Gene Finding
Slides by Carl Kingsford



Genome of the Cow

a sequence of 2.86 billion
letters

enough letters to fill a

million pages of a typical
book.

TATGGAGCCAGGTGCCTGGGGCAACAAGACTGTGGTCACTGAATTCATCCTTCTTGGTCTAACAGAGAACATAG
AACTGCAATCCATCCTTTTTGCCATCTTCCTCTTTGCCTATGTGATCACAGTCGGGGGCAACTTGAGTATCCTG
GCCGCCATCTTTGTGGAGCCCAAACTCCACACCCCCATGTACTACTTCCTGGGGAACCTTTCTCTGCTGGACAT
TGGGTGCATCACTGTCACCATTCCTCCCATGCTGGCCTGTCTCCTGACCCACCAATGCCGGGTTCCCTATGCAG
CCTGCATCTCACAGCTCTTCTTTTTCCACCTCCTGGCTGGAGTGGACTGTCACCTCCTGACAGCCATGGCCTAC
GACCGCTACCTGGCCATTTGCCAGCCCCTCACCTATAGCATCCGCATGAGCCGTGACGTCCAGGGAGCCCTGGT
GGCCGTCTGCTGCTCCATCTCCTTCATCAATGCTCTGACCCACACAGTGGCTGTGTCTGTGCTGGACTTCTGCG
GCCCTAACGTGGTCAACCACTTCTACTGTGACCTCCCGCCCCTTTTCCAGCTCTCCTGCTCCAGCATCCACCTC
AACGGGCAGCTACTTTTCGTGGGGGCCACCTTCATGGGGGTGGTCCCCATGGTCTTCATCTCGGTATCCTATGC
CCACGTGGCAGCCGCAGTCCTGCGGATCCGCTCGGCAGAGGGCAGGAAGAAAGCCTTCTCCACGTGTGGCTCCC
ACCTCACCGTGGTCTGCATCTTTTATGGAACCGGCTTCTTCAGCTACATGCGCCTGGGCTCCGTGTCCGCCTCA
GACAAGGACAAGGGCATTGGCATCCTCAACACTGTCATCAGCCCCATGCTGAACCCACTCATCTACAGCCTCCG
GAACCCTGATGTGCAGGGCGCCCTGAAGAGGTTGCTGACAGGGAAGCGGCCCCCGGAGTG . . .



"Central Dogma” of Biology
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DNA =
® double-stranded, linear molecule ® strands are complements of each
other (A < T; C & G)
e each strand is string over {A,C,G,T} ® substrings encode for genes [

most of which encode for proteins @
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The Genetic Code

There are 20 different amino
acids & 64 different codons.

Lots of different ways to encode
for each amino acid.

The 3rd base is typically less
important for determining the
amino acid

Three different “stop” codons
that signal the end of the gene

Start codons differ depending on
the organisms, but AUG is often
used.



Estimates for the # of Human Genes

Before human genome sequence was available, many
(but not all) estimates for # of genes were high (> 80,000).
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# of Genes in Various Organisms

'

Fruit fly 14,889

E. coli

4,149 ® Subsequences of DNA are “genes” that
encode (mostly) for proteins.

ﬁ%} ® # of genes in various organisms still not

Influenza 1
definitely know (because finding genes in the
Pertea and Salzberg sequence is a hard problem that we will talk
Genome Biology 2010
11:206 about).

® But there are reasonably good estimates.



The Prokaryotic Gene Finding Problem

* Genes are subsequences of DNA that tell the cell how to make specific
proteins.

* How can we find which subsequences of DNA are genes!?

Start Codon: ATG
Stop Codons: TGA, TAG, TAA

>
ATAGAGGGTATGGGGGACCCGGACACGATGGCAGATGACGATGACGATGACGATGACGGGTGAAGTGAGTCAACACATGAC

Challenges:
* The start codon can occur in the middle of a gene (where it encodes for the
amino acid methionine)
* The stop codon can occur in nonsense DNA between genes.
* The stop codon can occur “out of frame” inside a gene.
* Don’t know what “phase” the gene starts in.



