Grammar-Based Compression
Slides by Carl Kingsford



Context-free Grammars

Def. A context-free grammar is a collection of rules of the form:
A = X1XoX3... Xk

where Xi1x2x3...xx are either terminal symbols (letters in the

alphabet ) or symbols that appear on the left-hand side of some

rule.
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Re-Pair Off-line Compression
Algorithm

Larsson and Moffat, Off-Line Dictionary-Based Compression,
Proceedings of the IEEE, 88(11):1722-1732 (2000).



Re-Pair Algorithm Schema

. Find the pair ab that occurs most frequently in the current

message.

. Replace all occurrences of ab with a new symbol A
A — ab: ababcab — AACA
A — aa: aaaacaa — AACA

. Add the rule A = ab to the grammar.
. Repeat until no pair occurs > 1 time.

. Zero-order compress (e.g. Huffman) the resulting string
. Encode and transmit the grammar



Pair

Example
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singing.do.wah.diddy.diddy.dum.diddy.do
singingAo.wahAiddyAiddyAumAiddyAo
singingAo.wahAiByAiByAumAiByAo
singingAo.wahCByCByAumCByAo
singingAo.wahCDCDAumCDAo
singingAo.wahEEAumEAo
sFgFgAo.wahEEAumEAo

sFgFgG.wahEEAumEG

sHHG . wahEEAumEG



Implementation Details

Array of three-word (pointer, symbol, pointer) triples

i [T [T

I I y a L
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? ? 1 This bin
includes pairs
2 I ! > 6 26 < that occur > /n

Priority queue times. Hash table

Replace(ab,A): (Larsson & Moffat)

1. Find next occurrence of xaby (using hash and linked list of symbols)

2. Replace ab with A

3. Decrement counts of xa and by (moving entry lower in queue)

4. Increment counts of XA and Ay (moving entry higher in queue, creating them the first time)



Running Time

Finding the most frequent pair:

« walk down the last list in the priority queue in time O(y/n) and find the
most frequent pair. (Why is it O(:/n) time to read the last list?)

e that pair will result in at least O(+/n) replacements. \Why?

Each operation of Replace(ab,A) takes O(1) time, so each replace
happens in constant time.

For a sequence of length n there can be at most O(n) replacements.
Why?

Total time to build the grammar = O(n).



Every item on the list

Running Tlme occurs > 4/n times, so

there can be at most \/n
such times.

Finding the most frequent pair:

« walk down the last list in the priority queue in time ©(+/n) and find the
most frequent pair. (Why is it O(:/n) time to read the last list?)

 that pair will result in at least O(:/n) replacements. Why?

Each operation of Replace(ab,A) takes O(1) time, so each replace
happens in constant time.

For a sequence of length n there can be at most O(n) replacements.
Why?

Total time to build the grammar = O(n).



Every item on the list

Running T|m€ occurs > 4/n times, so

there can be at most y/n
such times.

Finding the most frequent pair:

« walk down the last list in the priority queue in time ©(+/n) and find the
most frequent pair. (Why is it O(:/n) time to read the last list?)

 that pair will result in at least O(:/n) replacements. Why?

Each operation of Replace(ab,A) takes O(1) time, so each replace
happens in constant time.

For a sequence of length n there can be at most O(n) replacements.
Why?

Each replacement reduces the

length of the sequence by 1.

Total time to build the grammar = O(n).



Encoding the Grammar (Dictionary)

Divide symbols into generations:

0 ko- 1
o: | (input alphabet)
A symbol A = XY is in the
Ko K1 -] lowest generation such
. that X and Y are in

previous generations
K1 Ko - 1
2 _ Ki:= # of symbols in generation </

ko ks - 1 Can equate a symbol in

3. _ generation i with a number

between k;-1 and ki1



Encoding Dictionary, Idea

Need to output a sequence of pairs (a1,b1), (az,b2),...

Note:
1. In generation j, the maximum value of any ajor b;is < k;.
2. In generation J, if ai < kj-2then b; > kj-». Why?
3. We can order the pairs in a generation in lexicographical
order

Encoding idea:
m a

Changes slowly, so M b yserules 1 and 2 above to figure
use A-like encoding ~m ¢ ) out the range of the second

n m = coordinate and use the minimum #
N of bits for that range.

N
O C



Re-Pair Timing

method encoding decoding
GZip -9 26.0 1.5
PPMD 41.2 41.7
Re-Pair 135.7 3.1

(Larsson & Moffat)

Decompression time very fast: not quite as good as
gzip, but much better than a context-based encoder.



