Indexable Compressed
Bifvectors

02-714
Slides by Carl Kingsford

Ramen, Ramen, Rao. Succinct Indexable Dictionaries with Applications to Encoding
k-ary Trees, Prefix Sums and Multisets, SODA 2002: 233-242

Operations on bit vectors

® rankq(S,i) := the number of 1 bits at or before position iin S.
® selecty(S,)) := the position of the " 1 bitin S.

® ranko(S,i) and selecty(S,)) are defined analogously.

S[i] = "access biti” = ranky(S, i) — rank4(S, i = 1)

Note: rank;(S, selecty(S, j)) = j, so rank and select are inverses of
each other.

Goal: rank and select in O(1) time while using small space.

RRR

Ramen, Ramen, Rao, FOCS 2002

blocks of size u bits’—\

——— ————

| T ! 1 | !
010101001111010101010101010101110101110101010
Wi W2 W3 W4 Ws w; = number of 1s in block i
S1 82 83 54 S5 Si = space to represent p;

Pie P2 P3 Pa Ps pi = index into tables of bit

patterns
w =0 rank;(i) w = 1 rank;y(i) w =2 ranks(i) w =3 ranks(i)
000 | 000 001 | 001 011 | 012 111 | 123
010 | 011 110 122
100 111 101 112

blocks of size u bits’—\
RRR S ace S Far I t ¥ t i it i} 1 i ¥ i 4 i 4 i {
P O 010101001111010101010101010101110101110101010

wi w2 w3 wg o Ws oo w; = number of 1s in block i
St S2 S3 S4 S5 ... Si = space to represent p;
Pie P2 P3 P4 P5 - pi = index into tables of bit

patterns

w = 1 rank;(i) w =2 rank;(i) w =3 rank;(i)
001 | 001 011 | 012 111 | 123

010 | 011 110 | 122
100 111 101 112

w =0 rank(i)
000 | 000

Each w;is < u, so can be represented in ﬂog UW bits.

u

wy

Each pijis an index into a table with (> entries, so can be

represented with [log (“ ﬂ bits.

Wy

Each s;is < u, so can be represented in |log u | bits.

Tables contain 2Y entries. The rank vectors in table w = k are of
size ulog k

Prefix Sum Data Structure

-

Thm (Tarjan & Yao; Pagh; simplified). Let z1, ..., z« be integers such
that Iz| = n®Y and |z — zi.1| = O(log n), then the list z;, ..., z« can be
represented in O(k log log n) bits allowing for constant access.

Proof. Use the following representation:

‘ Zi — 21 k / log n integers
/ C — =)

Z1 e ° e Zs Z9 213

21 42 243 24 245 26 47 28 49 210 211 212 213 214 e e e

k
The “key frame” integers take at most O (l log n> = 0(k) bits.
ogn

The = k delta integers take total O(k log log n) bits because each takes
O(log log n) bits.

= O(k + klog log n) = O(k log log n) bits total.

Prefix Sum Data Structure, 2

Thm (Tarjan & Yao; Pagh; simplified). Let z, ..., zx be integers such that Izl =
n°" and |z — z;4| = O(log n), then the list zy, ..., z¢ can be represented in O(k

log log n) bits allowing for constant access.

—— —llt++——+——+——+———+——+———
010101001111010101010101010101110101110101010

o h B fa L fi = number of 1s up through
the end of block i

Condition 1: f,<n
Condition 2: Ifi,1 — fl = O(log n) it u = O(log n)

—> k=n/u=n/logn

—> prefix sums can be represented in (n / log n) log log n bits.

Summary: Prefix Sum Data Structure

-

Thm. The prefix-sum data structure used in RRR takes O((n / log n)
log log n) space. It can answer prefix-sum queries in constant time.

Proof: To answer a pretixSum(x) query:

1. find the z that is just before index x.

2. return z; + the zx — z; thatis stored at position x.

Each step takes O(1) time.

(Nearly) Complete RRR Data
Structure

blocks of size u =

O(log n) bits ’\

—
010101001111010101010101010101110101110101010

Wi Wy W3 Wi Ws
S1 So S3 Sq S5

P1 P2 P3 P4 Ps
o B3 fa fs

1 Q2 Q3 Q4 G5

w; = number of 1s in block i
si = space to represent p;
pi = index into tables of bit patterns

Prefix sums of w;as in previous slides

Prefix sums of sjas in previous slides

w =0 rank;(i) w = T ranky(i) w =2 rank;(i) w =3 ranks(i)
000 | 000 001 | 001 011 | 012 111 | 123
010 | 011 110 | 122
100 | 111 101 | 112

Space Usage, 1

blocks of size u =

O(log n) bits ’\ n/ log n blocks

—— ——
010101001111010101010101010101110101110101010

Wi w2 w3z wg o W5 w; < u = (n/log n)log log n

S S5 S3 S S5 si< u = (n/log n)log log n

p1 P2 pP3 pPs P5 ... pi = index into tables of bit patterns
fi f, fa fa fe (n/log n) log log n

g 92 g3 Qa4 gs (n/log n) log log n

w; < U because there are at most u 1s in a block of size u.

Let B(w;,u) = [logg (Zjﬂ = # of bits needed to select a subset

of w: elements from a universe of u
elements.

si = B(w;, u) < u b/c the plain u-long bit vector could store the subset.

Space Usage, 2

p1 P2 pP3 pa P5 ... pi = index into tables of bit patterns

3 e () . v () 5o (F0) 5 : e ()]

the floor the sums

Space Usage, 2

p2 pP3 psa P5 ... pi = index into tables of bit patterns

> e 1) [Z (v o (S5 = : e ()]

the floor o <u> _ logH (u> the sums

~.
T M%
—

rd

IA

= # of ways to pick) w; objects from this line

= # of ways to pick) w; objects from this line where we take w; from
segment |

Space Usage, 3

p1 P2 pP3 pa P5 ... pi = index into tables of bit patterns

space to minimum space

store p array S = m/u — m/ logm to select set of w

1 bits out of n.

So the total space for the p array is: B(w,n) +m/logm

Space Usage, 4: The Tables

w =0 rank(i) w = 1 rank;(i) w =2 ranks(i) w =3 ranks(i)
000 | 000 001 | 001 011 | 012 111 | 123
010 | 011 110 | 122
100 | 111 101 | 112

The tables are tiny:

The rank vector is u-long, and
each entry is O(log w)

|

~

o
o9

~
] =
N\
S
N—

for every weight, we
this have many entries

= u2" logu
= O ((logn)(loglogn)(logn))
= 0 (log2 n log log n)

Summary: Space Usage

Thm. The RRR data structure takes O(B(w,n) + m log log m / log m) space.

So: how do we solve ranki(S, 1)?

rankl(S, i)

1. Find the block = = |7/u] that i is in.
2. rank+(S, i) = pretixSum(x) + T[w][i — xu]

/ N

compute in constant The rank table
time for weight wy

The
appropriate bit
in the x™ block.

Each step takes constant time, so the entire rank computation takes
O(1) time.

Summary

® (Can store bit vector in minimum space
(B(w,m)) + O(m log log m / log m)

® Despite using asymptotically less space than
the naive representation, you can answer:

- rank

- select

- access

queries In constant time

