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Abstract—Diffusion through graphs can be used to model
many real-world process, such as the spread of diseases, social
network memes, computer viruses, or water contaminants. Often,
a real-world diffusion cannot be directly observed while it is
occurring — perhaps it is not noticed until some time has passed,
continuous monitoring is too costly, or privacy concerns limit data
access. This leads to the need to reconstruct how the present state
of the diffusion came to be from partial diffusion data. Here, we
tackle the problem of reconstructing a diffusion history from
one or more snapshots of the diffusion state. This ability can be
invaluable to learn when certain computer nodes are infected or
which people are the initial disease spreaders to control future
diffusions. We formulate this problem over discrete-time SEIRS-
type diffusion models in terms of maximum likelihood. We design
methods that are based on submodularity and a novel prize-
collecting dominating-set vertex cover (PCDSVC) relaxation that
can identify likely diffusion steps with some provable performance
guarantees. Our methods are the first to be able to reconstruct
complete diffusion histories accurately in real and simulated
situations. As a special case, they can also identify the initial
spreaders better than existing methods for that problem. Our
results for both meme and contaminant diffusion show that the
partial diffusion data problem can be overcome with proper
modeling and methods, and that hidden temporal characteristics
of diffusion can be predicted from limited data.

I. INTRODUCTION

Dynamic processes over networks are used to model and
analyze properties of various social and biological systems.
Diffusion is special case of those processes in which a
spread (e.g., an infection) starts from some part of the graph
and spreads to other portions over time via edges of the
graph. Some examples are virus propagation in computer
networks [1], and idea and gossip spreading in social net-
works [2]. A diffusion model, such as the commonly studied
SIRS and SEIRS models, defines the set of possible states
that the nodes of the graph can be in and rules for proba-
bilistically switching between states. Recently, [3] introduced
the VPM (Virus Propagation Model) that generalizes all those
Markovian diffusion models and defines the hierarchical rela-
tionships between them.

It is not always easy to know the whole diffusion progres-
sion, initial diffusion conditions, or the time it started due to
several limitations. For example, existence of a computer virus
diffusion over the computer network may only be noticed after
a significant number of computers stop operating. A similar
problem exists in detecting influenza diffusion [4]. We may
also not track the diffusion of a virus in email networks and
a contaminant in a water distribution network due to privacy

and physical limitations, respectively. In all these cases, it is
essential to learn more about the past to take precautions to
prevent future epidemics, to learn more about the true diffusion
mechanics, to provide safer water, to break privacy and so on.
However, given present-day diffusion data, it is not trivial to
search for the most likely diffusion progression in the past as
there will be many valid histories leading to the observed data.

In this paper, we tackle this problem of inferring a complete
diffusion history from one or more diffusion snapshots for
discrete-time SEIRS-type diffusion models that include SI,
SIS, SIR, SIRS, SEIR, SEIS, SEIRS. Those models with their
abstract states and independent cascade (IC) assumption [5]
have been used to model many forms of diffusion in many
different domains [2], [4], [6].

Complete diffusion history reconstruction has not been pre-
viously studied but similar problems exist in the literature. The
most relevant such problem is Initial Spreader Identification
where we want to identify the most probable initial infected
nodes that started a diffusion. Among approaches for this
problem, Keffectors [7] identifies the k best-possible initial
spreaders. However, it requires an estimate of the number of
initial spreaders to be given as input. Rumor [8] finds the most
probable spreader by estimating the rumor centrality but it
assumes a single initial spreader, and it is only defined for
SI model. Lastly, NetSleuth [9] does not require the number
of initial spreaders as an input. However, it works only for
the restricted cases of SI model, and it is based on MDL
principle without any provable performance guarantee. None
of these methods infer the whole diffusion progression, as our
approaches do. Another related problem is Graph Inference
where we want to reconstruct the unknown graph from ob-
served multiple diffusion traces over it. This problem is fun-
damentally different than the history reconstruction problem
as graph inference methods [10], [11] search in the graph
space assuming full observability of multiple traces whereas
our methods search in temporal diffusion progression space as
they try to complete the missing history of a single trace.

We formulate the diffusion history reconstruction problem
as that of determining the maximum likelihood (ML) history
given diffusion snapshots that may come from multiple time
points. We designed an algorithm called DHR-sub (submodular
history reconstruction on discrete dynamics) that reconstructs
the history before the earliest measured time point by greedily
maximizing the non-monotone submodular log-likelihood at
each previous time step. It further reconstructs the history
between the consecutive diffusion data time points by solving
the problem as non-monotone submodular maximization under



matroid base constraints.

Though accurate and practical for smaller graphs, DHR-
sub can take some time to solve. To reconstruct diffusion
history faster, we designed DHR-pcdsvc that solves the first-
order Taylor approximation relaxation of the log-likelihood.
We define this new problem as Prize-Collecting Dominating-
Set Vertex Cover, and show that it can be approximated within
a factor of O(log(|V |)). This problem can be further relaxed by
removing the covering constraints; it becomes Prize-Collecting
Vertex Cover, and we design DHR-pcvc that approximates
it by a factor of 2 for non-bipartite models and solves this
newer relaxation optimally by transforming it to s-t mincut for
bipartite models. We also design ensemble approaches for all
of our methods that estimate the robust set of initial spreaders
from multiple runs of the algorithm.

In summary, our main contributions are:

• Our methods reconstruct the whole diffusion history
nonparametrically for all SEIRS-type models whereas
the existing methods only identify the initial spreaders
for certain models;

• Our methods formulate the problem in terms of dif-
fusion likelihood, and we give some performance
guarantees on the quality of the obtained solutions;

• Our relaxation methods DHR-pcdsvc and DHR-pcvc
scale well to history reconstruction over tens of thou-
sands of nodes with provable performance guarantees;

• Our methods perform better by using the diffusion
information from all the nodes (not just from infected
nodes), and from multiple time points if available;

• We use reconstructed histories to predict several dif-
fusion features such as speed and acceleration that are
not apparent in the observed portion of the diffusion.

Our methods more accurately identify initial spreader sites
on a water distribution network and on simulated networks.
In terms of history reconstruction, we compared our methods
with a baseline heuristic since there is no previous method.
All our methods can accurately reconstruct several meme
diffusion histories on blog networks. They also perform better
on synthetic networks under different models. In general, all
our methods reconstruct the diffusion history reasonably fast
and accurately compared to the hardness of the problem (see
Section VII-F). In many cases, relaxations of the original
problem can reconstruct the diffusion history almost as good
as the original formulations in a far shorter amount of time.
Lastly, we also estimate the speed and acceleration dynamics
of several memes over blog network from their reconstructed
histories. In this case, estimated dynamics from quite a few
diffusion snapshots match the true dynamics almost perfectly
producing decent whole history reconstruction performance.
Overall, our results for different types of diffusion show that
many characteristics of complete diffusion history can be
inferred with proper modeling and methods.