Re-Pair Compression Performance

IN bits per character

file chi. stat. {tot. GZip PPMD
E.coli 0.11 1.98 2.09 2.24 1.99
bible.txt 0.29 147 1.76 2.33 1.58
world192.txt 0.31 1.31 1.62 2.33 1.92
average 1.83 2.30 1.70
WSJ20 0.29 1.68 1.98 2.91 1.72
T (Larsson & Moffat)
dictionary  string




Re-Pair Compression Performance

IN DItS per charz: Bigger than the simple
2-bit encoding!

GZip

file chi. stat. iqv. PPMD

E.coli 0.11 1.98 2.09 2.24 1.99
bible.txt 0.29 147 1.76 2.33 1.58
world192.txt 0.31 1.31 1.62 2.33 1.52‘
average 1.83 2.30 1.70
WSJ20 0.20 1.68 1.98 2.91 1.72

T (Larsson & Moffat)

dictionary  string



Sequitur

Nevill-Manning & Witten, The Computer Journal 40 (1997),
103-116.



Sequitur Invariants

* Online algorithm: reads string from left to right,
constructing a grammar, maintaining the following
invariants at each step:

 Digram uniqueness: no adjacent pair of symbols
appears > 1 time in the grammar.

e Rule utility: Every rule must be used at least
twice.



Sequitur Algorithm

for i = 1..|S]|:
append S[1] to rule S

Repeatedly replace digrams that
occur > once with their symbol

Repeatedly remove rules that occur
only once.



Sequitur Example

(From Cherniavsky & Ladner, 2004)

S = acgtcgacgt

S = acgtcg S — aAtA S — aAtAacg — S — aAtAaA
A — cg I A — cg A — cg
S — aAtAalA S — BtAB S — BtABt S — CAC
A — cg —p A—2cg —p A—cg —p A cg
B — aA B — aA B — aA
C — Bt
S = CAC
A — cg

C = aAt



Sequitur Example

(From Cherniavsky & Ladner, 2004)
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‘cg” appears twice

—

S = acg

S — aAtRaA
A — cg

S = CAC
A — cg
C = aAt

Sequitur Example

(From Cherniavsky & Ladner, 2004)

S = aAtA
A — cg

“‘aA” appears twice

—

S — BtAB

—p A~ cg
B — aA

S = acgtcgacgt

S = aAtAacqg
A — cg

S — BtABt

—p A2 cg
B — aA

S = aAtAaA
A — cg

S = CAC
A — cg
B — aA
C = Bt



Sequitur Example

(From Cherniavsky & Ladner, 2004)

S = acgtcgacgt

‘cg” appears twice

S — acgtcg S — aAtA S — aAtAacq — S — aAtAaA
A — cg I A — cg A — cg

“‘aA” appears twice

S — aAtAalA S — BtAB S — BtABt S — CAC
A — cg —p A—2cg —p A—cg —p A cg
B — aA B — aA B = aA

— Bt

S — CAC B appears only once
A — cg
C — aAt

on right hand sides




Encoding the Grammar

Rule S is transmitted left to right, with the following rules to handle non-
terminals (NT):

* The first time a NT is encountered, it's right-hand side is transmitted.

lts RHS is transmitted using

these same rules

 The second time a NT is encountered, the pair (/, /len) is transmitted
that gives an index into S and length that form the righthand side of
the NT.
e A this point, the decoder stores | = Sli.../+/en] as a rule
e jisthe next NT number.

* The third time a NT is encountered, a single number (j) is
transmitted referring to the rule created before.



Compression Performance

name description size compress  Qgzip SEQUITUR PPMC
' bib | bibliography 111261 | 3.35 251 | 248 212
' book1 fiction book . 768771 | 3.46 325 | 2.82 252
' book2  non-fiction book - 610856  3.28 270 | 2.46 2.28
| geo | geophysical data | 102400 | 6.08 5.34 | 4.74 5.01
news USENET 377109 | 3.86 306 | 2.85 277
' obji ' object code | 21504 | 5.23 384 | 3.88 3.68
' obj2 object code | 246814 | 417 263 | 268 2.59
' papert technical paper . 53161 | 3.77 279 | 2.89 2.48
' paper2 ' technical paper . 82199  3.52 289 | 287 2.46
' pic bilevel image 513216 | 0.97 082 | 0.90 10.98
: progc C program 39611  3.87 2,68 2.83 2.49
' prog| ' Lisp program . 71646 | 3.03 180  1.95 1.87
| progp | Pascal program | 49379 | 3.11 1.81 | 1.87 1.82
trans shell transcript 93695 . 3.27 1.61 1.69 175
average 3.64 269 2.64 249
L-systems | | 908670 038 007 | 001 0.32
" amino acids | | 1586289 | 4.52 408 | 3.28 354
Bible King James version 4047392 2.77 2.32 ’ 1.84 | 1.92