A Simple Gene Finder

|. Find all stop codons in genome

2. For each stop codon, find the in-frame start codon farthest upstream
of the stop codon, without crossing another in-frame stop codon.

GGC TAG ATG AGG GCT CTA ACT ATG GGC GCG TAA

Each substring between the start and stop codons is called an ORF
“open reading frame”

3. Return the “long” ORF as predicted genes.

3 out of the 64 possible codons are stop codons = in random DNA,

every 22nd codon is expected to be a stop.



Gene Finding as a
Machine Learning Problem

* Given training examples of some known genes, can we
distinguish ORFs that are genes from those that are not!

* |dea: can use distribution of codons to find genes.
* every codon should be about equally likely in non-gene DNA.

* every organism has a slightly different bias about how often
certain codons are preferred.

* could also use frequencies of longer strings (k-mers).



Bacillus anthracis (anthrax) codon

usage

Uuuu F 0.76 UCU S 0.27 UAU Y 0.77 UGU C 0.73
gucC F 0.24 UCC S 0.08 UAC Y 0.23 UGC C 0.27
UUA L 0.49 UCA S 0.23 UAA * 0O.060 UGA * 0.14
uuG L 0.13 UCG S 0.06 UAG * 0.20 UGG W 1.00
CUOU L 0.1 CCU P 0.28 CAU H 0.79 CGU R 0.26
CuC L 0.04 <ccc P 0.07 CAC H 0.21 CGC R 0.060
CUA L 0.14 CCA P 0.49 CAA Q 0.78 CGA R 0.106
CUG L 0.05 CCG P 0O0.16 CAG Q 0.22 CGG R 0.05
AUU I 0.57 ACU T 0.36 AAU N O.76 AGU S 0.28
AUC T 0.15 ACC T 0.08 AAC N 0.24 AGC S 0.08
AUA I 0.28 ACA T 0.42 AAA K 0.74 AGA R 0.36
AUG M 1.00 ACG T 0.15 AAG K 0.26 AGG R 0.11
GUU V 0.32 GCU A 0.34 GAU D 0.81 GGU G 0.30
GUC v 0.07 GCC A 0.07 GAC D 0.19 GGC G 0.09
GUA V 0.43 GCA A 0.44 GAA E 0.75 GGA G 0.41
GUG V 0.18 GCG A 0.15 GAG E 0.25 GGG G 0.20



An Improved Simple Gene Finder

* Score each ORF using the product of the probability
of each codon:

GFScore(g) = Pr(codon|)xPr(codonz)xPr(codons)x...xPr(codon,)

But: as genes get longer, GFScore(g) will decrease.
So: we should calculate GFScore(gli...it+k]) for some window size k.

The final GFSCORE(g) is the average of the Scores of the windows in it.



Salzberg et al., NAR, 1998

Score ORFs using 6 HMMs:

® | model for each reading frame (3 forward, 3 reverse)

ORFs for which the correct reading frame is the highest score
are saved as candidates.

Use “Interpolated Markov models™ to adapt to data availability

Handle overlapping ORFs



Interpolated HMMs

Length of the sequence

Sequence
/ String ending at position x

Model

IMM score is a linear combination of 8th, 7th, ..., Oth order models:

Weight of the k-mer ending at position x-1

_— T~
IMMi(Sy) =M Sy — 1)|® Pfc(sx) + [1 =[Sy — 1)) * IMM _ 1(Sx)

Probability of letter at position x from a kth-order model



Setting Parameters

® If # of occurrences of context k-mer = 400, \ = |

® Otherwise compare the following with a X? statistic:

Frequency f

Freque | Scores IMM;-1
distribution with with context
context length i length /-1

A EEE A &R

C EEE — S

s G EEEE N G
i T B i-1 T EE

® Set A as follows, where c is the x2 statistic that the frequencies did not come

from the IMM distribution:
0.0 :
_ ifc < 0.50
A’i(Sx— 1) — ﬁ zbe{acgt}f(slsz...sib) ifc = 0.50



