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Context-free Grammars

Def. A context-free grammar is a collection of rules of the form: 
A → x1x2x3…xk 

where x1x2x3…xk are either terminal symbols (letters in the 
alphabet ∑) or symbols that appear on the left-hand side of some 
rule.

S ! ABC!
A ! xxDz!
B ! ww!
C ! aAa!
D ! zB

S ! xxDzwwaAa

S ! xxzBzwwaxxDza
S ! xxzwwzwwaxxzBza
S ! xxzwwzwwaxxzwwza
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Re-Pair Off-line Compression 
Algorithm

Larsson and Moffat, Off-Line Dictionary-Based Compression, 
Proceedings of the IEEE, 88(11):1722-1732 (2000).



Re-Pair Algorithm Schema

1. Find the pair ab that occurs most frequently in the current 
message. 

2. Replace all occurrences of ab with a new symbol A 

3. Add the rule A → ab to the grammar. 
4. Repeat until no pair occurs > 1 time.

A → ab:    ababcab → AAcA 
A → aa:   aaaacaa → AAcA

5. Zero-order compress (e.g. Huffman) the resulting string 
6. Encode and transmit the grammar



Example



Implementation Details

Replace(ab,A): 
1. Find next occurrence of xaby (using hash and linked list of symbols) 
2. Replace ab with A 
3. Decrement counts of xa and by (moving entry lower in queue) 
4. Increment counts of xA and Ay (moving entry higher in queue, creating them the first time)

(Larsson & Moffat)

This bin 
includes pairs 

that occur > √n 
times.



Running Time

• Finding the most frequent pair: !
• walk down the last list in the priority queue in time O(√n) and find the 

most frequent pair. (Why is it O(√n) time to read the last list?) 
• that pair will result in at least O(√n) replacements. Why? 

• Each operation of Replace(ab,A) takes O(1) time, so each replace 
happens in constant time. 

• For a sequence of length n there can be at most O(n) replacements. 
Why? 

• Total time to build the grammar = O(n).
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Why? 

• Total time to build the grammar = O(n).

Every item on the list 
occurs ≥ √n times, so 

there can be at most √n 
such times.

Each replacement reduces the 
length of the sequence by 1.



Encoding the Grammar (Dictionary)
Divide symbols into generations:

0:

1:

2:

3:

(input alphabet)
0 k0 - 1

k0 k1 - 1

k1 k2 - 1

k3 - 1k2 

A symbol A → XY is in the 
lowest generation such 
that X and Y are in 
previous generations 

ki := # of symbols in generation ≤ i

Can equate a symbol in 
generation i with a number 
between ki -1 and ki-1 



Encoding Dictionary, Idea

Need to output a sequence of pairs (a1,b1), (a2,b2),…

Note: 
1. In generation j, the maximum value of any ai or bi is ≤ kj. 
2. In generation j, if ai ≤ kj - 2 then bj ≥ kj - 2. Why? 
3. We can order the pairs in a generation in lexicographical 
order

Encoding idea:
m a 
m b 
m g  
n m 
n n 
o c

Changes slowly, so 
use Δ-like encoding

Use rules 1 and 2 above to figure 
out the range of the second 
coordinate and use the minimum # 
of bits for that range.



Re-Pair Timing

Decompression time very fast: not quite as good as 
gzip, but much better than a context-based encoder.

(Larsson & Moffat)



Re-Pair Compression Performance

dictionary string

in bits per character

(Larsson & Moffat)



Re-Pair Compression Performance

dictionary string

in bits per character

(Larsson & Moffat)

Bigger than the simple 
2-bit encoding!



Sequitur
Nevill-Manning & Witten, The Computer Journal 40 (1997), 

103-116.



Sequitur Invariants

• Online algorithm: reads string from left to right, 
constructing a grammar, maintaining the following 
invariants at each step: 

• Digram uniqueness: no adjacent pair of symbols 
appears > 1 time in the grammar. 

• Rule utility: Every rule must be used at least 
twice.



Sequitur Algorithm

for i = 1…|S|:!
! append S[i] to rule S!
! !
! Repeatedly replace digrams that  
! occur > once with their symbol!
!
! Repeatedly remove rules that occur  
! only once.



Sequitur Example
(From Cherniavsky & Ladner, 2004)
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B appears only once 
on right hand sides



Encoding the Grammar
Rule S is transmitted left to right, with the following rules to handle non-
terminals (NT): 

• The first time a NT is encountered, it’s right-hand side is transmitted.

• The second time a NT is encountered, the pair (i, len) is transmitted 
that gives an index into S and length that form the righthand side of 
the NT. 
• A this point, the decoder stores j → S[i…i+len] as a rule 
• j is the next NT number. 

• The third time a NT is encountered, a single number (j) is 
transmitted referring to the rule created before.

Its RHS is transmitted using 
these same rules



Compression Performance

(Nevill-Manning & Witten)



Grammars Useful for More Than 
Compression

(Nevill-Manning & Witten)



DNASequitur
Cherniavsky and Ladner, Grammar-based Compression of DNA 

Sequences, UW CSE Tech Report, 2004



Applying Sequitur to DNA
• Reverse complements accounted for: when xy seen, RC(xy) is implicitly seen. 

• Several other ideas implemented as well.

DNA Sequitur

• Baseline = 2 bits / symbol 

• Grammar-based methods do not compress the file in these tests.



“Compressive Genomics”
Po-Ru Loh, Michael Baym, Bonnie Berger. Compressive genomics 

allows computational analysis to keep pace with genomic data. 
Nature Biotechnology 30(7):627-630, 2012.
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CaBLAST

10-mer Posn

10-mer table to 
seed alignments

“unique” 
sequences

sequences similar 
to the unique 

sequence

represented 
as edit 
scripts

Search: use BLAST to search query against unique sequences (use 
a liberal cutoff for a “match”)

for every hit of sufficient quality, expand the sequences 
contained it its bin and search them.



Building the CaBLAST database
end of last 
fragment

current 
pointer

Use 10-mer at current position to find unique sequences to search 
If any unique sequence contains a match of ≥ 300,  
 add the sequence between the two pointers to the database as follows:

end of 
match

100bp 
overlap into 

last fragment

new unique 
sequence

added to 
matching bin If 10,000 bases go by with no 

match, create a new 10,000 base 
unique sequence bin.
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Storing Edit Scripts

s = “substitute” 
i = “insert”

CnnnSSSSS

distance from last 
edit (in octal)

sequence to insert / 
substitute

Deletions are substitutions with “-“. 
There are 16 possible characters: s,i,A,C,G,T,N,-,0-7  → 4-bit encoding



CaBLAST Compression

(Loh et al, 2012)



CaBLAST Search Time

(Loh et al, 2012)



CaBLAST Accuracy

Varied identity threshold 
required for a match 
during compression 

(Loh et al, 2012)



More CaBLAST Performance

Database of 36 yeast genomes.
(Loh et al, 2012)


