
At i, explicitly check each
pattern in h(T[i-b+1,...,i]) to
see if it ends at position i.

Wu-Mandber: Shift

GoodShift:

Pi

GoodShift[z] contains the amount that it is safe to shift by if
we know T ending at i hashes to z with hash function g.

z

= min { |Pi| - j : g(Bij) = z }

Bij := block of length b ending at position j in
pattern Pi.

B1j
j

T

i

g() = z

Shift i by GoodShift[g(T[i-b+1,...,i])]

If Shift = 0: perform the Check on previous slide, and shift by 1.

Wu-Mandber: Shift

GoodShift:

Pi

GoodShift[z] contains the amount that it is safe to shift by if
we know T ending at i hashes to z with hash function g.

z

= min { |Pi| - j : g(Bij) = z }

Bij := block of length b ending at position j in
pattern Pi.

B1j
j

T

i

g() = z

Shift i by GoodShift[g(T[i-b+1,...,i])]

If Shift = 0: perform the Check on previous slide, and shift by 1.

Oracle Machine-based Approaches
(following Navarro & Raffinot)

Oracle-based Approach for 1 String

A

C

C

A

C

C

A

A

C

C

Factor Oracle: An FSA where every substring of P is spelled out by
some path to the root.

Factor oracle search:

Build a factor oracle F on reverse(P)

At position i in T: walk backwards, simultaneously walking in F

i

(A) If we get stuck in F at position j, shift P to start just after j.

Works because: y must not be a substring of P.

(B) If we match |P| characters, we report a match and shift by 1.

j

y
(A)(B)

Using Multi-string Matching For
Filtering

(following Navarro & Raffinot)

Filtering for Approximate Matches

Idea: throw out parts of T to speed up approximate matching.

Let k be the maximum number of mismatches we will allow.

Thm. Let P = p1...pj (where pi are substrings), and
let a1...aj be non-negative integers with ∑i ai = A.
If Q and P match with ≤ k errors, then for some 1 ≤ i ≤ j, Q contains
a substring that matches pi with ≤ ⌊aik / A⌋ errors.

Proof. If every sub-pattern pi matched with ≥ 1+ ⌊aik / A⌋
errors, then there would be ≥ ∑i (1 + ⌊aik / A⌋) = k + 1 total
errors, a contradiction.

pi

ai
P

PEX
If ai = 1 for all i and A = k + 1:

⟹ some subpattern matches with < ⌊k / (k+1)⌋ errors

⟹ some subpattern matches exactly.

1. Divide P into k+1 equal-size chunks p1...pk+1

2. Use a multipattern search algorithm to find
occurrences of p1...pk+1

3. Search region around each pi match to see if
it can be extended to a full P match.

PEX
If ai = 1 for all i and A = k + 1:

⟹ some subpattern matches with < ⌊k / (k+1)⌋ errors

⟹ some subpattern matches exactly.

1. Divide P into k+1 equal-size chunks p1...pk+1

2. Use a multipattern search algorithm to find
occurrences of p1...pk+1

3. Search region around each pi match to see if
it can be extended to a full P match.

pi
P

T

i

i - 1 + k |P | - i - | | + k

