
Indexable Compressed
Bitvectors

02-714
Slides by Carl Kingsford

Ramen, Ramen, Rao. Succinct Indexable Dictionaries with Applications to Encoding
k-ary Trees, Prefix Sums and Multisets, SODA 2002: 233-242

Operations on bit vectors

• rank1(S,i) := the number of 1 bits at or before position i in S.

• select1(S,j) := the position of the jth 1 bit in S.

• rank0(S,i) and select0(S,j) are defined analogously.

S[i] = “access bit i” = rank1(S, i) – rank1(S, i – 1)

Note: rank1(S, select1(S, j)) = j, so rank and select are inverses of
each other.

Goal: rank and select in O(1) time while using small space.

RRR
Ramen, Ramen, Rao, FOCS 2002

010101001111010101010101010101110101110101010

blocks of size u bits

wi = number of 1s in block iw1 w2 w3 w4 w5

001

010

100

011

110

101

111
w = 1 w = 2 w = 3

000

w = 0

p1 p2 p3 p4 p5 ...

...

pi = index into tables of bit
patterns

000 001

011

111

012

122

112

123
rank1(i) rank1(i) rank1(i) rank1(i)

s1 s2 s3 s4 s5 ... si = space to represent pi

RRR Space So Far 010101001111010101010101010101110101110101010

blocks of size u bits

wi = number of 1s in block iw1 w2 w3 w4 w5

001

010

100

011

110

101

111
w = 1 w = 2 w = 3

000
w = 0

p1 p2 p3 p4 p5 ...

...

pi = index into tables of bit
patterns

000 001

011

111

012

122

112

123
rank1(i) rank1(i) rank1(i) rank1(i)

s1 s2 s3 s4 s5 ... si = space to represent pi

Each wi is ≤ u, so can be represented in bits.

Each pi is an index into a table with entries, so can be

represented with bits.

dlog ue
✓
u

wi

◆

⇠
log

✓
u

wi

◆⇡

Tables contain 2u entries. The rank vectors in table w = k are of
size ulog k

Each si is ≤ u, so can be represented in bits.dlog ue

Prefix Sum Data Structure

Thm (Tarjan & Yao; Pagh; simplified). Let z1, ..., zk be integers such
that |zi| = nO(1) and |zi – zi-1| = O(log n), then the list z1, ..., zk can be
represented in O(k log log n) bits allowing for constant access.

Proof. Use the following representation:

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 ...

z1 z5 z9 z13

|zi – z1|

• • •

The “key frame” integers take at most O

✓
k

log n
log n

◆
= O(k)

The “key frame” integers take at most

bits.

The ≈ k delta integers take total O(k log log n) bits because each takes
O(log log n) bits.

⟹ O(k + klog log n) = O(k log log n) bits total.

k / log n integers

Prefix Sum Data Structure, 2
Thm (Tarjan & Yao; Pagh; simplified). Let z1, ..., zk be integers such that |zi| =
nO(1) and |zi – zi-1| = O(log n), then the list z1, ..., zk can be represented in O(k
log log n) bits allowing for constant access.

The “key frame” integers take at most

010101001111010101010101010101110101110101010

f1 f2 f3 f4 f5 ... fi = number of 1s up through
the end of block i

Condition 1: fi ≤ n

Condition 2: |fi+1 – fi| = O(log n) if u = O(log n)

⟹ k = n / u = n / log n

⟹ prefix sums can be represented in (n / log n) log log n bits.

Summary: Prefix Sum Data Structure

Thm. The prefix-sum data structure used in RRR takes O((n / log n)
log log n) space. It can answer prefix-sum queries in constant time.

Proof: To answer a prefixSum(x) query:

1. find the zi that is just before index x.

2. return zi + the zx – zi that is stored at position x.

Each step takes O(1) time.

(Nearly) Complete RRR Data
Structure

010101001111010101010101010101110101110101010

blocks of size u =
O(log n) bits

wi = number of 1s in block iw1 w2 w3 w4 w5

001

010

100

011

110

101

111
w = 1 w = 2 w = 3

000

w = 0

p1 p2 p3 p4 p5 ...