II. SEIRS DIFFUSION DYNAMICS

SEIRS diffusion dynamics over directed graph G = (V,E)
with possible state transitions is shown in Figure 1. The SEIRS

Fig. 1. SEIRS State Transition Diagram

Symbol Definition and Description
G = (V,E) directed graph G
P (v), S(v) set of predecessors, successsors of node v
S SEIRS states (S,E,I,R)
M diffusion model of SEIRS-type models

puv
probability of diffusion from infected node u to
susceptible node v

e2iv , i2rv , r2sv , probability of (E → I, I → R, R → S, S → E
s2ev , s2iv , i2sv S → I, I → S) transition for v
tsv , tev , tiv , trv time v transitions into (S, E, I, R)
St, Et, It, Rt set of nodes that are in (S, E, I, R) at time t
Dt diffusion snapshot at time t
D given diffusion data
lD length of diffusion D
TD ordered set of time points of D
tmin, tmax min(TD), max(TD)
fmin, fmax min(TD)/lD , max(TD)/lD

TABLE I. TABLE OF SYMBOLS

states are Susceptible (S), Exposed but not contagious (E),
Infected and contagious (I), and previously infected but now
Recovered (or immune to the infection) (R). Those states are
general enough abstractions to model various forms of diffu-
sion in different contexts [6], [4]. For instance, the infected
state models people having influenza symptoms in influenza
diffusion over humans, and it represents creation of a blog
entry about a topic in idea diffusion. Similarly, the recovered
state could represent recovery of a person from influenza or the
decontamination of a water tower from chemical contaminants
depending on the context.

In SEIRS model, diffusion starts at time t = 0 from set
of initially infected nodes and progresses over G in discrete
time steps. Let St, Et, It, Rt be the set of S, E, I, R nodes at
time t respectively. At each time step, infected nodes spread
the infection to the susceptible nodes with certain probability.
This S → E transition is exogenous; it is affected by G and
probability of exogenous transition for susceptible node v at
time t is 1 −

∏
u∈P (v)∩It(1 − puv), where P (v) is the set

of nodes with edges into v and puv is the probability of
transmission of the agent over edge (u, v). The remaining
E → I, I → R, R → S transitions are endogenous; their
transition probabilities are e2iv , i2rv , r2sv respectively, and
they are not affected by G. For every node at each time
step, if a transition succeeds, the node transitions to a new
state. Otherwise, it follows similar procedure at next time
step, independent of the previous trials. SEIRS-type models
are Markovian since state of a node at time t depends on its
state and its neighbors’ states at previous time steps, and it
obeys independent cascade (IC) [5] assumption which states
that a diffusion from one of nodes predecessor is enough for
node to become exposed/infected. The symbols used in this



Fig. 2. Example Problem: SIR Diffusion over 8 node graph where we can
only observe t2 and t6 without knowing the initial diffusion time tstart. We
want to reconstruct the missing diffusion snapshots from tstart onwards

text are given in Table I for reference.

SEIRS-type models include the well-known SI, SIR, SIS,
SIRS, SEIR, SEIRS models [12]. SEIRS is the most gen-
eral model among these models, and some of its transitions
disappear or change slightly in other models. For instance,
in SIR, there is no exposed state; the exogenous transition
is S → I since nodes proceed directly to the infected state,
and there is no R → S transition. We can classify SEIRS-
type models in various ways. SIRS, SEIRS are loopy models
where R → S transition is available whereas SI, SIR, SEIR
are non-loopy models. We can also split SEIRS-type models
into bipartite and non-bipartite models: a node that gets the
infection directly transitions into infected state in non-bipartite
models such as SI, SIR, SIRS, SIS whereas it goes through
the exposed state for bipartite models such as SEIR, SEIRS.
The model may also be either uniform in which case all of the
transition probabilities are the same for each edge and node,
or non-uniform in which case the probabilities may vary over
the edges and nodes. We discuss the general non-uniform case
here; the uniform case is a simple specialization.

III. DIFFUSION HISTORY RECONSTRUCTION PROBLEM

For diffusion D, let Dt = (St, Et, It, Rt) be the state
of the nodes at the time t, where St is the set of susceptible
nodes, etc. Dt is a diffusion snapshot. We define Problem 1
to reconstruct the diffusion history when the diffusion length
is unknown:

Problem 1. We are given: a graph G = (V,E), state transition
probabilities (puv , e2iv , i2sv , i2rv , r2sv) that define an
SEIRS-type model, a collection of time points TD at which
snapshots were taken, and a collection of diffusion snapshots
D = {Dt} for t ∈ TD. Each snapshot records the state
of every node at a single time point, partitioning them into
V = St ∪ Et ∪ It ∪Rt.

Our goal is to infer the past states (susceptible, exposed,
infected and recovered) of every node at every time t 6∈ TD.

Figure 2 illustrates the history reconstruction problem for
the SIR model. Each subsequent layer shows the progression of
time, and we want to reconstruct the diffusion progression from

unknown initial time tstart onwards given full state knowledge
at subset of time points. The initial spreader identification
problem is special case of Problem 1 where we want to identify
only the initial infected nodes.

IV. NON-MONOTONE SUBMODULAR HISTORY
RECONSTRUCTION (DHR-sub)

Let tmax = max(TD), tmin = min(TD), tstart be the
unknown initial diffusion time, and M be the specific SEIRS
type model that diffusion snapshots are collected over, SEIRS-
type models are Markovian so the probability of diffusion D =
{Dtstart

, . . . , Dtmax
} that starts at tstart and progresses until

tmax can be written as the multiplication of the probability of
each time step in terms of previous time steps as in (1):

P (D) =

tmax∏
j=tstart+1

P (Dj |Dj−1, . . . , Dtstart) P (Dtstart) (1)

We assume the state transition probabilities (puv , e2iv , i2rv) to
be same at each time step, so the overall diffusion probability
in (1) simplifies to (2) under this memoryless property:

P (D) =

tmax∏
j=tstart+1

P (Dj |Dj−1) P (Dtstart
) (2)

Let TD be the ordered set of observed time points, Xj =
(Sj , Ej , Ij , Rj) be the unknown state knowledge at time
∀j /∈ TD, and X = {Xj : j ∈ {tstart, . . . , tmax} \ TD}.
Given a collection of diffusion snapshots D for TD, our goal
is to reconstruct the most probable diffusion progression (X)
by maximizing the log-likelihood as in Equation (3)–(5):

argmax
X

log(L(X|D)) = log(Lpre)︸ ︷︷ ︸
DHR-sub-early

+
∑

(j,k)∈P(TD)

log(Lin
j,k)︸ ︷︷ ︸

DHR-sub-between
(3)

s.t. IntraConsistent(Xj ,M), j ∈ tstart, . . . , tmax − 1 (4)
InterConsistent(Xj , Xj+1,M), j ∈ tstart, . . . , tmax − 1

(5)

where Lpre and Lin
j,k are defined in (6)–(7), P(TD) =

{(tj , tj+1), j ∈ 1, . . . , |TD|−1}, and maximum log-likelihood
estimate is the same as the maximum likelihood estimate since
the logarithm is a monotonically increasing function:

Lin
j,k = P (Xj+1|Dj)P (Dk|Xk−1)

∏
t∈j+1,..,k−2

P (Xt+1|Xt)

(6)

Lpre =

tmin−tstart∏
j=1

P (Xtmin−j+1|Xtmin−j)P (Xtstart
) (7)

There are two types of constraints: IntraConsistency con-
straints (4) make sure that the variable assignments at each
time step are valid under M: every node belongs to a single
state at each j, and InterConsistency constraints (5) make sure
that the diffusion between each consecutive time steps is valid
according to rules of M: every node that got the infection at
j has at least one infected predecessors at j − 1, and node
transitions are valid according to M. For instance, recovered
nodes cannot become susceptible if M is not loopy. These
constraints are described in more detail below.



