
Genome Sequencing & Assembly
Slides by Carl Kingsford

Genome Sequencing

ACCGTCCAATTGG...!
TGGCAGGTTAACC...

E.g. human: 3 billion bases
split into 23 chromosomes

gacgatcggtttatcc!
ctgctagccaaataggctaatactacgga

DNA polymerase: enzyme that will
grow a complementary DNA strand.

Main tool of traditional sequencing: DNA Synthesis

Sanger Sequencing: Finding the As

gacgatcgg tttA*!
ctgctagcc aaaTaggcTaaTacTacgga

gacgatcgg tttAtccgA*!
ctgctagcc aaaTaggcTaaTacTacgga

gacgatcgg tttA*!
ctgctagcc aaaTaggcTaaTacTacgga

gacgatcgg tttAtccgAttA*!
ctgctagcc aaaTaggcTaaTacTacgga

gacgatcgg tttAtccgAttAtgA*!
ctgctagcc aaaTaggcTaaTacTacgga

gacgatcgg tttAtccgAttA*!
ctgctagcc aaaTaggcTaaTacTacgga

gacgatcgg tttAtccgAttAtgA*!
ctgctagcc aaaTaggcTaaTacTacgga

gacgatcgg tttAtccgA*!
ctgctagcc aaaTaggcTaaTacTacgga

tt
t

t a
a

a
ag g

g
g

c
c

c
c

a*
dXTP ddATP

Size → Sequence

gacgatcggtttA*

gacgatcggtttAtccgA*
gacgatcggtttA*

gacgatcggtttAtccgAttA*

gacgatcggtttAtccgAttAtgA*
gacgatcggtttAtccgAttA*

gacgatcggtttAtccgAttAtgA*

gacgatcggtttAtccgA*

gacgatcggtttatC*

gacgatcggtttatcC*

gacgatcggtttatccgattatG*

gacgatcggtttatccG*

A C G T

Si
ze

Size → Sequence

gacgatcggtttA*

gacgatcggtttAtccgA*
gacgatcggtttA*

gacgatcggtttAtccgAttA*

gacgatcggtttAtccgAttAtgA*
gacgatcggtttAtccgAttA*

gacgatcggtttAtccgAttAtgA*

gacgatcggtttAtccgA*

gacgatcggtttatC*

gacgatcggtttatcC*

gacgatcggtttatccgattatG*

gacgatcggtttatccG*

A C G T

Si
ze

Single lane: ddXTP
that fluoresce

different colors

Size → Sequence

gacgatcggtttA*

gacgatcggtttAtccgA*
gacgatcggtttA*

gacgatcggtttAtccgAttA*

gacgatcggtttAtccgAttAtgA*
gacgatcggtttAtccgAttA*

gacgatcggtttAtccgAttAtgA*

gacgatcggtttAtccgA*

gacgatcggtttatC*

gacgatcggtttatcC*

gacgatcggtttatccgattatG*

gacgatcggtttatccG*

A C G T

Si
ze

Single lane: ddXTP
that fluoresce

different colors

Main problem: larger fragments take a long time to be sorted
correctly (or don’t sort correctly ever) → 800-1000 letter maximum

Shotgun Sequencing

Many copies
of the DNA

Shear it, randomly breaking them into many small pieces,
read ends of each:

Assemble into original genome:

The Cat only grinned when it saw Alice.

when it saw Alice. It looked

good-natured, she thought, still

sti1l it had very long claws

good-natured, she thought: still

a greet many

so she felt that it ought

be treated with respect.

Cat only

It looked good-

claws and a great many teeth, so she

ought to be treated

We can only read ~ 1000 characters at a
time from a random place:

Algorithms are needed to piece the story together.

The Cat only grinned when it saw Alice.
when it saw Alice. It looked

good-natured, she thought, still
sti1l it had very long claws

good-natured, she thought: still

a greet many so she felt that it ought

be treated with respect.

