
Grammar-Based Compression
Slides by Carl Kingsford

Context-free Grammars

Def. A context-free grammar is a collection of rules of the form:
A → x1x2x3…xk

where x1x2x3…xk are either terminal symbols (letters in the
alphabet ∑) or symbols that appear on the left-hand side of some
rule.

S ! ABC!
A ! xxDz!
B ! ww!
C ! aAa!
D ! zB

S ! xxDzwwaAa

S ! xxzBzwwaxxDza
S ! xxzwwzwwaxxzBza
S ! xxzwwzwwaxxzwwza

Ziv-Lempel as a Grammar

ilongest match to
the string

starting at i

Ziv-Lempel as a Grammar

ilongest match to
the string

starting at i

A

A →

Ziv-Lempel as a Grammar

ilongest match to
the string

starting at i

A

A → B
B →

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

7

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

7 9

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

7 9 17

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

7 9

11

17

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

7 9

11

17

15

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

7 9

11

17

15

12

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

7 9

11

17

15

12 14

Accessing S[i] in Compressed Grammar

SS → ABC

A → abBcde

B → ww

C → aaDaa

D → xBy A B C

ab B cde

ww

ww aa D aa

x B y

ww

17
7
2
8
4

Store length of
expansion of
each symbol S[13]

7 9

11

17

15

12 14

13

Re-Pair Off-line Compression
Algorithm

Larsson and Moffat, Off-Line Dictionary-Based Compression,
Proceedings of the IEEE, 88(11):1722-1732 (2000).

Re-Pair Algorithm Schema

1. Find the pair ab that occurs most frequently in the current
message.

2. Replace all occurrences of ab with a new symbol A

3. Add the rule A → ab to the grammar.
4. Repeat until no pair occurs > 1 time.

A → ab: ababcab → AAcA
A → aa: aaaacaa → AAcA

5. Zero-order compress (e.g. Huffman) the resulting string
6. Encode and transmit the grammar

Example

Implementation Details

Replace(ab,A):
1. Find next occurrence of xaby (using hash and linked list of symbols)
2. Replace ab with A
3. Decrement counts of xa and by (moving entry lower in queue)
4. Increment counts of xA and Ay (moving entry higher in queue, creating them the first time)

(Larsson & Moffat)

This bin
includes pairs

that occur > √n
times.

Running Time

• Finding the most frequent pair: !
• walk down the last list in the priority queue in time O(√n) and find the

most frequent pair. (Why is it O(√n) time to read the last list?)
• that pair will result in at least O(√n) replacements. Why?

• Each operation of Replace(ab,A) takes O(1) time, so each replace
happens in constant time.

• For a sequence of length n there can be at most O(n) replacements.
Why?

• Total time to build the grammar = O(n).

Running Time

• Finding the most frequent pair: !
• walk down the last list in the priority queue in time O(√n) and find the

most frequent pair. (Why is it O(√n) time to read the last list?)
• that pair will result in at least O(√n) replacements. Why?

• Each operation of Replace(ab,A) takes O(1) time, so each replace
happens in constant time.

• For a sequence of length n there can be at most O(n) replacements.
Why?

• Total time to build the grammar = O(n).

Every item on the list
occurs ≥ √n times, so

there can be at most √n
such times.

Running Time

• Finding the most frequent pair: !
• walk down the last list in the priority queue in time O(√n) and find the

most frequent pair. (Why is it O(√n) time to read the last list?)
• that pair will result in at least O(√n) replacements. Why?

• Each operation of Replace(ab,A) takes O(1) time, so each replace
happens in constant time.

• For a sequence of length n there can be at most O(n) replacements.
Why?

• Total time to build the grammar = O(n).

Every item on the list
occurs ≥ √n times, so

there can be at most √n
such times.

Each replacement reduces the
length of the sequence by 1.

Encoding the Grammar (Dictionary)
Divide symbols into generations:

0:

1:

2:

3:

(input alphabet)
0 k0 - 1

k0 k1 - 1

k1 k2 - 1

k3 - 1k2

A symbol A → XY is in the
lowest generation such
that X and Y are in
previous generations

ki := # of symbols in generation ≤ i

Can equate a symbol in
generation i with a number
between ki -1 and ki-1

Encoding Dictionary, Idea

Need to output a sequence of pairs (a1,b1), (a2,b2),…

Note:
1. In generation j, the maximum value of any ai or bi is ≤ kj.
2. In generation j, if ai ≤ kj - 2 then bj ≥ kj - 2. Why?
3. We can order the pairs in a generation in lexicographical
order

Encoding idea:
m a
m b
m g
n m
n n
o c

Changes slowly, so
use Δ-like encoding

Use rules 1 and 2 above to figure
out the range of the second
coordinate and use the minimum #
of bits for that range.

Re-Pair Timing

Decompression time very fast: not quite as good as
gzip, but much better than a context-based encoder.

(Larsson & Moffat)

Re-Pair Compression Performance

dictionary string

in bits per character

(Larsson & Moffat)

Re-Pair Compression Performance

dictionary string

in bits per character

(Larsson & Moffat)

Bigger than the simple
2-bit encoding!

Sequitur
Nevill-Manning & Witten, The Computer Journal 40 (1997),

103-116.

Sequitur Invariants

• Online algorithm: reads string from left to right,
constructing a grammar, maintaining the following
invariants at each step:

• Digram uniqueness: no adjacent pair of symbols
appears > 1 time in the grammar.

• Rule utility: Every rule must be used at least
twice.