The diffusion history between consecutive observed TD
pairs is independent of each other since Eq. 2 is memoryless,
and each Dj completely describes states of all nodes at time
j. Thus, maximizing (3)–(5) can be partitioned into multiple
independent subproblems of two types that can be optimized
independently. The first type (DHR-sub-early) maximizes
log(Lpre) under the consistency constraints to reconstruct the
history before tmin. The second type (DHR-sub-between)
maximizes log(Lin

j,k) to reconstruct the history between the
snapshots from time j and time k under the consistency con-
straints. We define algorithms for both types of subproblems
below. In the text, we use Dj and Xj interchangeably for
∀j ∈ TD.

A. History reconstruction before the earliest observed snap-
shot (DHR-sub-early)

To find the most likely diffusion history before tmin, we
solve the problem:

argmax
X

log(Lpre) =

tmin−1∑
j=tstart

log
(
P (Xj+1|Xj)

)
+ log

(
P (Xtstart)

)
(8)

s.t. IntraConsistent(Xj ,M), j ∈ tstart, . . . , tmin − 1 (9)
InterConsistent(Xj , Xj+1,M), j ∈ tstart, . . . , tmin − 1 (10)

We assume a uniform prior P (Xtstart
) over set of initially

infected nodes since we do not have any extra information
about them. We now discuss how to formulate the objective
function and constraints above in terms of binary variables
representing each node’s state.

1) Expressing the objective function (8): Given Xj , the
probability of observing the diffusion snapshot Xj−1 at time
j − 1 can be expressed as:

P (Xj |Xj−1) = L(Xj−1|Xj) = Lj
s Lj

e L
j
i L

j
r (11)

where Lj
s, Lj

e, Lj
i , Lj

r are the likelihoods of the nodes in Sj ,
Ej , Ij , Rj states respectively in terms of Xj−1.

To define Lj
s, Lj

e, Lj
i , Lj

r, we introduce a single binary
variable for each node to define its state at time j − 1 given
its state at time j. A binary variable is sufficient because there
are only two possibilities for a node at time j − 1 given its
state at time j: either the node is in the same state as time j,
or the node has made a state transition at time j, and when
computing L(Xj−1|Xj), the state at time j is known.

We define a variable sv,j−1 for every node v ∈ Ej , and
rv,j−1 for every node v ∈ Rj . For every node v ∈ Ij , we
define variable for the incoming state of I (ev,j−1 for bipartite
M and sv,j−1 for non-bipartiteM). Similarly, for every node
v ∈ Sj , we define a variable for the incoming state of S if
M is loopy, otherwise we do not need to define the variable,
since we know that if a node is in Sj it must be in Sj−1.

With these variables, the likelihoods in (11) are explicitly

defined as in (12)–(15) for SEIRS model as:

Lj
e =

∏
v∈Ej

(
Lv,j−1
e2e

(
1− Lv,j,I

s2e L
v,j,R
s2e

)sv,j−1
)

(12)

Lj
s =

∏
v∈Sj

((
Lv,j,I
s2e L

v,j,R
s2e

)sv,j−1

(r2sv)1−sv,j−1

)
(13)

Lj
r =

∏
v∈Rj

(
(i2rv)1−rv,j−1(1− r2sv)rv,j−1

)
(14)

Lj
i =

∏
v∈Ij

((
(e2iv)ev,j−1(1− i2rv)1−ev,j−1

))
(15)

where the sub-terms are defined as:

Lv,j,I
s2e =

∏
u∈P (v)∩Ij

(1− puv)1−eu,j−1

Lv,j,R
s2e =

∏
u∈P (v)∩Rj

(1− puv)1−ru,j−1

Lv,j
e2e =

∏
v∈Ej

(1− e2iv)1−sv,j−1

Each likelihood above for a given state (Lj
s, Lj

e, Lj
i , Lj

r) has
two parts: the likelihood of the nodes staying at the given state,
and the likelihood of the nodes transitioning towards the given
state. For example, Lj

e is the likelihood for nodes v ∈ Ej−1 not
to transition to infected state at time j, and nodes v ∈ Sj−1 to
become exposed at time j. This gives us an explicit definition
of objective function (8) in terms of a collection of binary
variables.

Likelihoods (12)–(15) are defined for the most general
model SEIRS, some of the likelihood terms disappear, or
change slightly for models that are missing some of the states.
For instance, parts including r2sv in Lj

s and Lj
r disappear

for non-loopy M, the likelihood representing the exogenous
transition Ls2e is replaced by the similarly defined Ls2i for
non-bipartite models, etc.

2) Expressing the constraints in equations (9) and (10):
The intra-consistency constraints (9) that require every node
have a single state at each time step are already implied by the
objective function since there is only a single variable for every
node modeling the two possibilities. The inter-consistency
constraints (10) can be modeled as packing constraints:∑
u∈P (v)∩Ij

eu,j−1 +
∑

u∈P (v)∩Rj

ru,j−1 + sv,j−1 ≤ dv,∀v ∈ Ej

(16)

These constraints make sure every node that became exposed
at time t (v ∈ Ej , Sj−1) has at least one incoming edge from
node u ∈ Ij−1 (u ∈ Ij ∪Rj). However, these constraints (16)
are already represented in the objective function (11) since
the higher order term log(Lj

e) takes the lowest possible
value log(0) = −∞ when any of them are not satisfied.

3) Optimizing the likelihood under these constraints:
Since tstart is unknown, we reconstruct the history using the
above likelihoods and constraints by iteratively maximizing
the likelihood at each time step tstart ≤ j < tmin backwards
starting from tmin − 1, where the state is known. In each



iteration, given Xj , we reconstructs the states at the previous
time step j − 1 (Xj−1) by maximizing:

max F = log(Lj
s) + log(Lj

e) + log(Lj
i ) + log(Lj

r) (17)

Objective F for single step reconstruction is submodular as
proven in Theorem IV.1 for all SEIRS-type models except SIS.
For SIS model, history reconstruction can still be expressed as
submodular maximization under packing and partition matroid
constraints by modifying F as in Theorem IV.2. Proofs of all
theorems can be found in the extended version this paper.

Theorem IV.1. F in Equation (17) is non-monotone submod-
ular for all SEIRS-type models except SIS.

Theorem IV.2. Program (17)–(16) for SIS can be expressed
as submodular maximization under both packing and partition
matroid constraints.