Cat only
It looked good-

claws and a great many teeth, so she

ought to be treated

...except with 35
million pieces

It’s a jigsaw
puzzle ...

Lander-Waterman Statistics
How many reads to we need to be sure we cover the whole genome?

g

L
N

genome θ
= fraction of L
required to
detect an overlap

An island is a contiguous group of reads that are
connected by overlaps of length ≥ θL.  
(Various colors above)

Want: Expression for expected # of islands given N, g, L, θ.

Expected # of Islands
λ := N/g = probability a read starts at a given position  
(assuming random sampling)

Pr(k reads start in an interval of length x)
x trials, want k “successes,” small probability λ of success
Expected # of successes = λx
Poisson approximation to binomial distribution:

Pr(k reads in length x) = e

��x

(�x)k

k!

Expected # of islands = N ⨉ Pr(read is at rightmost end of island)

(1-θ)L θL = N ⨉ Pr(0 reads start in (1-θ)L)

(from above)

← LN/g is called the coverage c.

= Ne��(1�✓)L�0

0!

= Ne��(1�✓)L

= Ne�(1�✓)LN/g

Expected # of Islands, 2

Expected # of islands

Rewrite to depend more directly on the things we can control: c and θ

= Ne�(1�✓)LN/g

= Ne�(1�✓)c

=
L/g

L/g
Ne�(1�✓)c

=
g

L
ce�(1�✓)c

0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

100

200

300

400

500

600

700

L = 1000; g = 1000000

θ = 0.15

θ = 0.35

c

Ex
pe

ct
ed

 #
 is

la
nd

s

Shotgun Sequencing Summary

• “Sanger” sequencing widely used up  
through 2006 or 2007, including for  
the human genome project.	

• Won Sanger his second Nobel prize.	

• Lander-Waterman statistics estimate the number of islands you
will get for a given coverage.	

• Used as a way to guess how much sequencing you need to do for a given
technology and genome size.	

• Often hard in practice to guess the genome size g before you’ve
sequenced it.

(Wikipedia)

Genome Assembly Paradigms

Shortest Common Superstring
Def. Given strings s1, ..., sn, find the shortest string T such
that each si is a substring of T.

• NP-hard (contrast with case when requiring si to be
subsequences of T)	

• Approximation algorithms exist with factors: 4, 3, 2.89, 2.75,
2.67, 2.596, 2.5, ...	

• Basic greedy method: find pair of strings that overlap the best,
merge them, repeat (4 approximation):

Given match, mismatch, gap costs, how can we compute the score of
the best overlap?

Overlap Alignment

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Score of an optimal alignment
between a suffix of Y and a

prefix of X
• Initialize first column

to 0s	

• Answer is maximum
score in top row
(traceback starts from
there until it falls off
left side)

y x

Overlap Alignment

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Score of an optimal alignment
between a suffix of Y and a

prefix of X
• Initialize first column

to 0s	

• Answer is maximum
score in top row
(traceback starts from
there until it falls off
left side)

y x

K-mer Hashing

AAAA

AAAT

AAAG

AAAC

AATA

AATT

AATG

AATC

AAGA

AAGT

r1 r2 r10 r11

r2 r3
read

kmer

Only compute overlap alignment
between reads that share a kmer:

The problem with Shortest Common
Superstring (SCS): Repeats

AAAAAAAAAAAAAAAAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

⋱

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

Truth: SCS:

ACCGCCT ACCGCCT ACCGCCT

More complex example: 2 or 3
copies?

Overlap Consensus
Overlap graph:

Nodes = reads
Edges = suffix-prefix overlaps

Given overlap graph, how can we find a good candidate assembly?

Idea: Every read must be used in exactly one place in the
genome.

1 2 3 4 5 6 7

1
2

3
4

5
6

77

Assembly by Traveling Salesman

Traveling Salesman
Problem: Find a path that
visits every node in the
graph exactly once.

