
Read Mapping
Slides by Carl Kingsford

Bowtie
Ultrafast and memory-efficient alignment of short DNA sequences to the
human genome
Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg, Genome Biology 2009, 10:R25

Bowtie Features

• Extends basic BWT search to handle mismatches

• Will find an exact match if it exists.

• Might not find the best inexact match

• Two innovations:

• quality-aware backtracking

• double indexing

SOAP-like Policy (-v N)
Don’t allow more than N mismatches.

Sequence
(end to start) Size of range

in BWT search

A

A

C

T

G ∅

G

Repeat this until you hit 175 backtracks, or you find K matches (K is a parameter).

N ∈ {0,1,2,3}

SOAP-like Policy (-v N)
Don’t allow more than N mismatches.

Sequence
(end to start) Size of range

in BWT search

A

A

C

T

G ∅

GC

T

G

G

Make a substitution
on a path with < N

mismatches
!

X → Y must generate
a non-empty BWT

range.
!

If several candidates,
pick one with lowest

quality score.

Repeat this until you hit 175 backtracks, or you find K matches (K is a parameter).

N ∈ {0,1,2,3}

Using Forward and Mirror Index

X

X

Use a BWT of both forward and reverse of string:

If mutation in first half of read, then the forward index can walk at least
|read| / 2 before backtracking.

If mutation in second half of read, then the second index can walk at least
|read| / 2 before backtracking.

Try both the forward and reverse indexes; will avoid a lot of backtracking because
you will have narrowed the BWT range a lot by the time you start backtracking.

Maq-like (default) Approach

5’ 3’
“seed” 

(default -l 28nt)

-n N mismatches
allowed in seed

Total quality score of
mismatched bases

must be < -e Q

N ∈ {0,1,2,3}

Up to N mismatches allowed in “seed”, which is prefix of the read

3 Phases

≥ 00-20

seed

phase 1 (using mirror index)

01-2

phase 2 (using forward index)

phase 3a (using mirror index),
extending phase 2 alignments
outside of seed

≥ 011

phase 3b (using mirror index)

phase 2 ≥ 0

1-20

01-2

11

00

4 possible cases for distribution
of 0-2 mutations within the seed:

Same backtracking scheme
used to handle mismatches

Bowtie Performance

Bowtie 2

Features

• Supports gapped alignment

• Uses bi-directional BWT instead of two separate BWTs

• Supports paired-end alignment

• Align one end as normal

• Find the window where the other end could go

• Do dynamic programming alignment step to align the other end of
the pair within this window

priority of row i = 1/ ri2, where ri is the # of sequences in the range containing row i.

Bi-directional BWT

P c Q
Standard “forward” BWT search:

Given range for Q, can find in
constant time the range for Qc.

(Use LF mapping, etc.)

P cQ

BW matrix
ranges

Thm. Given range(Q), reverseRange(Q), can find in O(|∑|)-time:
• range(Qc)
• range(cQ)
• reverseRange(cQ)
• reverseRange(Qc)

easy (this is the standard BWT search)

easy (this is the standard BWT
search applied to the reverse
string)

Computing Range(Qc)

range(Q)

s

e

BWT matrix
x = # of prefixes

Qd with d < c

range(Qc) = [s + x, s+ x + y - 1]

y = # of prefixes Qc

Computing Range(Qc)

range(Q)

s

e

BWT matrix
x = # of prefixes

Qd with d < c

range(Qc) = [s + x, s+ x + y - 1]

y = # of prefixes Qc

x = ∑d reverseRange((Qd)R) = reverseRange(dQR)

because the size of the range
of Qc in T = the size of the
range of (Qc)R in TR

Computing Range(Qc)

range(Q)

s

e

BWT matrix
x = # of prefixes

Qd with d < c

range(Qc) = [s + x, s+ x + y - 1]

y = # of prefixes Qc

y = reverseRange((Qc)R)

x = ∑d reverseRange((Qd)R) = reverseRange(dQR)

because the size of the range
of Qc in T = the size of the
range of (Qc)R in TR

Computing Range(Qc)

range(Q)

s

e

BWT matrix
x = # of prefixes

Qd with d < c

range(Qc) = [s + x, s+ x + y - 1]

y = # of prefixes Qc

y = reverseRange((Qc)R)

x = ∑d reverseRange((Qd)R) = reverseRange(dQR)

because the size of the range
of Qc in T = the size of the
range of (Qc)R in TR

Can extend reverseRange(Q) to
reverseRange(dQ) with 1 BWT LF step

Accuracy Results

TopHat
Cole Trapnell, Lior Pachter and Steven L. Salzberg. TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics (2009) 25 (9): 1105-1111.

http://bioinformatics.oxfordjournals.org/search?author1=Cole+Trapnell&sortspec=date&submit=Submit
http://bioinformatics.oxfordjournals.org/search?author1=Lior+Pachter&sortspec=date&submit=Submit
http://bioinformatics.oxfordjournals.org/search?author1=Steven+L.+Salzberg&sortspec=date&submit=Submit

TopHat

• Find Exons:

• Map reads

• Assemble exons (using “Maq”)

• Extend exons by 45bp

• Join exons closer than 6bp

• Find splices:

• Find every pair of donor/acceptor sites
that are close enough

• Look at 2kmers spanning that junction
(where k appears on each side; k=5)

• Use a 2k-mer lookup table to find
those reads

TopHat Approach

(Trapnell et al., 2009)

