Indexable Compressed Bitvectors 02-714

Slides by Carl Kingsford

Ramen, Ramen, Rao. Succinct Indexable Dictionaries with Applications to Encoding k-ary Trees, Prefix Sums and Multisets, SODA 2002: 233-242

Operations on bit vectors

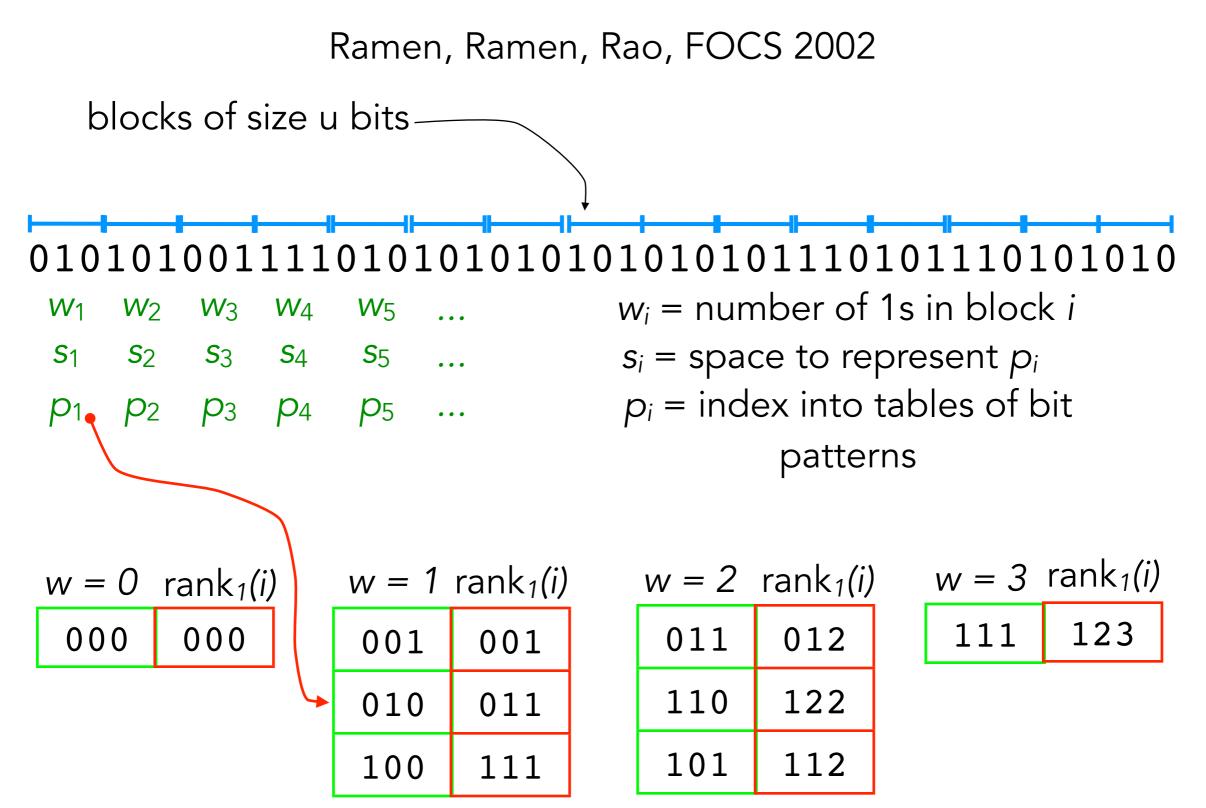
- $rank_1(S,i) :=$ the number of 1 bits at or before position *i* in *S*.
- select₁(S,j) := the position of the jth 1 bit in S.
- $rank_0(S,i)$ and $select_0(S,j)$ are defined analogously.