Optimal Traveling
Salesman path of

24,978 cities in
Sweden

(Applegate et al, 2004,
www.tsp.gatech.edu/sweden/

index.html).

http://www.tsp.gatech.edu/sweden/index.html

Assembly via Eulerian Path

de Bruijn graph
read

kmer

k

k-1

k-mer k-mer

de Bruijn graph: nodes represent
kmers, edges connect k-mers that are

known to follow each other based on an
observed read.

!
Can have > 1 edge between nodes.

Examples

tagacgaacgtacggtagg

tag aga gac acg cga gaa aac

cgt

gta taccgg

ggt

agg

acg cga gaa aac

cgt gta

acc cca cac

acgaaccacgacgta
gac

A directed graph has an Eulerian
cycle if and only if:	

•All nodes have the same
number of edges entering and
leaving

Example bacterial de Bruijn graph

GAAA..TTAC

CCAA..ACTG

GATCA

AAGC..AAAT

A

TGCG..AAAA

CGCA..AAAT

AAGC..TAAA

CTTC..GTTT

AACA..CAAG

TGAT..GTTG

AATT..GAAG

CGTG..GAGT

GGTA..TTTC

TCAAC

TGAA..ATCG

AGAA..ACGG

G

TATC..CAACCATC..CCCA

A

AGTT..AACA

GGTT..CAAT
ACTAAAAA

TGTG..CCCC

CATC..AACG

TTCAACTTC

TGCT..TTAA

CGCT..ATCA

A

T

AAAGAAA

CAGC..CTAA
ACAC..TTTA

TACC..CAGG

CACC..AATA

TTAT..CTAA

GTATCGC
TAAC..TAGT

ACCC..CATT

CAAC..AGCC

GACTTT

CACT..AGAA

TACT..GGTT
ATGG..AAAC

GAAT..GGTT

TGAG..AGTGTTTAT

AAGA..TTTT

CAAC..TAGT

TATC..TTTT

TCTT..AAAA
CTTA..AGTG

TGGC

TCAA..GTTT
AGTA..GTTT

AACA..TCCC

TAGC..GAGTAGTC..ATGC GTAT..GTTA

ATAT..AGCT

CCCA

ACTC..TGGG

GCTC..CTAC

TGGT..TGCA

CAGG..CCAA

ACAA..CATT

TTTA..GAGG
GGAA..AACT

AGAA..AACT

TCCATT

CCAA..CAAC

TTGC..TGTG

CTGC..ATCA

GGGT..AGTA

GTAGTACCA

GTAG..AACT

CCAA..AACT

AGCTTA
GATA..TATA

AGGAT

GGGA..CAGC

CTAG..CGGG

TTGG..GTTGATTA..GTTG

GCTA..CAGC

TTCC..ATCC

TGTG..GGGG

AGTG..AACG

ATTTAAA

CATT..AACA

TAAT..AAGT

CTACGCC

ATTG..CAAA
GTTG..CAAA

CAAA..ACTCGAAA..TTAA

AGTG..TAAA

AAAA..CAAC

GTAT..TTTT

CACC..CATT

GCAG..AACC

ATCC..GGGA

CTCC..TCCC

CCAA..GGAT

AGTA..ACGG

CAAG..CAAC

CAAA..TGGA

AGTG..GGGG

GGGG..GTTA

G

AAAG..GTTG

GAAG..CCCA

GGGT..GAAA

GTTC..AATA

AAAC..AAGT
ATAG..TCAC

ACCA..AGAA

TTCA..AACT

TTCTAC CCAGC ATGT..TGCA

TTGT..TGGG

CAGG..CCAA

ACAA..CAAC

AATC..TGTG

GTTG..ACCA

TTTG..AAAT

AATG..AGTC

TCAA..GAAT

CAAT..GGAT

TCAA..TCGG

ACAG..TCGG

CAAC..TTCTGTTA..TTAC

TCTT..AGCC

TAGG..GGGG

CTTG..TAGT

TTTG..AATC
TTTT..AGTC

CAAG..CAAG

TAGG..GTTG

CTAG..GAAC

GATG..AATC

CAAG..AGCT

CTGA..TTTA

CCAA..GGGATCAA..ATCG

TTAA..ACCA

ACAG..CAATGTAT..GTTG

CCCAA

GGGT..CCCC

AGGT..AGTC

AAGA..CTTA

TGAT..ACTT

CTTT..ATAATTTT..ATAA

TTAT..AAGG

CTGG..ACCA
TTGG..GTTGTAGTT

TTCA..GTTGATCT..CCAG

GTTG..TCAA

GAGT..GAAT

CAAC..ACCA

GGCG..TAAA

CCCA..CCAG

TGCA..GTTT

GCTT..TTCA

AATT..AACT

Paths with no
branches compressed
into a single node

With perfect data, the
genome can be
reconstructed by
some Eulerian path
through this graph

Eulerian path = use
every edge exactly