Setting Parameters

® If # of occurrences of context k-mer = 400, \ = |

® Otherwise compare the following with a X? statistic:

Frequency f Scores IMM;.1
distribution with with context

context length | length i-1

When c is large, distribution of length i
frequencies differs from that predicted

from the IMM distribution:

0.0 .
ifc < 0.50
A(Se-1) = Y7265 D setacsnf S1525b) i c = 050



IMM vs. 5th Order HMM

Model Genes Genes Additional
found missed genes

GLIMMER IMM 1680 (97.8% 37 209

5th-QOrder Markov 1574 91.7%) 143 104

The first column indicates how many of the 1717 annotated genes in H.influenzae
were found by each algorithm. The ‘additional genes’ column shows how many extra
genes, not included in the 1717 annotated entries, were called genes by each method.

Salzberg et al., NAR, 1998



Overlaps

—_—
S ——

\/Y—\_/

Scored separately with the
two IMMs for the reading
frames for the two genes

Discard the shorter gene if the longer gene’s reading frame scores higher



Eukaryotic Genes & Exon Splicing

Prokaryotic (bacterial) genes look like this:

Eukaryotic genes usually look like this:

M intron “ intren M

|

Introns are
thrown away

MRNA:

Exons are concatenated together

This spliced RNA is what is
translated into a protein.



Hypothetical Eukaryotic Gene Parse Tree

Searls, The Computational

Linguistics of Biological
/ N

| | | | | |
- . CCCMT. - CMTM. - .Ac. - .ATG. - .cGTCACTA“. - 'MMG. - 'CATAG. - 'chmmmhr. - .GT&G. - 'MQG. - 'Gmaccccm. - .m. - .MTm. - .

upstream primary_transcript downstream
cat_box cap_site translated_region termination

| |
| | .
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A (Bad) Eukaryotic Gene Finder

Arrows show

transitions with non-

Pr(G) = 1 e
zero probabilities
Start 3
Pr(A) = 1 Pr(T) = 1 What are some
Y reasons this HMM

Finite State Machine gene finder s likely to
do poorly!?
D ONC

)
acceptor ¢

acceptor

‘—L ‘l\)




Bad Eukaryotic Gene Finder

Why is it so bad!?

e The positions in the codons are treated independently:

the probability of emitting a base can’t depend on which
previous base was emitted.

* Only one strand of the DNA is considered at once.

 |ength distributions of introns and exons are not
considered.



Genscan

Burge & Karlin. J. Mol. Biol.
(1997) 268, 78+94

® Explicitly double stranded

® One of the first to handle
sequences with > | gene in them




Generalized HMMs

 Each state can emit a sequence of symbols.

* In the diagram on the previous slide, each state emitted a
complete gene feature (e.g.an entire exon):

Probability that
the state will
emit d; symbols.

e

R

maXH Pr(x;...xivrq, | ms,d;) Pr(d; | m;) Pr(m; — m01)
1=1 %r—d’ — _

Probability of Prol?a.bili.ty of
emitting the transitioning to

string of length d.. the next state




Generalized HMMs

 Each state can emit a sequence of symbols.

* In the diagram on the previous slide, each state emitted a
complete gene feature (e.g.an entire exon):

Probability that

the state will
emit d; symbols.
n o — IR
max H Pr(x;...xi1q, | mi,d;) Pr(d; | m;) Pr(m; — mi01)
n 1 ~ v —
Probability of

Probability of
emitting the
string of length d..

transitioning to
the next state

This probability could itself be computed by
an HMM or a Markov chain, etc.



Components Needed

Probability distribution of initial state

= the fraction of known genome corresponding to each state,
divided into groups by GC content.

State transition probabilities

= the probability X follows Y in known genes

Length distributions for each state

For exons: = estimated from empirically observed distribution (next slide)

For introns: = geometric distribution with parameter qqc, where is the best
fit parameter for regions with a given GC content.