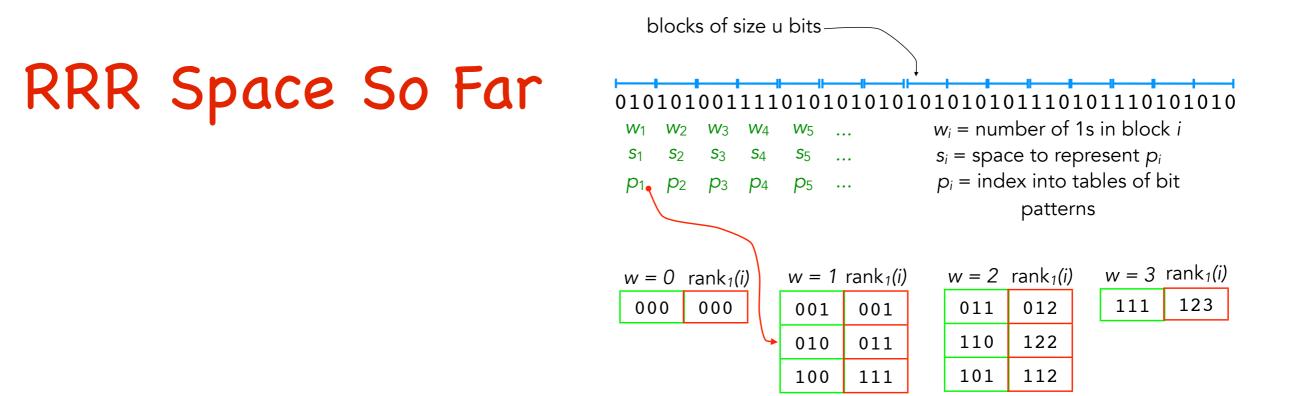
$$S[i] =$$
"access bit i" = rank₁(S, i) - rank₁(S, i - 1)

Note: rank₁(S, select₁(S, j)) = j, so rank and select are inverses of each other.

Goal: rank and select in O(1) time while using small space.

RRR





Each w_i is $\leq u$, so can be represented in $|\log u|$ bits. Each p_i is an index into a table with $\binom{u}{w_i}$ entries, so can be represented with $\left\lceil \log \binom{u}{w_i} \right\rceil$ bits.

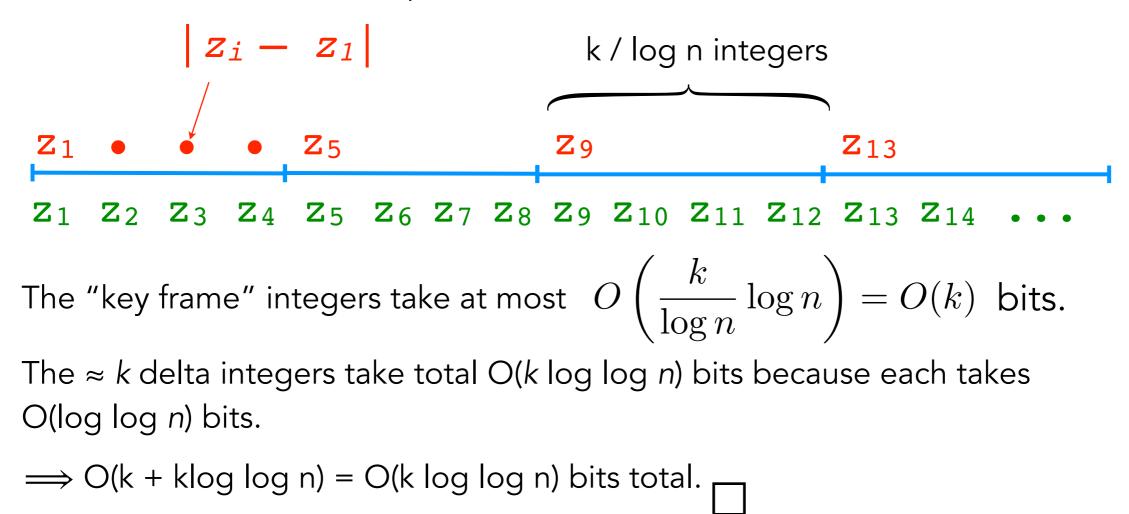
Each s_i is $\leq u$, so can be represented in $\lceil \log u \rceil$ bits.

Tables contain 2^u entries. The rank vectors in table w = k are of size $u \log k$

Prefix Sum Data Structure

Thm (Tarjan & Yao; Pagh; simplified). Let $z_1, ..., z_k$ be integers such that $|z_i| = n^{O(1)}$ and $|z_i - z_{i-1}| = O(\log n)$, then the list $z_1, ..., z_k$ can be represented in $O(k \log \log n)$ bits allowing for constant access.

