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Operations on bit vectors

• rank1(S,i) := the number of 1 bits at or before position i in S.

• select1(S,j) := the position of the jth 1 bit in S.

• rank0(S,i) and select0(S,j) are defined analogously.

S[i] = “access bit i” = rank1(S, i) – rank1(S, i – 1)

Note: rank1(S, select1(S, j)) = j, so rank and select are inverses of 
each other. 

Goal: rank and select in O(1) time while using small space.
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s1 s2 s3 s4 s5 ... si = space to represent pi

Each wi is ≤ u, so can be represented in               bits.

Each pi is an index into a table with         entries, so can be 

represented with               bits. 
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Tables contain 2u entries. The rank vectors in table w = k are of 
size ulog k

Each si is ≤ u, so can be represented in               bits.dlog ue



Prefix Sum Data Structure

Thm (Tarjan & Yao; Pagh; simplified). Let z1, ..., zk be integers such 
that |zi| = nO(1) and |zi – zi-1| = O(log n), then the list z1, ..., zk can be 
represented in O(k log log n) bits allowing for constant access.

Proof. Use the following representation:

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 ...

z1 z5 z9 z13

|zi – z1|

• • •

The “key frame” integers take at most O
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The “key frame” integers take at most 

bits.

The ≈ k delta integers take total O(k log log n) bits because each takes 
O(log log n) bits.

⟹ O(k + klog log n) = O(k log log n) bits total.

k / log n integers



Prefix Sum Data Structure, 2
Thm (Tarjan & Yao; Pagh; simplified). Let z1, ..., zk be integers such that |zi| = 
nO(1) and |zi – zi-1| = O(log n), then the list z1, ..., zk can be represented in O(k 
log log n) bits allowing for constant access.

The “key frame” integers take at most 
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f1 f2 f3 f4 f5 ... fi = number of 1s up through 
the end of block i

Condition 1: fi ≤ n

Condition 2: |fi+1 – fi| = O(log n) if u = O(log n)

⟹ k = n / u = n / log n

⟹ prefix sums can be represented in (n / log n) log log n bits.



Summary: Prefix Sum Data Structure

Thm. The prefix-sum data structure used in RRR takes O((n / log n) 
log log n) space. It can answer prefix-sum queries in constant time.

Proof: To answer a prefixSum(x) query:

1. find the zi that is just before index x.

2. return zi + the zx – zi that is stored at position x.

Each step takes O(1) time.



(Nearly) Complete RRR Data 
Structure
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f1 f2 f3 f4 f5 Prefix sums of wi as in previous slides

Prefix sums of si as in previous slidesq1 q2 q3 q4 q5
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Space Usage, 1
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blocks of size u = 
O(log n) bits

wi < u ⇒ (n/log n)log log nw1 w2 w3 w4 w5

p1 p2 p3 p4 p5 ...

...

pi = index into tables of bit patterns
s1 s2 s3 s4 s5 ... si < u ⇒ (n/log n)log log n

f1 f2 f3 f4 f5 (n / log n) log log n

(n / log n) log log nq1 q2 q3 q4 q5

...

...

n / log n blocks

wi < u because there are at most u 1s in a block of size u. 

Let

si = B(wi, u) < u b/c the plain u-long bit vector could store the subset.

= # of bits needed to select a subset 
of wi elements from a universe of u 
elements.
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Space Usage, 2

the floor

p1 p2 p3 p4 p5 ... pi = index into tables of bit patterns
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Space Usage, 2

the floor
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= # of ways to pick ∑wi objects from this line

= # of ways to pick ∑wi objects from this line where we take wi from 
segment i
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Space Usage, 3
p1 p2 p3 p4 p5 ... pi = index into tables of bit patterns
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space to 
store p array

minimum space 
to select set of w 
1 bits out of n.

s = m/u = m/ logm

B(w, n) +m/ logmSo the total space for the p array is:



Space Usage, 4: The Tables
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The tables are tiny:
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for every weight, we 
this have many entries

The rank vector is u-long, and 
each entry is O(log w)



Summary: Space Usage

Thm. The RRR data structure takes O(B(w,n) + m log log m / log m) space.

So: how do we solve rank1(S, i)?



rank1(S, i)

1. Find the block                 that i is in.

2. rank1(S, i ) = prefixSum(x) + T[wx][i – xu]

x = bi/uc

compute in constant 
time

The rank table 
for weight wx

The 
appropriate bit 
in the xth block.

Each step takes constant time, so the entire rank computation takes 
O(1) time.



Summary

• Can store bit vector in minimum space 
(B(w,m)) + O(m log log m / log m)

• Despite using asymptotically less space than 
the naive representation, you can answer:

- rank
- select
- access
queries in constant time