Therefore, optimizing (17) is a non-monotone submodular
maximization problem. Non-monotone submodular maximiza-
tion is NP-hard since its special cases such as MAX DICUT
is NP-hard [13]. To solve this problem, we apply the de-
terministic non-monotone submodular maximization method
by [14] repeatedly between adjacent time steps and iterate until
the estimates between the consecutive time steps are same,
indicating that we have reached the initial tstart state. At each
step, [14] maximizes a normalized Fn at every step that is
obtained by adding −F (∅) to every S ⊂ 2N so Fn(∅) = 0,
where F (∅) is the value of the objective if no nodes change
states between adjacent time points. As applied here, this is
done by starting with an initial solution X ′j = ∅ that represents
the same state assignments between the consecutive time steps
j and j−1. For each time step, we add the node with the most
increase in Fn to the set of nodes that have changed state.
Algorithm 1 gives a schematic outline of the procedure.

Algorithm 1 DHR-sub-early
1: j ← tmin − 1
2: repeat
3: {X ′j is the set of nodes that changed state at time j}
4: X ′j ← ∅
5: repeat
6: Add nodes to X ′j according to the rule for

non-monotone submodular maximization approxima-
tion [14]

7: until no node can be added that increases the score
8: j ← j − 1
9: until X ′j = X ′j+1

The method by [14] has a 1
3 approximation ratio for

normalized submodular functions, and we found it to perform
in practice better than the randomized algorithm [15] with
approximation ratio 0.5 due to the structure of our problem.
The 1

3 ratio for normalized Fn implies a data-dependent bound
for F as proven in Theorem IV.3 where F (∅) = −S0, Xopt is
the set of elements maximizing F and F (Xopt) = −O.

Theorem IV.3. Algorithm 1 has approximation guarantee
of k + S0

O (1 − k) for k = 1
3 in terms of minimization of

supermodular −F for each of its iteration.

B. History Reconstruction Between Consecutive
Snapshots (DHR-sub-between)

History reconstruction for every interval between by con-
secutive, observed TD pairs is independent of other intervals.
Therefore, we can solve each independently by solving the
following problem:

argmax
X

T = log(P (Xj+1|Dj)) + log(P (Dk|Xk−1))

+
∑

t∈j+1,..,k−2

log(P (Xt+1|Xt)) (18)

s.t IntraConsistent(Xt,M), t ∈ j + 1, . . . , k − 1 (19)
InterConsistent(Xt, Xt+1,M), t ∈ j, . . . , k − 1 (20)

where we only consider Xt that lay within the [j, k] interval
bracketed by diffusion snapshot observations Dj and Dk

1) Expressing objective (18): Objective (18) has three
parts: log(P (Dk|Xk−1)) is same as the single step backwards
reconstruction of DHR-sub-early, and log(P (Xj+1|Dj)) is a
trivial forward diffusion expression with unknown Xj+1 and
known Dj . On the other hand, both Xt+1 and Xt are unknown
in log(P (Xt+1|Xt)), and it can be written explicitly as:

log(P (Xt+1|Xt)) = log(Lt+1
s ) + log(Lt+1

e ) + log(Lt+1
i ) + log(Lt+1

r )
(21)

where the likelihoods are defined as:

Lt+1
e =

∏
v∈V

((1− e2iv)ev,t ev,t+1 (1.0− Lexo)
ev,t+1) (22)

Lt+1
s =

∏
v∈V

(Lsv,t+1
exo (r2sv)rv,t sv,t+1) (23)

Lt+1
r =

∏
v∈V

(
(i2rv)iv,t rv,t+1(1.0− r2sv)rv,t rv,t+1

)
(24)

Lt+1
i =

∏
v∈V

(
(e2iv)ev,t iv,t+1(1.0− i2rv)iv,t iv,t+1

)
(25)

and the term in (22) is:

Lexo =
∏

u∈P (v)

(1− puv)iu,t sv,t

Objective (18) is non-monotone submodular as proven in
Theorem IV.4.

Theorem IV.4. T in (18) is non-monotone submodular for all
SEIRS-type models.

2) Expressing the inter- and intra-consistency constraints:
The inter-consistency constraints (20) ensure the validity of
diffusion, and they are explicitly written, using binary state
variables sv,t, ev,t, iv,t, rv,t for every v ∈ V and t ∈ j, . . . , k,
as:

sv,t + iv,t+1 + rv,t+1 ≤ 1, (26)
ev,t + sv,t+1 + rv,t+1 ≤ 1, (27)
iv,t + sv,t+1 + ev,t+1 ≤ 1, (28)
rv,t + ev,t+1 + iv,t+1 ≤ 1, t ∈ j, . . . , k − 1, v ∈ V (29)

ev,t+1 − sv,t ≤
∑

u∈P (v)

iu,t, t ∈ j, . . . , k − 1, v ∈ V (30)



Constraints (26)–(29) ensure that state transitions obey SEIRS
dynamics rules such as a node infected at t cannot be suscepti-
ble or exposed at t+ 1. The remaining constraint (30) ensures
that a newly exposed node must have at least one infected pre-
decessor at previous time step. The constraints (30) are already
represented in the objective function, since (1.0− Lexo)

ev,t+1

in Lt+1
e , and (21) takes the lowest possible value log(0) = −∞

when any of them is not satisfied. So, we can remove the
constraints (30) without affecting the results. (Some of these
constraints are modified accordingly for subset of models. For
example, (28) becomes iv,t + sv,t+1 ≤ 1 for SI.)

The intra-consistency constraints (19) ensure that every
node belongs to a single state at each time step:

sv,t + ev,t + iv,t + rv,t = 1, t ∈ j+ 1, . . . , k− 1, v ∈ V (31)

3) Optimizing (18) in practice: Let E =
{sv,t, ev,t, iv,t, rv,t | v ∈ V, t ∈ j, . . . , k}. Then the intra-
consistency constraints (31) define base of a partition matroid
over the ground set E [16], and constraints (26)–(29) define
2-independence system over the same ground set: Its rank
quotient is 2 since the ratio of cardinality of the largest
base (maximal independent set) to the cardinality of the
smallest base is at most 2. For more detailed information on
matroid and independence system, see [17], [18].

Combining (21) and (18) with the discussion above, the
history reconstruction between time steps j and k can be then
written as optimizing

max T =

k∑
t=j+1

log(Lt
s)+log(Lt

e)+log(Lt
i)+log(Lt

r) (32)

subject to inter-consistency constraints (26)–(29) and intra-
consistency constraints (31). (31) cannot be removed as in
Section IV-A since each node may belong to any state at time
t as we do not know the node states at t− 1 or t+ 1 (except
for boundary times j and k).

When considered together, constraints (26)–(29) and (31)
are base of a new matroid defined by the intersection of
the partition matroid and 2-independence system. Proof is as
follows: Intersection of constraints (26)–(29) and (31) relaxed
to ≤ define a matroid Mp = (Ep, Ip) where Ep = E, and
independent set Ip is subset of E satisfying (26)–(29) and
relaxed (31).Mp defines a matroid since all its bases (maximal
independent set) have the same cardinality (k− j− 1)|V |; we
can always find a state assignment for every node and every
time step that satisfies the constraints, and we cannot assign
multiple states to each node at each time step. Then, equality
constraints in the original equations (31) force independent sets
in Ip to be bases of Mp, as cardinality of an independent set
in Ip will now always be (k − j − 1)|V |.