once.

Assembly via Eulerian Path

acg cga gaa aac

cgt gta

acgaacgta

A directed graph has an Eulerian path if and only if:	

•One node has one more edge leaving it than entering	

•One node has one more edge entering than leaving	

•All other nodes have the same number of edges entering and leaving

Let dG(s) be the de Bruijn graph of string s. Then s corresponds to some
Eulerian path in dG(s).

How can we find such a path?

Connect node with out-degree < in-degree to node with out-degree
< in-degree.	

!
Walk from some arbitrary node u until you return to u, creating a
doubly liked list of the path you visit.	

!
Repeat until all edges used:	

•Start from some node w on the current tour with unused edges*.	

•Walk along unused edges until you return to w, inserting the visited nodes
after w into the current tour list.

Eulerian Path Algorithm

u v w x y

Why will you return to u?

u

w

*How can find such
a node quickly?

So that we will have an Eulerian cycle.

Connect node with out-degree < in-degree to node with out-degree
< in-degree.	

!
Walk from some arbitrary node u until you return to u, creating a
doubly liked list of the path you visit.	

!
Repeat until all edges used:	

•Start from some node w on the current tour with unused edges*.	

•Walk along unused edges until you return to w, inserting the visited nodes
after w into the current tour list.

Eulerian Path Algorithm

u v w x y

Why will you return to u?

u

w

*How can find such
a node quickly?

So that we will have an Eulerian cycle.

a b
duplicate this w node

The Problem with Eulerian Paths

(Kingsford, Schatz, Pop, 2010)

There are typically an
astronomical number
of possible Eulerian
tours with perfect data.
!
Adding back
constraints to limit #
of tours leads to a NP-
hard problem.
!
With imperfect data,
there are usually NO
Eulerian tours
!
Estimating # of
parallel edges is
usually tricky.

Aside: counting # of Eulerian tours in a directed
graph is easy, but in an undirected graph is #P-
complete (hard).

Mate Pairs

chop
up select for a

given size

sequence ≈ 1000
bases from each end

mate pair: 2 reads, of
opposite orientation,  
separated by an
approximately known
distance

⇒ long range information

Scaffolding

Islands = “contigs”

Scaffolding

Islands = “contigs”

Scaffolding

Islands = “contigs”

Comparative Assembly (Read Mapping)

known reference genome

x
xx x

Align reads to known genome:

consistent differences =
deviation from reference

rare differences =
sequencing errors

Can use much lower coverage  
(e.g. 4X coverage instead of 20-30X for de novo assembly).

Aligning a large # of short sequences to one large sequence is an
important special case of sequence alignment.

Summary

• Sanger sequencing reads DNA via synthesis; 800-1000bp.	

