Read Mapping
Slides by Carl Kingsford

Bowtie

Ultrafast and memory-efficient alignment of short DNA sequences to the

human genome
Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg, Genome Biology 2009, 10:R25

Bowtie Features

* Extends basic BWT search to handle mismatches
* Wil find an exact match if it exists.
* Might not find the best inexact match

* [wo Innovations:
e quality-aware backtracking

* double indexing

SOAP-like Policy (-v N)

Don'’t allow more than N mismatches. N e {0,1,2,3}

Sequence
(end to start) Size of range

\i in BWT search

Repeat this until you hit 175 backtracks, or you find K matches (K is a parameter).

SOAP-like Policy (-v N)

Don'’t allow more than N mismatches. N e {0,1,2,3}

Sequence
(end to start) Size of range

\i in BWT search

Make a substitution
on a path with < N
mismatches

X = Y must generate
a non-empty BWT
range.

It several candidates,
pick one with lowest
quality score.

®II||

Repeat this until you hit 175 backtracks, or you find K matches (K is a parameter).

Using Forward and Mirror Index

Use a BWT of both forward and reverse of string:

If mutation in first half of read, then the forward index can walk at least
read| / 2 before backtracking.

_

#

If mutation in second half of read, then the second index can walk at least
read| / 2 before backtracking.

Try both the forward and reverse indexes; will avoid a lot of backtracking because
you will have narrowed the BWT range a lot by the time you start backtracking.

Mag-like (default) Approach

Up to N mismatches allowed in “seed”, which is prefix of the read

-n N mismatches
allowed In seed

5,] 3
N ——
“Seed”
(default -| 28nt)
~ @ @O -
Total quality score of
mismatched bases
must be < -e Q

3 Phases

4 possible cases for distribution
of 0-2 mutations within the seed:

phase 1 (using mirror index)

g

phase 2 (using forward index)

phase 2 =0

phase 3a (using mirror index),
extending phase 2 alignments

Same backtracking scheme outside of seed

used to handle mismatches

phase 3b (using mirror index)

Bowtie Performance

Platform CPU time Wall clock Reads mapped per hour Peak virtual memory footprint Bowtie Reads
time (millions) (megabytes) speed-up aligned (%)

Bowtie Server 15m7s 15m4ls 33.8 1,149 - 67.4

-v 2

SOAP 91h57m 91h47m 0.10 13,619 351x% 67.3
35s 46 s

Bowtie PC 16m4ls 17m57s 29.5 1,353 - 71.9

Maq 17h46m 17h53m 0.49 804 59.8x 74.7
35s 7s

Bowtie Server 17 m58s 18 m26 s 28.8 1,353 - 71.9

Maq 32h56m 32h58m 0.27 804 107x 74.7
53s 39s

Bowtie 2

Features

e Supports gapped alignment
e Uses bi-directional BWT instead of two separate BWTs

e Supports paired-end alignment
e Align one end as normal
 Find the window where the other end could go

Do dynamic programming alignment step to align the other end of
the pair within this window

Read Read (‘everse comolement)

CCASTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTGS
T ssc—

Policy: extract 16 nt seed every 10 nt

Sceds
+, 0: CCAGTAGCTCTCAGCC -, 0: TACAGGCCTGGGTAAA
+,10: TCAGCCTTATTTTACC ., 10: GGTAAAATAAGGCTGA
+, 20: TTTACCCAGGCCTGTA -, 20: GGCTGAGAGCTACTGG
™) Seed alignments
o Ungapped (as Burrgws-Wheeler ranges)
+,0: CCAGTAGCTCTCAGCC alignment with

FM Index { [211, 212], (212, 214] }
{ [653, 654], [651, &53])

- ([6B4, 635])

()

" !

{ [624, 625])

+, 10: TCAGCCTTATTTTACC

+, 20 TTTACCCAGGCCTGTA i
- 0: TACAGGCCTGGGTAAA

.. 10: GGTAAAATAAGGCTGA

-, 20: GGCTGAGAGCTACTGG

2. Alian witk FM Index

Seed alignments (as BW ranges) - ~\ Extension candidates

;2 i isiatan o e st W?'&"ﬁéﬂm BW row:684: chrl2:1955

b 155%, SR), (8L RN] ; BW xowiequ cnrz:;wz

g’ : :684‘ - — ; g —% BW row:211: chr4:762

N i] T [BW row:213: chrl2:1935

f: (1624, 625]) i BW row:652: chrl2:1945
E

priority of row /= 1/ r2, where r;is the # of sequences in the range containing row 1.