Sequence models for each state/length

for states with B FF
strong motifs:




# of Introns

# of Exons

Feature Length Distributions
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Sequence Profiles (PSSM)

Motif Position
| 2 3 45 6 7 8 9 101112 13141516 17 18 19

T

mOOD>

Amino Acid

<2<+

/ _
Color = Probability that the i*" position 2 = |
has the given amino acid = ej(x).




Sequence Generators

Exons: 3 different 5th-order Markov models:

® | model for each base of a codon

® Sequence generated by repeatedly applying model |, then 2, then 3,
and so on.

® Separate models for regions with GC content < 43%

Non-coding states: (F, T, |;)
® 5th-order Markov model

® Separate model for regions with GC content < 43%

Acceptor / donor sites: a more complicated model that accounts for
dependencies between positions.



GlimmerHMM

Majoros et al, 2004

Differences:

Interpolated HMM for
coding sequences

+ strand -

New splicing model

k ------ Intergenic e === = — -

Exon Sngl-

- strand -

GlimmerHMM model



+ strand -

GlimmerHMM

Majoros et al, 2004

ExonO+ Exanl+ n2+

- strand -

Differences:
> Interpolated HMM for
coding sequences
: New splicing model
Init ol ‘Term Exon+
Exon Sngl+ ]—
- Intergenic e === = — -
Exon Sngl-

GlimmerHMM model



GlimmerHMM Performance

% of predicted in-
gene nucleotides
that are correct

l

% of predicted exons
that are true exons.

l

Nuc Sens Nuc Prec Nuc Accur Exon Sens Exon Prec Exact Genes Size of test set
D.rerio 93% 78% 86% 77% 69% 24% 549 genes
C.elegans 96% 95% 96% 82% 81% 42% 1886 genes
Arabidopsis 97% 99% 98% 84% 89% 60% 809 genes
Cryptococcus 96% 99% 98% 86% 88% 53% 350 genes
Coccidioides 99% 99% 99% 84% 86% 60% 503 genes
Brugia 93% 98% 95% 78% 83% 25% 477 genes

1

% of true gene
nucleotides that
GlimmerHMM

predicts as part of

genes.

T

% of true exons that
GlimmerHMM found.

1

% of genes

perfectly found




Compare with GENSCAN

e On 963 human genes:

Nuc Sens Nuc Prec Nuc Acc Exon Sens Exon Prec Exon Acc Exact Genes
GlimmerHMM 86% 72% 79% 72% 62% 67% 17%
Genscan 86% 68% 77% 69% 60% 65% 13%

* Note that overall accuracy is pretty low.




Generalized Pair HMMs

Use: find genes simultaneously in 2 genomes
iIncreased signal b/c the structure of homologous genes is often very similar.

€966 EIEES

® Pair: Each state emits two
symbols, one for each sequence

® Generalized Pair: a pair of
lengths d, e is drawn from a
joint probability distribution and
a pair of sequences X,Y of
length d,e, respectively, are
generated at each state.

Pachter et al. J Comp Biol, 9(2), 2002

Reverse strand: mirror reflection of above



Generalized Pair HMMs

Use: find genes simultaneously in 2 genomes
iIncreased signal b/c the structure of homologous genes is often very similar.

000 006
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® Pair: Each state emits two
symbols, one for each sequence

® Generalized Pair: a pair of
lengths d, e is drawn from a
joint probability distribution and
a pair of sequences X,Y of
length d,e, respectively, are
generated at each state.

Pachter et al. J Comp Biol, 9(2), 2002

Reverse strand: mirror reflection of above



Combining Several Predictors

o
({e] -
A

Rojic et al. Bioinformatics

18(8) 2002
0.7 - A
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»

0.0-0.2 02-04 04-06 06-0.8 08-1.0
exon probability score

e Use each programs exon probability scores (probability that exon is
included in the parse).

e Example: keep disagreeing exons only if score is above a threshold.



Simple gene finding approaches use codon bias and long
ORFs to identify genes.

Many top gene finding programs for Eukaryotes are
based on generalizations of Hidden Markov Models
because multiple types of signals are present in a gene
(intron, exon, etc.)

Basic HMMs must be generalized to emit variable sized
strings.