This problem becomes non-monotone submodular maxi-
mization under matroid base constraints. It is NP-hard [16],
and its normalized version can be approximated by 1

6 by
modified local search [16]. We run this method by [16] in
DHR-sub-between to reconstruct the history between j and k.

DHR-sub-between has three main steps: In the first step, it
starts with a base of Mp that also satisfies (30), and it finds
a base B1 ⊆ Mp that is optimal under swap operations. In

the second step, it removes B1 from Mp and greedily finds
independent set X2 that is locally optimal under addition and
deletion operations. In the third step, it contracts independent
set X2 from Mp and finds two disjoint bases Ba, Bb that
are guaranteed to exist when the original matroid Mp has two
disjoint bases. Lastly, it returns the best of three bases B1,
X2∩Ba or X2∩Bb. The resulting solution always satisfies (30)
without explicitly checking for them: Local search will not
replace the current solution with a low-score invalid solution
as the objective (32) takes the lowest possible value −∞ if
any of (30) are not satisfied.

V. PRIZE COLLECTING (DOMINATING SET) VERTEX
COVER RELAXATIONS (DHR-pcdsvc, DHR-pcvc)

Although accurate and practical for smaller graphs, DHR-
sub may take some time to solve for larger graphs. We can
reconstruct the history before the earliest observed snapshot
faster by relaxing DHR-sub-early. For a relaxed version of
the problem, we define variables differently than above. When
reconstructing the history at previous time j − 1, we define
iv,j−1, ∀v ∈ Ij ∪ Rj , sv,j−1, ∀v ∈ Sj , and ev,j−1, ∀v ∈ Ej .
After this transformation, Lj

e (12) turns into

Lv,j
s2e =

∏
u∈P (v)∩(Ij∪Rj)

(1− puv)iu,j−1

Lv,j
e2e =

∏
v∈Ej

(1− e2iv)ev,j−1

Lj
e =

∏
v∈Ej

(
Lv,j−1
e2e

(
1− Lv,j

s2e

)1−ev,j−1
)

(33)

The other likelihoods are transformed similarly.

The hardness of DHR-sub-early comes from higher-order

terms
(

1− Lv,j
s2e

)1−ev,j−1

in (33), so we replace them with

their first-order Taylor expansion T v,j
s2e at the point (iu,j−1 =

1, ∀u ∈ P (v) ∩ {Ij ∪Rj} ∪ ev,j−1 = 1) as in (34).

T v,j
s2e = log(Ks2e) +

1

Ks2e

∑
u∈Ij∪Rj

∂Lv,j,(I,R)
s2e

∂iu,j−1
(iu,j−1 − 1)

(34)

In (34), Ks2e = Lv,j
s2e(1, . . . , 1) ≈ 1, so the original

reconstruction Problem (17)–(16) for single time step turns
into minimizing −Fr as in (35)–(36):

min − Fr =
∑

(u,v)∈E∗

wuviu,j−1 ev,j−1 +
∑

u∈Ij∪Rj

wu iu,j−1+

∑
v∈Ej

wv ev,j−1 +
∑
v∈Sj

wv sv,j−1 (35)

s. t.
∑

u∈P (v)∩{Ij∪Rj}

iu,j−1 + ev,j−1 ≥ 1, v ∈ Ej (36)

where iu,j = 1 − iu,j and ev,j = 1 − ev,j . The covering
constraints (36) are inter-consistency constraints ensuring the
validity of the diffusion. Similar to DHR-sub-early, we do not
need intra-consistency constraints since we are reconstructing
the history step by step. This problem is Prize Collecting
Dominating Set Vertex Cover (PCDSVC) over the graph



G∗ = (V ∗, E∗) where V ∗ = V with weights wv and directed
edge from u to v with weight wuv = − log(1 − puv) exists
when v ∈ Ej , u ∈ P (v) ∩ {Ij ∪ Rj} for bipartite M and
v ∈ Ij , u ∈ P (v) ∩ {Ij ∪Rj} for non-bipartite M.

PCDSVC is different than Vertex Cover because (1) We
may not cover an edge (u, v) if we pay its price wuv , and
(2) A feasible solution is a vertex dominating set. This problem
has not been studied before, it is NP-hard, and it can be
approximated by O(log(|V ∗|)) by formulating it as Minimum
Hitting Set and running the greedy method for Set Cover as
proven in Theorem V.1.

Theorem V.1. Prize Collecting Dominating Set Vertex
Cover (PCDSVC) is NP-hard, and it can be approximated by
O(log(|V ∗|)).

We can relax this problem further by removing (36) and
it becomes Prize Collecting Vertex Cover (PCVC). PCVC can
be approximated by a factor of 2 using the LP relaxation [19],
and it can be solved optimally for bipartite diffusion models
by expressing it as s-t mincut as proven in Theorem V.2.

Theorem V.2. The Taylor expansion relaxation of (17) for
bipartite diffusion models can be expressed as s-t mincut.

The algorithms for these relaxed versions, DHR-pcdsvc and
DHR-pcvc, are similar to DHR-sub except they run PCDSVC
and PCVC respectively instead of submodular maximization
at each iteration.

VI. ENSEMBLE INITIAL SPREADER IDENTIFICATION

We define DHR-sub-ens, DHR-pcdsvc-ens and DHR-pcvc-
ens for the ensemble versions of our methods: they estimate
the most likely subset of nodes that explains the diffusion
data from multiple runs. For each initial time point seen in
the multiple runs, we greedily select the subset of nodes seen
in that time point that best explains D in terms of minimum
absolute difference Fdif from Equation 37:

Fdif = |Se
t − St

t |+ |Ee
t − Et

t |+ |Iet − Itt |+ |Re
t −Rt

t| (37)

where Se
t , E

e
t , I

e
t , R

e
t are the set of estimated nodes whereas

St
t , E

t
t , I

t
t , R

t
t are the set of true nodes for S, E, I, R states at

time t respectively. We keep adding the node that improves
Fdif the most until there is no improvement. Lastly, we return
set of nodes that has the minimum score among the all possible
initial time points as our initial spreader prediction.

VII. EXPERIMENTAL RESULTS

A. Comparison and Evaluation

We compared our methods with NetSleuth, Keffectors and
Rumor in identifying the initial spreaders. Keffectors and
Rumor require estimates of the number of initial spreaders,
so we provide them an estimate of the initial spreader count
by the number of clusters in G estimated by modularity [20].
We compared our methods with the baseline heuristic Greedy-
Forward for history reconstruction that reconstructs the history
in each interval by simulating a forward trace starting from the
interval’s earlier time. We return the topmost k spreaders from
Rumor sorted by its rumor centrality metric where k is the
number of clusters in G.