Sequitur Algorithm

for i = 1…|S|:!
! append S[i] to rule S!
! !
! Repeatedly replace digrams that  
! occur > once with their symbol!
!
! Repeatedly remove rules that occur  
! only once.

Sequitur Example
(From Cherniavsky & Ladner, 2004)

S = acgtcgacgt

S → acgtcg S → aAtA!
A → cg

S → aAtAacg!
A → cg

S → aAtAaA!
A → cg

S → aAtAaA!
A → cg

S → BtAB!
A → cg!
B → aA

S → BtABt!
A → cg!
B → aA

S → CAC!
A → cg!
B → aA!
C → Bt

S → CAC!
A → cg!
C → aAt

Sequitur Example
(From Cherniavsky & Ladner, 2004)

S = acgtcgacgt

S → acgtcg S → aAtA!
A → cg

S → aAtAacg!
A → cg

S → aAtAaA!
A → cg

S → aAtAaA!
A → cg

S → BtAB!
A → cg!
B → aA

S → BtABt!
A → cg!
B → aA

S → CAC!
A → cg!
B → aA!
C → Bt

S → CAC!
A → cg!
C → aAt

“cg” appears twice

Sequitur Example
(From Cherniavsky & Ladner, 2004)

S = acgtcgacgt

S → acgtcg S → aAtA!
A → cg

S → aAtAacg!
A → cg

S → aAtAaA!
A → cg

S → aAtAaA!
A → cg

S → BtAB!
A → cg!
B → aA

S → BtABt!
A → cg!
B → aA

S → CAC!
A → cg!
B → aA!
C → Bt

S → CAC!
A → cg!
C → aAt

“cg” appears twice

“aA” appears twice

Sequitur Example
(From Cherniavsky & Ladner, 2004)

S = acgtcgacgt

S → acgtcg S → aAtA!
A → cg

S → aAtAacg!
A → cg

S → aAtAaA!
A → cg

S → aAtAaA!
A → cg

S → BtAB!
A → cg!
B → aA

S → BtABt!
A → cg!
B → aA

S → CAC!
A → cg!
B → aA!
C → Bt

S → CAC!
A → cg!
C → aAt

“cg” appears twice

“aA” appears twice

B appears only once
on right hand sides

Encoding the Grammar
Rule S is transmitted left to right, with the following rules to handle non-
terminals (NT):

• The first time a NT is encountered, it’s right-hand side is transmitted.

• The second time a NT is encountered, the pair (i, len) is transmitted
that gives an index into S and length that form the righthand side of
the NT.
• A this point, the decoder stores j → S[i…i+len] as a rule
• j is the next NT number.

• The third time a NT is encountered, a single number (j) is
transmitted referring to the rule created before.

Its RHS is transmitted using
these same rules

Compression Performance

(Nevill-Manning & Witten)

Grammars Useful for More Than
Compression

(Nevill-Manning & Witten)

DNASequitur
Cherniavsky and Ladner, Grammar-based Compression of DNA

Sequences, UW CSE Tech Report, 2004

Applying Sequitur to DNA
• Reverse complements accounted for: when xy seen, RC(xy) is implicitly seen.

• Several other ideas implemented as well.

DNA Sequitur

• Baseline = 2 bits / symbol

• Grammar-based methods do not compress the file in these tests.

“Compressive Genomics”
Po-Ru Loh, Michael Baym, Bonnie Berger. Compressive genomics

allows computational analysis to keep pace with genomic data.
Nature Biotechnology 30(7):627-630, 2012.

CaBLAST

“unique”
sequences

sequences similar
to the unique

sequence

represented
as edit
scripts

CaBLAST

10-mer Posn

10-mer table to
seed alignments

“unique”
sequences

sequences similar
to the unique

sequence

represented
as edit
scripts

CaBLAST

10-mer Posn

10-mer table to
seed alignments

“unique”
sequences

sequences similar
to the unique

sequence

represented
as edit
scripts

Search: use BLAST to search query against unique sequences (use
a liberal cutoff for a “match”)

for every hit of sufficient quality, expand the sequences
contained it its bin and search them.

Building the CaBLAST database
end of last 
fragment

current 
pointer

Use 10-mer at current position to find unique sequences to search
If any unique sequence contains a match of ≥ 300,  
 add the sequence between the two pointers to the database as follows:

end of
match

100bp
overlap into

last fragment

new unique
sequence

added to
matching bin If 10,000 bases go by with no

match, create a new 10,000 base
unique sequence bin.

Building the CaBLAST database
end of last 
fragment
current 
pointer

Use 10-mer at current position to find unique sequences to search
If any unique sequence contains a match of ≥ 300,  
 add the sequence between the two pointers to the database as follows:

end of
match

100bp
overlap into

last fragment

new unique
sequence

added to
matching bin If 10,000 bases go by with no

match, create a new 10,000 base
unique sequence bin.

Storing Edit Scripts

s = “substitute”
i = “insert”

CnnnSSSSS

distance from last
edit (in octal)

sequence to insert /
substitute

Deletions are substitutions with “-“.
There are 16 possible characters: s,i,A,C,G,T,N,-,0-7 → 4-bit encoding

CaBLAST Compression

(Loh et al, 2012)

CaBLAST Search Time

(Loh et al, 2012)

CaBLAST Accuracy

Varied identity threshold
required for a match
during compression

(Loh et al, 2012)

More CaBLAST Performance

Database of 36 yeast genomes.
(Loh et al, 2012)