Table 1  Performance of various compression schemes (bits per character) (Nevill-Manning & Witten)



Grammars Useful for More Than
Compression

a |
| | | |
| | | | | | | | |
A Al A A A A A 1 ’l s
 InetheebeginningeGodecreatedetheeheaveneandetheeearth
b |
| | | | ] | | HE

ceAuecommencement,eDieuecréaelesecieuxeetelaeterre

C

‘OImiAnfanQOSchufOGottOdietl-limmelOundtdiQOErde

(Nevill-Manning & Witten)
Figure 4 Hierarchies for Genesis 1:1 in (a) English, (b) French, and (¢) German



DNASequitur

Cherniavsky and Ladner, Grammar-based Compression of DNA
Sequences, UW CSE Tech Report, 2004



Applying Sequitur to DNA

 Reverse complements accounted for: when xy seen, RC(xy) is implicitly seen.

e Several other ideas implemented as well.

Table 3: Comparison of symbol streams (bits/symbol), best in bold

Sequence Sequitur | Marker | LZ77-style | bzip2 | arith | DNACompress
HUMDYSTROP 2.34 2.20 2.20 2.18 | 1.95 1.91
HUMGHCSA 1.86 1.74 1.77 1.73 | 2.00 1.03
MIPACGA 2.16 2.10 2.10 2.12 | 1.88 1.86
MPOCPCG 2.13 2.07 2.07 2.12 | 1.87 1.67
VACCG 2.11 2.06 2.06 2.09 | 1.92 1.76

— g _
DNA Sequitur

 Baseline = 2 bits / symbol

 Grammar-based methods do not compress the file in these tests.




"Compressive Genomics”

Po-Ru Loh, Michael Baym, Bonnie Berger. Compressive genomics
allows computational analysis to keep pace with genomic data.
Nature Biotechnology 30(7):627-630, 2012.
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CaBLAST
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10-mer table to

seed alignments

10-mer

Posn

CaBLAST

Search: use BLAST to search guery against unigue sequences (use
a liberal cutoff for a “match”)

for every hit of sufficient quality, expand the sequences
contained it its bin and search them.

—

p——

‘unique”
sequences

~ /represented
S i asedit
i scripts

seqguences similar
to the unique
sequence



Building the CaBLAST database

end of last current
fragment pointer

l i

Use 10-mer at current position to find unigue sequences to search
If any unique sequence contains a match of > 300,
add the sequence between the two pointers to the database as follows:

new unique added to

et 1ALCNING DIN If 10,000 bases go by with no

/ ! match, create a new 10,000 base
100bp end of unigue seqguence bin.

overlap into  match
last fragment




Building the CaBLAST database

erclioklast
fragimient

I S —

Use 10-mer at current position to find unigue sequences to search
If any unique sequence contains a match of > 300,
add the sequence between the two pointers to the database as follows:

new unigque added to
ey Matching bin If 10,000 bases go by with no
7 f match, create a new 10,000 base
100bp end of unigque sequence bin.
overlap into  match
last fragment




Storing Edit Scripts
GTTCACTTATGTATTC——ATATGATTTTGGCAA

GTTCACG——-TGTATATTTATATAATTTTGGCAA

s = “substitute” / seqguence to insert /
| ="insert’ distance from last substitute

edit (in octal)

s6G——s10ATi2TTs6A

Deletions are substitutions with “-".
There are 16 possible characters: s,i1,A,C,G,T,N,-,0-7 — 4-bit encoding



CaBLAST Compression
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Figure S4: Performance of the Compressive BLAST preprocessing phase on simulated genera.
Databases consist of sets of 50 simulated genomes (at 5%, 10%, 15%, and 20% divergence)
generated with INDELIible v1.03 [3]. (LOh et al. 201 2)



CaBLAST Search Time
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Figure S2: Performance of Compressive BLAST on databases of four bacterial genera using a
single search set derived from the combined library of bacterial and yeast sequences. Param-
eters are the same (default) as in the primary manuscript. (a) Escherichia; (b) Salmonella; (c)

Yersinia; (d) Brucella.

(Loh et al, 2012)



CaBLAST Accuracy
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File size (megabytes)
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(Loh et al, 2012)
Database of 36 yeast genomes.