Exiension cancidates 4 N SAM alignments
SIMD dynamic
EW row:684: chrl2:1955 programming rl © chrl2 1936 9
, : | aligner 36M @ 0
BW row:624: chr2:462 CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA

— oo [ITIIIIIITITIIITIIIIIIIIINIIINIIIIINIII
R AS:1:0 XS:i:<2 XN:i:0

XM:1:0 X0:1:0 XG:1:0

NM:1:0 MD:Z:36 YT:Z:UU

YM:1:9

BW row:211: chrd4:762

BW row:213: chrl2:1935
BW row:652: chrl2:1945

4. Extend

Bi-directional BWT

c Q

Standard “forward” BWT search: P
Given range for Q, can find in | | ‘ BW matrix
constant time the range for Qc. ranges
(Use LF mapping, etc.)

Thm. Given range(Q), reverseRange(Q), can find in O(|X|)-time:

range(Qc)
range(cQ) «— easy (this is the standard BWT search)
reverseRange(cQ)

reverseRange(Qc) \easy (this is the standard BWT)
search applied to the reverse | | ‘ | |

Q c

string)

Computing Range(Qc)

X = # of prefixes
Qdwithd< c

range(Qc) = [s + X, S+ X + y - 1]

/

y = # of prefixes Qc

Computing Range(Qc)

x = Y4 reverseRange((Qad)R) = reverseRange(dQR)

S
because the size of the range
of Qc in T = the size of the X=*# of.prefixes
range of (Qc)R in TR Qdwithd<c

range(Qc) =[S+ X, S+ X +y - 1]

/

y = # of prefixes Qc
e

Computing Range(Qc)

x = Y4 reverseRange((Qad)R) = reverseRange(dQR)

S
because the size of the range
of Qc in T = the size of the X=*# of.prefixes
range of (Qc)R in TR Qdwithd<c

range(Qc) =[S+ X, S+ X +y - 1]

/

y = # of prefixes Qc
e

y = reverseRange((Qc)R)

Computing Range(Qc)

x = Y4 reverseRange((Qad)R) = reverseRange(dQR)

S
because the size of the range
of Qc in T = the size of the X=*# of.prefixes
range of (Qc)R in TR Qdwithd<c

range(Qc) = [s + X, S+ X + y - 1]

/

y = # of prefixes Qc
e

y = reverseRange((Qc)R)

Can extend reverseRange(Q) to
reverseRange(dQ) with 1 BWT LF step

Accuracy Results

a > Bowtie2 »« BWA ¢ SOAP2
100 nt lllumina-like
100 100
S 95 95
S
X 90 90
@
S 85 85
=
S 80 80
T
8 75 / 75 -
® ¢ |
g 70- 70 -
3 65 - 65 -
60 -l 1 |} | 1 I | | 60 -l
Q O & & 8 .86 B Q
S & & & &

Ao A q/s q,s ('b\
Incorrect read alignments

¢ Bowtie ¢« BWA-SW

150 nt lllumina-like

N

QO QO QO O
Q QO O \)
T & W& o9
Incorrect read alignments

QO
)
o8

TopHat

Cole Trapnell, Lior Pachter and Steven L. Salzberg- TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics (2009) 25 (9): 1105-1111.

http://bioinformatics.oxfordjournals.org/search?author1=Cole+Trapnell&sortspec=date&submit=Submit
http://bioinformatics.oxfordjournals.org/search?author1=Lior+Pachter&sortspec=date&submit=Submit
http://bioinformatics.oxfordjournals.org/search?author1=Steven+L.+Salzberg&sortspec=date&submit=Submit

Map reads to whole

TO P Ha 'I' Z.g _-‘?.g_-f—_:-:: = = genome with B\o;vtic
Collect initially
unmappable reads
* Find Exons:
= Assemble
e Map reads consensus of
covered regions
« Assemble exons (using “Maq”) l
* Extend exons by 45bp . :
——— Generate possible
« Join exons closer than 6bp e — splices between
gt ag a9 neighboring
exons Y
* Find splices:
Build seed table
* Find every pair of donor/acceptor sites index from

that are close enough unmappable reads

* Look at 2kmers spanning that junction
(where k appears on each side; k=5)

 Use a 2k-mer lookup table to find
those reads

Map reads to possible
gt ag ag splices via seed-and-
extend

TopHat Approach

..........
- e
* ®

left exon right exon
__'
[UMread H P | >

—— R

l
high quality

(Trapnell et al., 2009)