• Assembly Paradigms:	

• Shortest Common Superstring (NP-hard; sensitive to repeats)	

• Hamiltonian cycle in overlap graph (NP-hard)	

• Eulerian cycle in de Bruijn graph (polynomial in basic form,
but large # of solutions)	

• Overlap alignment can be computed with slight variant of
sequence alignment DP.	

• K-mer hashing technique avoids all pairs overlap alignment

Hard vs. Easy

• Eulerian path – visit every edge once (easy)	

• Hamiltonian path – visit every node once (hard)	

!
• Shortest common supersequence (easy)	

• Shortest common superstring (hard)	

!
• Counting Eulerian tours in directed graphs (easy)	

• Counting Eulerian tours in undirected graphs (hard)	

!
• Aligning 2 sequences (easy)	

• Aligning k > 2 sequences (hard)	

!
• Shortest path (easy)	

• Longest path (hard)

Cufflinks Transcript Assembly
Cole Trapnell, Brian A. Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J. van Baren, Steven L.
Salzberg, Barbara J. Wold, and Lior Pachter.. Transcript assembly and abundance estimation from RNA-Seq
reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol, 28(5): 511–515 (2010)

!

Partially Ordered Sets
Def. A pair (S, ≤) is a partial order if, for all x, y ∈ S:

(transitivity) x ≤ y and y ≤ z ⇒ x ≤ z

(reflexivity) x ≤ x

(antisymmetry) x ≤ y and y ≤ x ⇒ x = y

y

x

z

Partially Ordered Sets
Def. A pair (S, ≤) is a partial order if, for all x, y ∈ S:

(transitivity) x ≤ y and y ≤ z ⇒ x ≤ z

(reflexivity) x ≤ x

(antisymmetry) x ≤ y and y ≤ x ⇒ x = y

y

x

z

chain: every pair is comparable

Partially Ordered Sets
Def. A pair (S, ≤) is a partial order if, for all x, y ∈ S:

(transitivity) x ≤ y and y ≤ z ⇒ x ≤ z

(reflexivity) x ≤ x

(antisymmetry) x ≤ y and y ≤ x ⇒ x = y

y

x

z

chain: every pair is comparable

antichain: every pair
is incomparable

Cufflink’s Partial Order
= sequenced fragment:

x

y
= x aligns to the left of y and x and y have compatible intron structure

(Trapnell et al., 2010)

y1 ≤ x1

incompatible b/c the right end
of y2 is split-mapped, implying
an intron where there is no
intron in x2.

x3 and y3 are nested, and so are
merged into a single fragment.

x4 is uncertain because it could
be compatible with either y4 or
y5; x4 is therefore thrown away.

Cufflinks’ Assembly Algorithm

Partitioning partial order into smallest # of chains →
“parsimonious” set of transcripts that explains the observed reads

Smallest #
of chains

Largest
antichain

Vertex
cover

Maximum
bipartite
matching

Dilworth’s
Theorem

König’s
Theorem

Dilworth ≣
König

Solvable in
O(E√V)

Cufflinks’ Assembly Algorithm

Partitioning partial order into smallest # of chains →
“parsimonious” set of transcripts that explains the observed reads

(covering)

Smallest #
of chains

Largest
antichain

Vertex
cover

Maximum
bipartite
matching

Dilworth’s
Theorem

König’s
Theorem

Dilworth ≣
König

Solvable in
O(E√V)

Dilworth’s Theorem

Thm (Dilworth). In a poset, the size of the largest antichain
= the size of the minimum cover by chains.

Proof intuition.

• The largest antichain must hit every chain (otherwise it
could be made larger).

• It can’t hit any chain twice, otherwise it would contain
two comparable items.

König’s Theorem

Thm (König). In a bipartite graph, the # of edges in a
maximum matching = # of vertices in the smalelst vertex
cover.

Proof intuition.

• In a maximum matching, every
edge must be covered.

• Otherwise, if both endpoints
are not matched, we could add
that edge to the matching and
increase its size.

