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Genome of the Cow
a sequence of 2.86 billion 
letters

enough letters to fill a 
million pages of a typical 
book.

TATGGAGCCAGGTGCCTGGGGCAACAAGACTGTGGTCACTGAATTCATCCTTCTTGGTCTAACAGAGAACATAG
AACTGCAATCCATCCTTTTTGCCATCTTCCTCTTTGCCTATGTGATCACAGTCGGGGGCAACTTGAGTATCCTG
GCCGCCATCTTTGTGGAGCCCAAACTCCACACCCCCATGTACTACTTCCTGGGGAACCTTTCTCTGCTGGACAT
TGGGTGCATCACTGTCACCATTCCTCCCATGCTGGCCTGTCTCCTGACCCACCAATGCCGGGTTCCCTATGCAG
CCTGCATCTCACAGCTCTTCTTTTTCCACCTCCTGGCTGGAGTGGACTGTCACCTCCTGACAGCCATGGCCTAC
GACCGCTACCTGGCCATTTGCCAGCCCCTCACCTATAGCATCCGCATGAGCCGTGACGTCCAGGGAGCCCTGGT
GGCCGTCTGCTGCTCCATCTCCTTCATCAATGCTCTGACCCACACAGTGGCTGTGTCTGTGCTGGACTTCTGCG
GCCCTAACGTGGTCAACCACTTCTACTGTGACCTCCCGCCCCTTTTCCAGCTCTCCTGCTCCAGCATCCACCTC
AACGGGCAGCTACTTTTCGTGGGGGCCACCTTCATGGGGGTGGTCCCCATGGTCTTCATCTCGGTATCCTATGC
CCACGTGGCAGCCGCAGTCCTGCGGATCCGCTCGGCAGAGGGCAGGAAGAAAGCCTTCTCCACGTGTGGCTCCC
ACCTCACCGTGGTCTGCATCTTTTATGGAACCGGCTTCTTCAGCTACATGCGCCTGGGCTCCGTGTCCGCCTCA
GACAAGGACAAGGGCATTGGCATCCTCAACACTGTCATCAGCCCCATGCTGAACCCACTCATCTACAGCCTCCG
GAACCCTGATGTGCAGGGCGCCCTGAAGAGGTTGCTGACAGGGAAGCGGCCCCCGGAGTG ...



● substrings encode for genes      ,	


most of which encode for proteins

● double-stranded, linear molecule

DNA = 

● strands are complements of each 
other (A ↔ T;  C ↔ G)

● each strand is string over {A,C,G,T}

mRNA

proteins

Transcription

(T ➝ U)

Translation

Genome

“Central Dogma” of Biology



The Genetic Code

• There are 20 different amino 
acids & 64 different codons.	



• Lots of different ways to encode 
for each amino acid.	



• The 3rd base is typically less 
important for determining the 
amino acid	



• Three different “stop” codons 
that signal the end of the gene	



• Start codons differ depending on 
the organisms, but AUG is often 
used.



Estimates for the # of Human Genes
Before human genome sequence was available, many  
(but not all) estimates for # of genes were high (> 80,000).

Now estimates 
are < 23,000.

Pertea and Salzberg 
Genome Biology 
2010 11:206



# of Genes in Various Organisms

• Subsequences of DNA are “genes” that 
encode (mostly) for proteins.	



• # of genes in various organisms still not 
definitely know (because finding genes in the 
sequence is a hard problem that we will talk 
about).	



• But there are reasonably good estimates.

Pertea and Salzberg 
Genome Biology 2010 
11:206



The Prokaryotic Gene Finding Problem

• Genes are subsequences of DNA that tell the cell how to make specific 
proteins.	



• How can we find which subsequences of DNA are genes?

Start Codon: ATG!
Stop Codons: TGA, TAG, TAA

ATAGAGGGTATGGGGGACCCGGACACGATGGCAGATGACGATGACGATGACGATGACGGGTGAAGTGAGTCAACACATGAC

Challenges:	


• The start codon can occur in the middle of a gene (where it encodes for the 
amino acid methionine)	


• The stop codon can occur in nonsense DNA between genes.	


• The stop codon can occur “out of frame” inside a gene.	


• Don’t know what “phase” the gene starts in.



A Simple Gene Finder
1. Find all stop codons in genome	



2. For each stop codon, find the in-frame start codon farthest upstream 
of the stop codon, without crossing another in-frame stop codon.	



3. Return the “long” ORF as predicted genes.

Each substring between the start and stop codons is called an ORF 
“open reading frame”

GGC TAG ATG AGG GCT CTA ACT ATG GGC GCG TAA 

3 out of the 64 possible codons are stop codons ⇒ in random DNA, 

every 22nd codon is expected to be a stop.



Gene Finding as a  
Machine Learning Problem

• Given training examples of some known genes, can we 
distinguish ORFs that are genes from those that are not?	