We validated the history reconstruction performance by
Kendall Tau-b statistic [21] (τB) that measures the similarity
between true and estimated node orderings defined in terms of
infection times by also adjusting for ties:

τB(T,O) =
nc − nd√

(n0 − n1)(n0 − n2)
(38)

Here, T and O are true and inferred node orderings respec-
tively in terms of given state (such as infected). Let VT
be set of nodes seen in true ordering T , then τB , nc are
nd are concordant and discordant pairs respectively, n0 =
|VT |(|VT |−1)

2 , n1 and n2 are sum of tied quantities in the true
and observed orderings respectively. Kendall tau-b adjusts for
ties by subtracting n1 and n2 from n0 in the denominator.

We validated the initial spreaders identification perfor-
mance by graph-based average matching score (MG). Let V̂t
and V̂o be true and estimated initial nodes respectively, and
Gb = (V̂t ∪ V̂o, V̂t × V̂o) be a weighted bipartite graph with
weights wab = 1

1+dab
for every a ∈ V̂t, b ∈ V̂o where dab is the

distance between a and b in G. MG estimates the maximum
bipartite matching score in Gb, and returns the average. When
|V̂o| 6= |V̂t|, MG is modified to account for the unmatched
vertices by matching them independently to the best ones.

Both τB and MG are normalized, and higher score
means better performance in both. We implemented all our
methods, synthetic trace generator and existing methods Net-
Sleuth, Rumor, Keffectors in Python, solved LP relaxations
by CPLEX [22], and modified and used C++ maximum flow
code from [23]. We run all our experiments on Macbook Pro
with 2.5 Ghz CPU and 8 GB memory. All our code, data
and supplementary text including proofs of the theorems are
available on the web1.

B. Reconstruction Performance on Synthetic Data

We generated 5 networks of 500 nodes and 5000 edges
that are grown by Erdös-Reyni [24], Forest Fire [25], linear
preferential attachment [26] network growth models. We gen-
erated each synthetic trace by choosing the given number of
source nodes randomly, making them infected, and running
the diffusion over the network until either all nodes become
recovered (or infected under the SI model) or until the spread
dies out. When multiple snapshots are given, we sample them
uniformly in the range (tmin, tmax).

We test our methods on SI, SIR, SEIR by modeling the
transition distributions from a geometric distribution with dif-
ferent parameters in each model in order to assess performance
under various conditions. In SI, we selected puv for every
(u, v) ∈ E uniformly between 0.1 and 0.4. In SIR, we
selected puv,∀(u, v) ∈ E uniformly in the range (0.2, 0.6)
and i2rv,∀v ∈ V uniformly in the range (0.5, 0.6). In SEIR,
we selected puv,∀(u, v) ∈ E, e2iv,∀v ∈ V , i2rv,∀v ∈ V
each uniformly in the range (0.4, 0.8).

DHR-sub and its ensemble version DHR-sub-ens perform
the best on all the models in terms of identifying the initial
spreaders as in Table II. Its relaxations DHR-pcdsvc and DHR-
pcvc also perform better than the existing methods, and they

1http://www.cs.cmu.edu/∼ckingsf/software/dhrec

http://www.cs.cmu.edu/~ckingsf/software/dhrec


Intial Spreader History
FF LPA RDS

SI SIR SEIR SI SIR SI SIR
DHR-sub 0.8 0.83 0.81 0.97 0.88 0.69 0.77

DHR-sub-ens 0.87 0.88 0.89 - - - -
DHR-pcdsvc 0.78 0.8 0.81 0.9 0.82 0.64 0.73
DHR-pcvc 0.76 0.76 0.79 0.88 0.77 0.59 0.72

Rumor 0.74 0.7 0.6 - - - -
NetSleuth 0.75 0.8 0.64 - - - -
Keffectors 0.77 0.74 0.7 - - - -

GreedyForward - - - 0.34 0.28 0.31 0.23
TABLE II. MG , τB VS. GROWTH AND DIFFUSION MODELS FOR

SPREADER IDENTIFICATION (5 TRUE SPREADERS) AND HISTORY
RECONSTRUCTION FROM |TD| = 2 SNAPSHOTS

a) SI b) SIR
Fig. 3. τB vs. number of snapshots (x axis) and max snapshot ratio (y-axis),
number of true initial spreaders (y-axis) for history reconstruction over Forest
Fire for DHR-sub a) SI b) SIR

are good alternatives to DHR-sub considering their faster run-
ning times. The performance difference between our methods
and the existing methods become more apparent especially for
SIR and SEIR models.

In terms of history reconstruction, all our methods perform
much better than the greedy baseline GreedyForward. All our
methods perform better when multiple snapshots are available
as seen in Figure 3 for DHR-sub for both SI and SIR. DHR-sub
reconstructs the histories more precisely when the interval to
be reconstructed has lower maximum snapshot ratio (fmax =
tmax/lD) where lD is the diffusion length, and its performance
is not significantly affected by the number of initial spreaders
given the same number of snapshots as in Figure 3. Lower
reconstruction performance for higher fmax intervals is due
to increasing number of similar quality diffusion histories. In
its extreme, τB may become close to 0 when reconstructing
histories of longer intervals from a single snapshot.

C. Reconstructing Meme Diffusion History From Blog Data

We used our methods to extract the diffusion history of
memes that are defined as short textual phrases that travel
through the Web. We inferred the diffusion progression of
several memes in two blog networks under SI using the true
diffusion data from [11]: Top-Blog has 5000 nodes and 30072
edges and it shows the connection between the topmost 5000
blogs, Rand-Blog has 250 nodes and 3342 edges, and it shows
the connection between random 250 blogs. In both networks,
nodes represent either personal blogs or mass media, and edges
represent hyperlinks from one blog to the another one. We do
not know the true puv , so we estimate them by a geometric
distribution with p being 0.3 between mass media, 0.25 from
mass media to bloggers, 0.15 between bloggers, and 0.05 from
bloggers to media. Traces for several topics were obtained from

a) Fukushima b) Arab Spring
Fig. 4. τB vs. number of snapshots for a) Fukushima(1 : 5), b) Arab
Spring(1 : 5) on Top-Blog

Fig. 5. τB vs. |TD| and fmax for
DHR-sub of Nba(1 : 10) on Rand-
Blog

Fig. 6. τB vs noise ratio (p) over
Water-sm

the same source [11]. When tracking the diffusion of a topic,
if a blog publishes about it at multiple time points, we assume
blog is infected at the earliest time point.

We reconstructed the diffusion history of the
memes Fukushima, Arab Spring and Nba on both Top-
Blog and Rand-blog as in Figures (4)–(5). Values inside the
parentheses define the time scale for the meme progression
(1 : 5 = 1 time unit for 5 days). τB are lower than the
synthetic case especially when fewer than 2 snapshots
are available but they are still reasonable since the true
diffusion parameters are unknown. In Figure 4, DHR-sub
performs the best, and all methods reconstruct the diffusion
history better when more diffusion data is available. When
run with multiple snapshots, DHR-sub better captures the
diffusion direction and performs almost close to 1 whereas
heuristic method GreedyForward’s τB never exceeeds 0.5.
Although Fukushima and Arab Spring have different diffusion
dynamics [11], both trajectories can be reconstructed precisely
by DHR-sub. Similar to the synthetic case, performance of
DHR-sub increases if more snapshots are available, and it
decreases as fmax increases as in Figure 5. Overall, both
DHR-sub and DHR-pcdsvc can nicely fill in the missing gaps
of the meme diffusion history.