Proof. Use the following representation:



Prefix Sum Data Structure, 2

Thm (Tarjan & Yao; Pagh; simplified). Let $z_1, ..., z_k$ be integers such that $|z_i| = n^{O(1)}$ and $|z_i - z_{i-1}| = O(\log n)$, then the list $z_1, ..., z_k$ can be represented in $O(k \log \log n)$ bits allowing for constant access.

 f_1 f_2 f_3 f_4 f_5 ... f_i = number of 1s up through the end of block *i*

Condition 1: $f_i \leq n$

Condition 2: $|f_{i+1} - f_i| = O(\log n)$ if $u = O(\log n)$

 $\implies k = n / u = n / \log n$

 \implies prefix sums can be represented in (*n* / log *n*) log log *n* bits.

Summary: Prefix Sum Data Structure

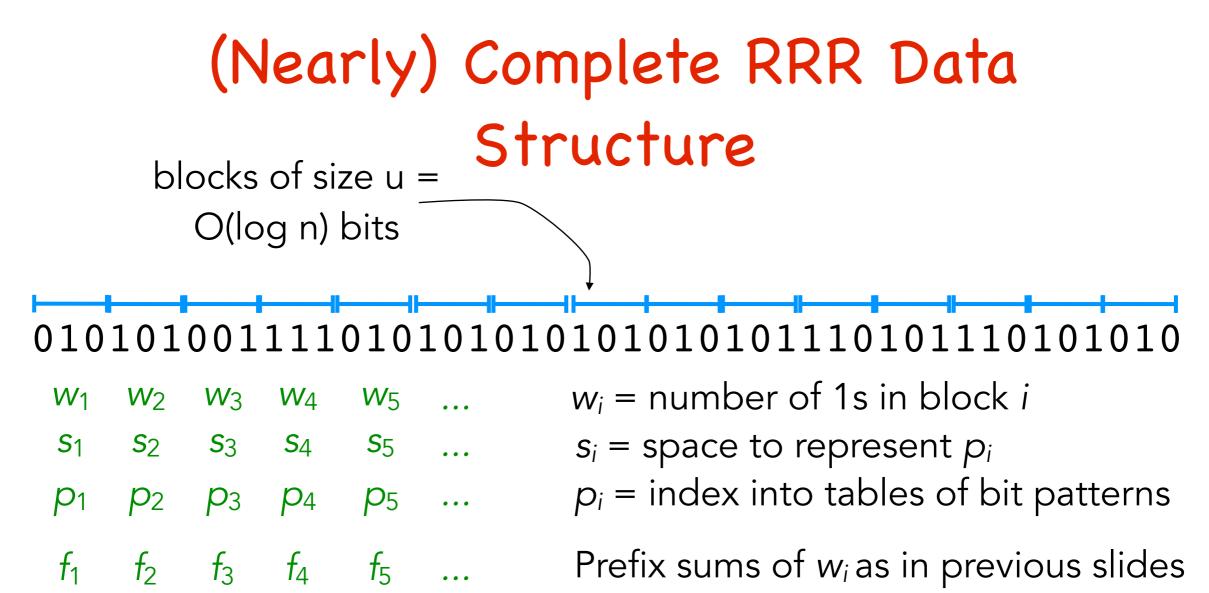
Thm. The prefix-sum data structure used in RRR takes O((*n* / log *n*) log log *n*) space. It can answer prefix-sum queries in constant time.

Proof: To answer a prefixSum(*x*) query:

1. find the z_i that is just before index x.

2. return z_i + the $z_x - z_i$ that is stored at position x.

Each step takes O(1) time.