• Idea: can use distribution of codons to find genes.	



• every codon should be about equally likely in non-gene DNA.	



• every organism has a slightly different bias about how often 
certain codons are preferred.	



• could also use frequencies of longer strings (k-mers).



Bacillus anthracis (anthrax) codon 
usage

UUU F 0.76  UCU S 0.27  UAU Y 0.77  UGU C 0.73  
UUC F 0.24  UCC S 0.08  UAC Y 0.23  UGC C 0.27   
UUA L 0.49  UCA S 0.23  UAA * 0.66  UGA * 0.14  
UUG L 0.13  UCG S 0.06  UAG * 0.20  UGG W 1.00  
!
CUU L 0.16  CCU P 0.28  CAU H 0.79  CGU R 0.26  
CUC L 0.04  CCC P 0.07  CAC H 0.21  CGC R 0.06 
CUA L 0.14  CCA P 0.49  CAA Q 0.78  CGA R 0.16 
CUG L 0.05  CCG P 0.16  CAG Q 0.22  CGG R 0.05  
!
AUU I 0.57  ACU T 0.36  AAU N 0.76  AGU S 0.28  
AUC I 0.15  ACC T 0.08  AAC N 0.24  AGC S 0.08 
AUA I 0.28  ACA T 0.42  AAA K 0.74  AGA R 0.36  
AUG M 1.00  ACG T 0.15  AAG K 0.26  AGG R 0.11 
!
GUU V 0.32  GCU A 0.34  GAU D 0.81  GGU G 0.30  
GUC V 0.07  GCC A 0.07  GAC D 0.19  GGC G 0.09 
GUA V 0.43  GCA A 0.44  GAA E 0.75  GGA G 0.41  
GUG V 0.18  GCG A 0.15  GAG E 0.25  GGG G 0.20 



An Improved Simple Gene Finder

• Score each ORF using the product of the probability 
of each codon:

GFScore(g) = Pr(codon1)xPr(codon2)xPr(codon3)x...xPr(codonn)

But: as genes get longer, GFScore(g) will decrease. 	



So: we should calculate GFScore(g[i...i+k]) for some window size k.	



The final GFSCORE(g) is the average of the Scores of the windows in it. 



Glimmer

• Score ORFs using 6 HMMs:	



• 1 model for each reading frame (3 forward, 3 reverse)	



• ORFs for which the correct reading frame is the highest score 
are saved as candidates.	



!

• Use “Interpolated Markov models” to adapt to data availability	



• Handle overlapping ORFs

Salzberg et al., NAR, 1998



Interpolated HMMs

Length of the sequence

String ending at position x
Sequence

Model

Weight of the k-mer ending at position x-1

Probability of letter at position x from a kth-order model

IMM score is a linear combination of 8th, 7th, …, 0th order models:



Setting Parameters
• If # of occurrences of context k-mer ≥ 400, λ = 1	



• Otherwise compare the following with a χ2 statistic:

A!!
C!!
G!!
T

A!!
C!!
G!!
T

Frequency f 
distribution with 
context length i

Scores IMMi-1 
with context 

length i-1

i i-1

• Set λ as follows, where c is the χ2 statistic that the frequencies did not come 
from the IMM distribution:



Setting Parameters
• If # of occurrences of context k-mer ≥ 400, λ = 1	



• Otherwise compare the following with a χ2 statistic:

A!!
C!!
G!!
T

A!!
C!!
G!!
T

Frequency f 
distribution with 
context length i

Scores IMMi-1 
with context 

length i-1

i i-1

• Set λ as follows, where c is the χ2 statistic that the frequencies did not come 
from the IMM distribution:

When c is large, distribution of length i 
frequencies differs from that predicted 
by the i-1 order IMM. The more they 
differ, the more we weight them.



IMM vs. 5th Order HMM

Salzberg et al., NAR, 1998



Overlaps

Scored separately with the 
two IMMs for the reading 
frames for the two genes

Discard the shorter gene if the longer gene’s reading frame scores higher



Eukaryotic Genes & Exon Splicing

ATG TAG

ATG TAGintron intron intronexonexon exon exon

Prokaryotic (bacterial) genes look like this:

Eukaryotic genes usually look like this:

AUG UAG

Exons are concatenated together

Introns are 
thrown away

This spliced RNA is what is 
translated into a protein.

mRNA:



Hypothetical Eukaryotic Gene Parse Tree
Searls, The Computational 
Linguistics of Biological 
Sequences



A (Bad) Eukaryotic Gene Finder
Arrows show 
transitions with non-
zero probabilities

What are some 
reasons this HMM 
gene finder is likely to 
do poorly?

pos
1

pos
3

pos
2

intron

donor
1

donor
2

acceptor
2

acceptor
1

Start 1 Start 3Start 2

Stop 1 Stop 3Stop 2

END

START

Pr(A) = 1 Pr(T) = 1

Pr(G) = 1

Finite State Machine



Bad Eukaryotic Gene Finder

• The positions in the codons are treated independently: 
the probability of emitting a base can’t depend on which 
previous base was emitted.	