In another example, the order of diffusion estimated by
DHR-sub matches the true order of the meme Occupy reason-
ably well (τB = 0.77). In this case, most of the initial diffusion
of Occupy happens between mass media, and diffusion at
personal blogs start to show up later. However, the speed of
the predicted diffusion trajectory is more uniform than true
Occupy trajectory.



a) Water-sm b) Water-big

Fig. 7. a) MG vs. number of initial spreaders for Water-sm, b) MG vs.
fmin for Water-big (5 initial sites)

D. Identifying Initial Water Contamination Sites

We inferred the initial contaminant locations over two wa-
ter distribution networks [27] where nodes are water demand-
supply locations, and the edges represent the water pipes:
Water-sm has 130 nodes and 173 edges, Water-big has 12527
nodes and 14595 edges. We used contaminant diffusion data
generated by the water distribution simulator EPANET [28].

We identified the initial contamination sites in Water-sm
and Water-big under SIR where the recovered state models
the dilution of the contaminant. We approximate the true
hydraulic water diffusion dynamics by SIR as follows: we
assume that puv = K1/luv and i2ruv = K2/luv where
K1,K2 are constants, and luv is the length of pipe (u, v).
Ensemble methods perform the best as in Figure 7 on Water-
sm, and DHR-sub (without ensemble) also performs better than
the existing methods. Our methods’ performance is consistent
across different numbers of initial contamination sites whereas
the existing methods’ performance is affected by the number
of initial sites. Our methods are nonparametric as they do not
require number of initial spreaders as input, and our methods’
performance consistency makes them the topmost candidates
for application domains with multiple but unknown number of
initial spreaders.

Performance of both DHR-sub-ens and DHR-pcdsvc de-
creases for higher fmin as in Figure 7 on Water-big, but they
still perform at least 10% better than the best performing
NetSleuth. This lower performance is due to both difficulty
of differentiating between the initial spreader candidates with
similar scores, and the decreasing ability to estimate the correct
number of initial spreaders. Our methods may miss the true
initial spreaders, but their estimates are within close distance
to the original spreaders as reflected by higher performance in
various cases.

E. Predicting temporal diffusion features

We may answer questions related to temporal diffusion
features from the reconstructed histories such as How quickly
did it spread over time?, Did it spread faster at the beginning
slowing down at later time steps?, etc. Here, we compared the
speed (first-order) and acceleration (second-order) dynamics of
Unemployment and Fukushima estimated from DHR-sub with
the true ones from [11] as in Figures (8)–(9). We define speed
of a meme as the number of blogs that publishes about the
meme for the first time per time unit, and acceleration as the
diffusion speed change per time unit.

a)
Speed b) Acceleration

Fig. 8. a) Speed, b) Acceleration Dynamics of True and Predicted Diffusion
of Unemployment over Time from 3 snapshots

a)
Speed b) Acceleration

Fig. 9. a) Speed, b) Acceleration Dynamics of True and Predicted Diffusion
of Fukushima over Time from 3 snapshots

Unemployment is a more commonly-used meme than
Fukushima, and such difference is reflected in their diffusion
dynamics: Unemployment’s diffusion speed is more uniform
over time whereas Fukuhisma shows more bursty dynamics.
Diffusion speed of Unemployment has multiple local optima
for the time points it peaks in news cycle whereas the speed
of Fukushima has a single peak when it takes attention of
the main media sites. However, such difference in diffusion
dynamics does not make a difficulty for DHR-sub as DHR-
sub predicted speed of both memes closely approximate their
true ones even from 3 snapshots.

DHR-sub reconstructed histories of both memes also mimic
closely their true acceleration dynamics. The change of dif-
fusion speed for Unemployment is more uniform than the
one for Fukushima, and its uniform dynamics are predicted
almost perfectly by DHR-sub whereas the main peak of
Fukushima’s acceleration dynamics was missed by DHR-sub
except precise approximation at remaining time points. Over-
all, DHR-sub reconstructed histories from only 3 snapshots
mimic the true speed and acceleration dynamics of both memes
quite precisely even though the original prediction scores are
below 0.75 (τB = 0.74 for Unemployment, τB = 0.65 for
Fukushima).

F. Scalability and Robustness of History Reconstruction

All our methods reconstruct the history on Top-Blog in
less than 2 minutes, and our relaxation methods DHR-pcdsvc,
DHR-pcvc reconstruct the history in less than 10 minutes
on a large 2D grid graph having 90000 nodes and 179400
edges, with reasonable performance (τB = 0.71, 0.63) as
in Table III whereas DHR-sub takes more than an hour on
a personal laptop. When combined with previous sections’
results, running times in Table III suggest that DHR-pcdsvc and
DHR-pcvc are nice alternatives to DHR-sub for scalable history
reconstruction on large graphs. However, we still need faster
methods for scalable reconstruction on million-node graphs.



Top-Blog 2D-GRID
|TD| = 1 |TD| = 3 |TD| = 1 |TD| = 3

DHR-sub 112.5 48.9 - -
DHR-pcdsvc 53.9 28.2 592.1 199.2
DHR-pcvc 49.9 14.3 351.7 82.7

TABLE III. HISTORY RECONSTRUCTION TIME (IN SECONDS) FOR
Top-Blog AND A 2D GRID GRAPH FOR DIFFERENT NUMBERS OF DIFFUSION

SNAPSHOTS.

Figure 6 shows the performance of contaminant diffusion
history reconstruction over Water-sm under increasing noise
levels. Let p be the noise ratio between 0.0 and 1.0, and we
added the synthetic noise p as follows: For each node and each
state, we randomly select a value m between 0 and plD where
lD is length of the diffusion and flip a coin to either add m
to the current state transition time tv , or subtract it from tv . If
modified transition time (tv +m) is less than 0, we make it 0.

Our methods do not show a sudden performance drop
by increasing noise levels, as DHR-sub can still reconstruct
histories with performance over τB = 0.7 even when the noise
levels are 0.5. Similarly, DHR-sub-ens achieves MG = 0.72
in identifying the initial contaminant locations over Water-sm
for p = 0.5 (results are not shown). In general, all our methods
are robust to the noise in the diffusion data.

VIII. CONCLUSIONS

We designed several methods for estimating diffusion his-
tories that either optimize the likelihood or its relaxations with
provable performance guarantees for local steps. Our methods
do not require the number of initial spreaders and diffusion
length as parameters. They identify the initial spreaders better
than the existing methods specially designed for this task. They
reconstruct the history accurately in a number of scenarios. We
also accurately estimated temporal diffusion characteristics of
several semantically different memes from partial data. These
findings suggest the reconstructability of diffusion history from
partial data under several settings. Partial diffusion data is not
an unsolvable bottleneck as missing diffusion history can be
completed by our methods accurately.
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[4] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and
J. H. Jones, “A high-resolution human contact network for infectious
disease transmission.” Proc. Natl. Acad. Sci. USA, vol. 107, no. 51, pp.
22 020–5, 2010.

[5] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. New York, NY, USA: ACM, 2003, pp. 137–146.