Prefix sums of s_i as in previous slides

 $w = 0 \text{ rank}_1(i)$ 000 000

q₂

 q_1

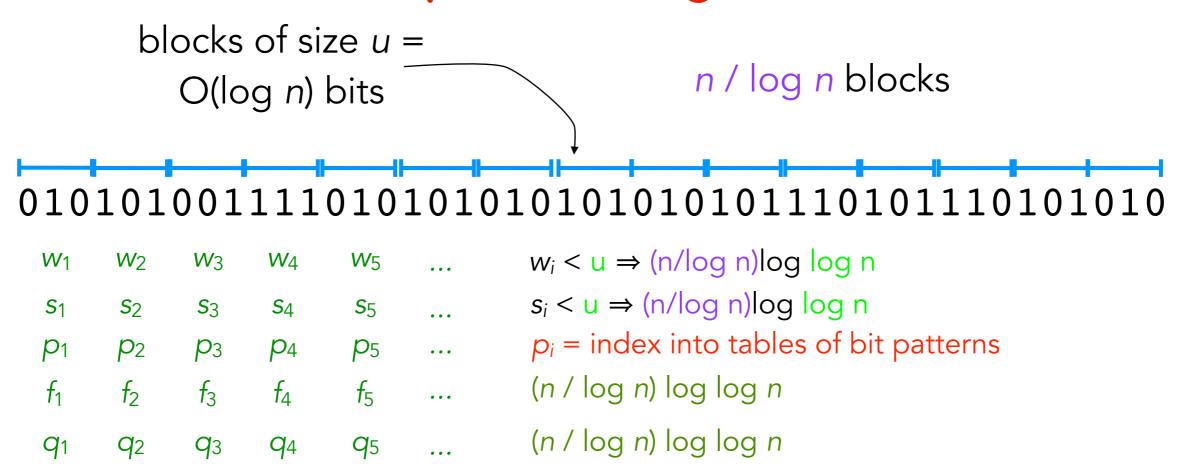
 q_3

q4

q5

$w = 1 \operatorname{rank}_1(i)$				
001	001			
010	011			
100	111			

Space Usage, 1



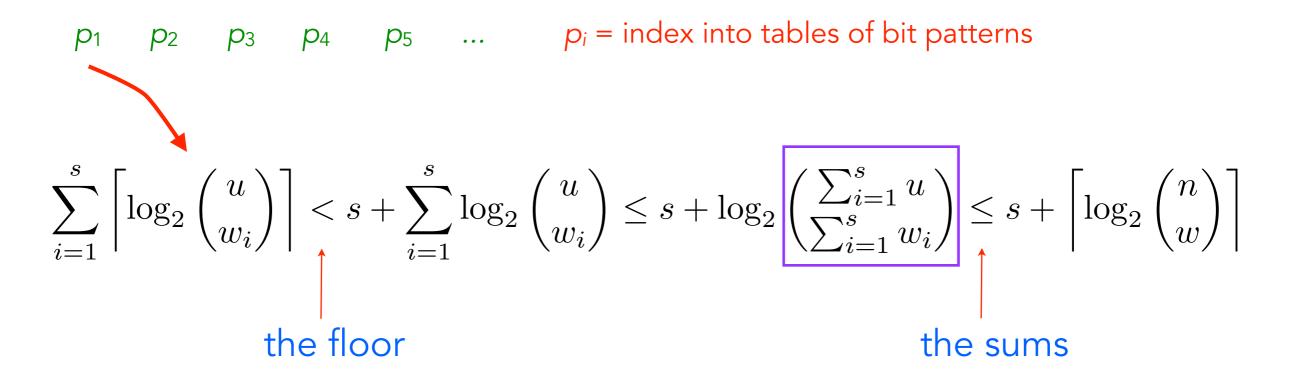
 $w_i < u$ because there are at most u 1s in a block of size u.

Let
$$B(w_i, u) = \left\lceil \log_2 \begin{pmatrix} u \\ w_i \end{pmatrix} \right\rceil = # \text{ of bits needed to select a subset}$$

of w_i elements from a universe of u elements.

 $s_i = B(w_i, u) < u$ b/c the plain u-long bit vector could store the subset.

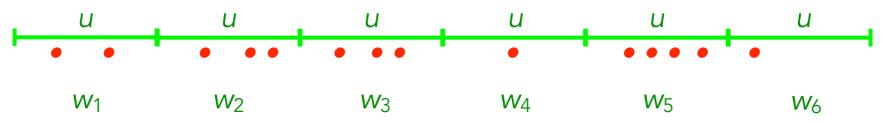
Space Usage, 2



Space Usage, 2

 $p_{1} \quad p_{2} \quad p_{3} \quad p_{4} \quad p_{5} \quad \dots \quad p_{i} = \text{ index into tables of bit patterns}$ $\sum_{i=1}^{s} \left\lceil \log_{2} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \right\rceil < s + \sum_{i=1}^{s} \log_{2} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \leq s + \log_{2} \left(\sum_{i=1}^{s} u \\ \sum_{i=1}^{s} w_{i} \right) \right\rceil \leq s + \left\lceil \log_{2} \begin{pmatrix} n \\ w \end{pmatrix} \right\rceil$ $\text{the floor} \quad \sum_{i=1}^{s} \log \begin{pmatrix} u \\ w_{i} \end{pmatrix} = \log \prod_{i=1}^{s} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \quad \text{the sums}$ $\prod \leq \prod$

- = # of ways to pick $\sum w_i$ objects from this line
- = # of ways to pick $\sum w_i$ objects from this line where we take w_i from segment *i*