• Only one strand of the DNA is considered at once.	



• Length distributions of introns and exons are not 
considered.

Why is it so bad?



Genscan

(Image: Zhang, 2002)

• Explicitly double stranded	



• One of the first to handle 
sequences with ≥ 1 gene in them

I0
E0

I1
E1

I2
E2

Burge & Karlin. J. Mol. Biol. 
(1997) 268, 78±94



Generalized HMMs
• Each state can emit a sequence of symbols.	



• In the diagram on the previous slide, each state emitted a 
complete gene feature (e.g. an entire exon):

max

⇡

nY

i=1

Pr(xi . . . xi+di | ⇡i, di) Pr(di | ⇡i) Pr(⇡i ! ⇡i+1)

Probability of 
emitting the 

string of length di.

Probability that 
the state will 

emit di symbols.

Probability of 
transitioning to 
the next state



Generalized HMMs
• Each state can emit a sequence of symbols.	



• In the diagram on the previous slide, each state emitted a 
complete gene feature (e.g. an entire exon):

max

⇡

nY

i=1

Pr(xi . . . xi+di | ⇡i, di) Pr(di | ⇡i) Pr(⇡i ! ⇡i+1)

Probability of 
emitting the 

string of length di.

Probability that 
the state will 

emit di symbols.

Probability of 
transitioning to 
the next state

This probability could itself be computed by 
an HMM or a Markov chain, etc.



Components Needed

• Probability distribution of initial state 

• State transition probabilities 

• Length distributions for each state 

• Sequence models for each state/length

= the fraction of known genome corresponding to each state, !
divided into groups by GC content.

= the probability X follows Y in known genes

For exons: = estimated from empirically observed distribution (next slide)!

For introns: = geometric distribution with parameter qgc, where is the best 
fit parameter for regions with a given GC content.

for states with 
strong motifs:



Feature Length Distributions



Sequence Profiles (PSSM)

...

A
C
D
E

T
V

W
Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Motif Position

A
m

in
o 

A
ci

d

∑ = 1Color ≈ Probability that the ith position 
has the given amino acid = ei(x).



Sequence Generators
Exons: 3 different 5th-order Markov models:	



• 1 model for each base of a codon	



• Sequence generated by repeatedly applying model 1, then 2, then 3, 
and so on.	



• Separate models for regions with GC content < 43%	



!

Non-coding states: (F, T, Ii) 	



• 5th-order Markov model	



• Separate model for regions with GC content < 43%	



!

Acceptor / donor sites: a more complicated model that accounts for 
dependencies between positions.



GlimmerHMM

GlimmerHMM model

+ strand

- strand

Majoros et al, 2004

Differences: 	



Interpolated HMM for 
coding sequences	



New splicing model



GlimmerHMM

GlimmerHMM model

+ strand

- strand

Majoros et al, 2004

Differences: 	



Interpolated HMM for 
coding sequences	



New splicing model



GlimmerHMM Performance

% of true gene 
nucleotides that 
GlimmerHMM 

predicts as part of 
genes.

% of predicted in-
gene nucleotides 
that are correct

% of true exons that 
GlimmerHMM found.

% of predicted exons 
that are true exons.

% of genes 
perfectly found



Compare with GENSCAN

• On 963 human genes:

• Note that overall accuracy is pretty low.



Generalized Pair HMMs

• Pair: Each state emits two 
symbols, one for each sequence	



• Generalized Pair: a pair of 
lengths d, e is drawn from a 
joint probability distribution and 
a pair of sequences X,Y of 
length d,e, respectively, are 
generated at each state.

Use: find genes simultaneously in 2 genomes!
increased signal b/c the structure of homologous genes is often very similar.

Image: Zhang, 2004
Pachter et al. J Comp Biol, 9(2), 2002
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symbols, one for each sequence	



• Generalized Pair: a pair of 
lengths d, e is drawn from a 
joint probability distribution and 
a pair of sequences X,Y of 
length d,e, respectively, are 
generated at each state.

Use: find genes simultaneously in 2 genomes!
increased signal b/c the structure of homologous genes is often very similar.

Image: Zhang, 2004
Pachter et al. J Comp Biol, 9(2), 2002



Combining Several Predictors

• Use each programs exon probability scores (probability that exon is 
included in the parse).	



• Example: keep disagreeing exons only if score is above a threshold.

Rojic et al. Bioinformatics 
18(8) 2002



Recap

• Simple gene finding approaches use codon bias and long 
ORFs to identify genes.	



• Many top gene finding programs for Eukaryotes are 
based on generalizations of Hidden Markov Models 
because multiple types of signals are present in a gene 
(intron, exon, etc.)	



• Basic HMMs must be generalized to emit variable sized 
strings.