Using Matching to Find a Minimal Chain
Cover

All items
in poset

All items
in poset

Edge if
x < y

Let M be the maximal matching.

By König’s theorem, there is a (minimal)
vertex cover C of the same size as M.

Let T be the elements of the poset that are
not in C.

T is an antichain. Why?

Make a set W of chains by u ≣ v if (u,v) ∈ M.

These equivalence classes are chains.
Why?

Using Matching to Find a Minimal Chain
Cover

All items
in poset

All items
in poset

Edge if
x < y

Let M be the maximal matching.

By König’s theorem, there is a (minimal)
vertex cover C of the same size as M.

Let T be the elements of the poset that are
not in C.

T is an antichain. Why?

Make a set W of chains by u ≣ v if (u,v) ∈ M.

These equivalence classes are chains.
Why?

If u and v were comparable,
there would be an edge
between them, and since
neither u or v used in M, we
could add that edge to M.

Using Matching to Find a Minimal Chain
Cover

All items
in poset

All items
in poset

Edge if
x < y

Let M be the maximal matching.

By König’s theorem, there is a (minimal)
vertex cover C of the same size as M.

Let T be the elements of the poset that are
not in C.

T is an antichain. Why?

Make a set W of chains by u ≣ v if (u,v) ∈ M.

These equivalence classes are chains.
Why?

If u and v were comparable,
there would be an edge
between them, and since
neither u or v used in M, we
could add that edge to M.

Every pair of items in each equivalence class
had an edge between them, meaning they
were comparable.

|W| = |T|
M = maximal matching.

C = vertex cover of the same size as M.

T = antichain elements of poset that are not in C.

W = set of chains formed from edges of M.

n = # elements in poset

m = # of edges in matching

Size of W is n - m. Why?

Size of T is n - m. Why?

|W| = |T|
M = maximal matching.

C = vertex cover of the same size as M.

T = antichain elements of poset that are not in C.

W = set of chains formed from edges of M.

n = # elements in poset

m = # of edges in matching

Size of W is n - m. Why?

Size of T is n - m. Why? Every edge uses up exactly one element on
the LHS of the bipartite graph.

|W| = |T|
M = maximal matching.

C = vertex cover of the same size as M.

T = antichain elements of poset that are not in C.

W = set of chains formed from edges of M.

n = # elements in poset

m = # of edges in matching

Size of W is n - m. Why?

Consider set of n “chains” each consisting of a single element of poset.

Each edge (u,v) that we use to put v into the same poset as u reduces the
number of chains by 1.

⇒ Number of equivalence-class chains = n - m

Size of T is n - m. Why? Every edge uses up exactly one element on
the LHS of the bipartite graph.

Why is W Minimum Size?

chain 
covers

antichians

All antichains must be of size ≤ all chain covers.

Suppose not, and let A be an antichain bigger
than cover Q.

Then, by pigeonhole, A must contain at least 2
elements x, y from the same chain in Q.

But x, y are comparable because they are in the
same chain.

⇒ the pair (T,W) must be a largest antichain and a smallest W because they

are the same size.

A Matching-Covering Example

(Trapnell et al., 2010)

Selecting From Among Many Minimum
Solutions

Idea: exons included in same transcript should have similar expression

w x y zv

Correct

Wrong

Estimate Percent Spliced In (PSI, ψ): # of reads crossing exon x that are
compatible with x divided by # of reads overlapping x (divided by length of x).

weight(x, y) = � log(1� |
x

�

y

|)

Selecting From Among Many Minimum
Solutions

Idea: exons included in same transcript should have similar expression

w x y zv

Correct

Wrong

Estimate Percent Spliced In (PSI, ψ): # of reads crossing exon x that are
compatible with x divided by # of reads overlapping x (divided by length of x).

weight(x, y) = � log(1� |
x

�

y

|)

measures how similar the exons’ PSI values are

Discovery of Novel Isoforms

(Trapnell et al., 2010)