...

pi = index into tables of bit patterns

000 001

011

111

012

122

112

123
rank1(i) rank1(i) rank1(i) rank1(i)

s1 s2 s3 s4 s5 ... si = space to represent pi

f1 f2 f3 f4 f5 Prefix sums of wi as in previous slides

Prefix sums of si as in previous slidesq1 q2 q3 q4 q5

...

...

Space Usage, 1

010101001111010101010101010101110101110101010

blocks of size u =
O(log n) bits

wi < u ⇒ (n/log n)log log nw1 w2 w3 w4 w5

p1 p2 p3 p4 p5 ...

...

pi = index into tables of bit patterns
s1 s2 s3 s4 s5 ... si < u ⇒ (n/log n)log log n

f1 f2 f3 f4 f5 (n / log n) log log n

(n / log n) log log nq1 q2 q3 q4 q5

...

...

n / log n blocks

wi < u because there are at most u 1s in a block of size u.

Let

si = B(wi, u) < u b/c the plain u-long bit vector could store the subset.

= # of bits needed to select a subset
of wi elements from a universe of u
elements.

B(wi, u) =

⇠
log2

✓
u

wi

◆⇡

Space Usage, 2

the floor

p1 p2 p3 p4 p5 ... pi = index into tables of bit patterns

sX

i=1

⇠
log2

✓
u

wi

◆⇡
< s+

sX

i=1

log2

✓
u

wi

◆
 s+ log2

✓Ps
i=1 uPs
i=1 wi

◆
 s+

⇠
log2

✓
n

w

◆⇡

the sums

Space Usage, 2

the floor

p1 p2 p3 p4 p5 ... pi = index into tables of bit patterns

sX

i=1

⇠
log2

✓
u

wi

◆⇡
< s+

sX

i=1

log2

✓
u

wi

◆
 s+ log2

✓Ps
i=1 uPs
i=1 wi

◆
 s+

⇠
log2

✓
n

w

◆⇡

the sums

u u u u u u

w1 w2 w3 w4 w5 w6

• • • • • • • • • • • • • •

sX

i=1

log

✓
u

wi

◆
= log

sY

i=1

✓
u

wi

◆

= # of ways to pick ∑wi objects from this line

= # of ways to pick ∑wi objects from this line where we take wi from
segment i

≤

Space Usage, 3
p1 p2 p3 p4 p5 ... pi = index into tables of bit patterns

sX

i=1

⇠
log2

✓
u

wi

◆⇡
< s+

sX

i=1

log2

✓
u

wi

◆
 s+ log2

✓Ps
i=1 uPs
i=1 wi

◆
 s+

⇠
log2

✓
n

w

◆⇡

space to
store p array

minimum space
to select set of w
1 bits out of n.

s = m/u = m/ logm

B(w, n) +m/ logmSo the total space for the p array is:

Space Usage, 4: The Tables

001

010

100

011

110

101

111
w = 1 w = 2 w = 3

000
w = 0

000 001

011

111

012

122

112

123
rank1(i) rank1(i) rank1(i) rank1(i)

The tables are tiny:

uX

w=0

✓
u

w

◆
u logw  u

uX

w=0

✓
u

w

◆
log u

= u log u

uX

w=0

✓
u

w

◆

= u2u log u

= O ((log n)(log log n)(log n))

= O
�
log

2 n log log n
�

for every weight, we
this have many entries

The rank vector is u-long, and
each entry is O(log w)

Summary: Space Usage

Thm. The RRR data structure takes O(B(w,n) + m log log m / log m) space.

So: how do we solve rank1(S, i)?

rank1(S, i)

1. Find the block that i is in.

2. rank1(S, i) = prefixSum(x) + T[wx][i – xu]

x = bi/uc

compute in constant
time

The rank table
for weight wx

The
appropriate bit
in the xth block.

Each step takes constant time, so the entire rank computation takes
O(1) time.

Summary

• Can store bit vector in minimum space
(B(w,m)) + O(m log log m / log m)

• Despite using asymptotically less space than
the naive representation, you can answer:

- rank
- select
- access
queries in constant time

