Read Mapping Slides by Carl Kingsford

Bowtie

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg, Genome Biology 2009, 10:R25

Bowtie Features

- Extends basic BWT search to handle mismatches
 - Will find an exact match if it exists.
 - Might not find the best inexact match
- Two innovations:
 - quality-aware backtracking
 - double indexing

SOAP-like Policy (-v N)

Don't allow more than N mismatches. $N \in \{0, 1, 2, 3\}$

Repeat this until you hit 175 backtracks, or you find K matches (K is a parameter).

SOAP-like Policy (-v N)

Don't allow more than N mismatches.

 $N \in \{0, 1, 2, 3\}$

Repeat this until you hit 175 backtracks, or you find K matches (K is a parameter).

Using Forward and Mirror Index

Use a BWT of both forward and reverse of string:

If mutation in first half of read, then the forward index can walk at least [read] / 2 before backtracking.

If mutation in second half of read, then the second index can walk at least [read] / 2 before backtracking.

Try both the forward and reverse indexes; will avoid a lot of backtracking because you will have narrowed the BWT range a lot by the time you start backtracking.

Maq-like (default) Approach

Up to N mismatches allowed in "seed", which is prefix of the read

3 Phases

4 possible cases for distribution of 0-2 mutations within the seed:

Same backtracking scheme used to handle mismatches

phase 3b (using mirror index)

Bowtie Performance

	Platform	CPU time	Wall clock time	Reads mapped per hour (millions)	Peak virtual memory footprint (megabytes)	Bowtie speed-up	Reads aligned (%)
Bowtie -v 2	Server	15 m 7 s	15 m 41 s	33.8	1,149	-	67.4
SOAP		91 h 57 m 35 s	91 h 47 m 46 s	0.10	13,619	351×	67.3
Bowtie	PC	16 m 41 s	17 m 57 s	29.5	1,353	-	71.9
Maq		17 h 46 m 35 s	17 h 53 m 7 s	0.49	804	59.8×	74.7
Bowtie	Server	17 m 58 s	18 m 26 s	28.8	1,353	-	71.9
Maq		32 h 56 m 53 s	32 h 58 m 39 s	0.27	804	107×	74.7

Bowtie 2

Features

- Supports gapped alignment
- Uses bi-directional BWT instead of two separate BWTs
- Supports paired-end alignment
 - Align one end as normal
 - Find the window where the other end could go
 - Do dynamic programming alignment step to align the other end of the pair within this window

priority of row $i = 1/r_i^2$, where r_i is the # of sequences in the range containing row i.

Bi-directional BWT

Thm. Given range(Q), reverseRange(Q), can find in $O(|\Sigma|)$ -time:

- range(Qc)
- range(cQ) ← easy (this is the standard BWT search)
- reverseRange(cQ)
- reverseRange(Qc)

`easy (this is the standard BWT search applied to the reverse string)

reverseRange(dQ) with 1 BWT LF step

Accuracy Results

TopHat

Cole Trapnell, Lior Pachter and Steven L. Salzberg[.] TopHat: discovering splice junctions with RNA-Seq. Bioinformatics (2009) 25 (9): 1105-1111.

TopHat Approach