Space Usage, 3

 $p_{1} \quad p_{2} \quad p_{3} \quad p_{4} \quad p_{5} \quad \dots \quad p_{i} = \text{index into tables of bit patterns}$ $\sum_{i=1}^{s} \left\lceil \log_{2} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \right\rceil < s + \sum_{i=1}^{s} \log_{2} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \le s + \log_{2} \left(\sum_{i=1}^{s} u \\ \sum_{i=1}^{s} w_{i} \right) \le s + \left\lceil \log_{2} \begin{pmatrix} n \\ w \end{pmatrix} \right\rceil$ $p_{i} = i \text{ dex into tables of bit patterns}$ $\sum_{i=1}^{s} \left\lceil \log_{2} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \right\rceil < s + \sum_{i=1}^{s} \log_{2} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \le s + \log_{2} \left(\sum_{i=1}^{s} u \\ \sum_{i=1}^{s} w_{i} \end{pmatrix} \le s + \left\lceil \log_{2} \begin{pmatrix} n \\ w \end{pmatrix} \right\rceil$ $p_{i} = i \text{ dex into tables of bit patterns}$ $\sum_{i=1}^{s} \left\lceil \log_{2} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \right\rceil < s + \sum_{i=1}^{s} \log_{2} \begin{pmatrix} u \\ w_{i} \end{pmatrix} \le s + \log_{2} \left(\sum_{i=1}^{s} u \\ \sum_{i=1}^{s} w_{i} \end{pmatrix} \le s + \left\lceil \log_{2} \begin{pmatrix} n \\ w \end{pmatrix} \right\rceil$ $p_{i} = i \text{ dex into tables of bit patterns}$ $p_{i} = i \text{ dex into tables of bit patte$

So the total space for the *p* array is: $B(w, n) + m/\log m$

Space Usage, 4: The Tables

w = 0 rank₁(i) 000 000

$w = 1 \operatorname{rank}_1(i)$				
001	001			
010	011			
100	111			

w = 2	rank1(i)	w = 3	rank ₁ (i)
011	012	111	123
110	122		
101	112		

The tables are tiny:

The rank vector is *u*-long, and each entry is O(log *w*)

$$\sum_{w=0}^{u} \binom{u}{w} u \log w \le u \sum_{w=0}^{u} \binom{u}{w} \log u$$

$$= u \log u \sum_{w=0}^{u} \binom{u}{w}$$
for every weight, we this have many entries
$$= u 2^{u} \log u$$

$$= O\left((\log n)(\log \log n)(\log n)\right)$$

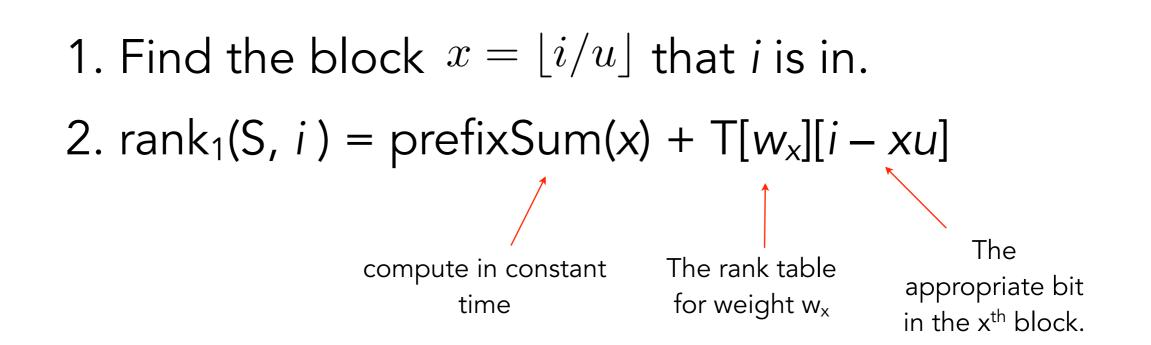
$$= O\left(\log^{2} n \log \log n\right)$$

Summary: Space Usage

Thm. The RRR data structure takes $O(B(w,n) + m \log \log m / \log m)$ space.

So: how do we solve rank₁(S, i)?

rank₁(S, i)



Each step takes constant time, so the entire rank computation takes O(1) time.

Summary

- Can store bit vector in minimum space
 (B(w,m)) + O(m log log m / log m)
- Despite using asymptotically less space than the naive representation, you can answer:
 - rank
 - select
 - access

queries in constant time