[6] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Trans. on the Web, vol. 1, no. 1, p. 5, 2007.

[7] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila, “Finding effectors
in social networks,” in KDD ’10. New York, New York, USA: ACM
Press, Jul. 2010, p. 1059.

[8] D. Shah and T. Zaman, “Finding Rumor Sources on Random Graphs,”
arXiv, p. 1110.6230, 2011.

[9] B. A. Prakash, J. Vreeken, and C. Faloutsos, “Spotting culprits in
epidemics: How many and which ones?” in ICDM, 2012, pp. 11–20.

[10] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring Networks
of Diffusion and Influence,” ACM Transactions on Knowledge Discov-
ery from Data, vol. 5, no. 4, pp. 1–37, Feb. 2012.

[11] M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf, “Structure and
dynamics of information pathways in online media,” in WSDM ’13.
New York, NY, USA: ACM, 2013, pp. 23–32.

[12] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev.,
vol. 42, no. 4, pp. 599–653, 2000.

[13] U. Feige and M. Goemans, “Approximating the value of two power
proof systems, with applications to max 2sat and max dicut,” in Theory
of Computing and Systems, 1995. Proceedings., Third Israel Symposium
on the, Jan 1995, pp. 182–189.

[14] U. Feige, V. S. Mirrokni, and J. Vondrak, “Maximizing non-monotone
submodular functions,” in Proceedings of the 48th Annual IEEE Sympo-
sium on Foundations of Computer Science, ser. FOCS ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 461–471.

[15] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz, “A Tight
Linear Time (1/2)-Approximation for Unconstrained Submodular Max-
imization,” in 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science. IEEE, Oct. 2012, pp. 649–658.

[16] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko, “Non-
monotone submodular maximization under matroid and knapsack con-
straints,” in Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing. New York, NY, USA: ACM, 2009, pp. 323–332.

[17] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency.
Springer, 2003.

[18] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar, “Constrained non-
monotone submodular maximization: Offline and secretary algorithms,”
CoRR, vol. abs/1003.1517, 2010.

[19] D. S. Hochbaum, “Instant recognition of polynominal time solvability,
half integrality and 2-approximations,” in APPROX ’00. Springer-
Verlag, 2000, pp. 2–14.

[20] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. of Statistical Mechan-
ics: Theory and Experiment, vol. 2008, no. 10, pp. P10 008+, 2008.

[21] A. Agresti, Categorical Data Analysis, 2nd ed., ser. Wiley Series in
Probability and Statistics. Wiley-Interscience, 2002.

[22] “IBM ILOG CPLEX Optimizer,” 2010. [Online]. Available: http:
//www.ilog.com/products/cplex/

[23] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max- flow algorithms for energy minimization in vision,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 9,
pp. 1124–1137, 2004.

[24] P. Erdös and A. Rnyi, “On the evolution of random graphs,” in
Publication of the Mathematical Institute of the Hungarian Academy
of Sciences, 1960, pp. 17–61.

[25] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densi-
fication laws, shrinking diameters and possible explanations,” in KDD
’05. New York, NY, USA: ACM, 2005, pp. 177–187.

[26] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[27] Avi Ostfeld et al., “The battle of water sensor networks (bwsn): A design
challenge for engineers and algorithms,” Journal of Water Resources
Planning and Management, vol. 134, no. 6, pp. 556–568, 2008.

[28] L. Rossman, “The epanet programmer’s toolkit for analysis of water
distribution systems,” in WRPMD’99, 1999, pp. 1–10.

http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/


IX. APPENDIX

Theorem IV.1. Log-likelihood F in Equation (17) is non-
monotone submodular for all SEIRS-type models except SIS.

Proof:

F has three types of terms; higher order terms from
log(Lj

e), quadratic or linear terms from log(Lj
s) depending on

M and linear terms from log(Lj
i ) and log(Lj

r). F is non-
monotone since linear and quadratic terms are either positive
or negative depending onM, transition distribution parameters
and the terms from log(Lj

s) that model the probability of
susceptible nodes not being infected/exposed.

F is submodular when F (A+ x)− F (A) ≥ F (B + x)−
F (B) for every A ⊂ B and for every x ∈ U \ (A ∪ B).
To prove submodularity of F , we prove the submodularity of
each term in F since summation of submodular functions is
also submodular. Linear terms of F are unimodular, so they
are submodular. Quadratic terms show up in log(Lj

s) whenM
is loopy and when the model is not SIS, each quadratic term
is one of the following: Q(rv,j−1, ru,j−1) = log(1− puv)(1−
rv,j−1)(1 − ru,j−1), Q(rv,j−1, eu,j−1) = log(1 − puv)(1 −
rv,j−1)(1 − eu,j−1) or Q(rv,j−1, iu,j−1) = log(1 − puv)(1 −
rv,j−1)(1− iu,j−1). All those terms are submodular since they
satisfy the inequality Q(0, 0) +Q(1, 1) ≤ Q(0, 1) +Q(1, 0).

Then, we need to prove the submodularity of the
higher-order terms that depend on G to prove submodu-
larity of F . Higher-order terms appear in either log(Lj

e)
for bipartite models or log(Lj

i ) for non-bipartite diffu-
sion models. Depending on M, we need to prove ei-
ther T = sv,j−1 log

(
1.0− Lv,j,I

s2e L
v,j,R
s2e

)
or T =

sv,j−1 log
(

1.0− Lv,j,I
s2i L

v,j,R
s2i

)
. Each variable might appear

at two positions of T ; either inside or outside the logarithm.
When M is bipartite, each variable can only appear in one
of those positions whereas it can appear in both positions
for non-bipartite M. Let Ve =

⋃
u∈P (v)∩Ij eu,j−1, Vr =⋃

u∈P (v)∩Ej
ru,j−1, x be the variable to be added, X be the

current set of added variables, K = ΠVe∪Vr
(1 − puv) and

Pt = (1 − ptv)t for every t ∈ Ve ∪ Vr, T is submodular as
proven below.

• If x is outside the logarithm, let A = {a, b} and B =

{a, b, c}. Then, T (A+x) = log
(

1− K
PaPbPx

)
, T (B+

x) = log
(

1− K
PaPbPcPx

)
and T (A + x) − T (A) ≥

T (B+ x)− T (B) will be satisfied since T (A+ x) ≥
T (B + x) and T (A) = T (B) = 0.

• If x is inside the logarithm, when sv,j−1 6∈ X , sub-
modularity is trivially satisfied since T (A) = T (A +
x) = T (B) = T (B + x) = 0. When sv,j−1 ∈ X , let
A = {a} and B = {a, c} (A ⊂ B), submodularity is
satisfied as shown in Equation (39)–(41).

T (A+ x)− T (A) ≥ T (B + x)− T (B) (39)

log

(
1− K

PaPx

1− K
Pa

)
≥ log

(
1− K

PaPbPx

1− K
PaPc

)
(40)

KPaPb(1− Pb)(1− Pa) ≥ 0 (41)

Then, F is submodular since each summation term includ-
ing the higher-order ones is submodular.

Theorem IV.2. History reconstruction from log-likelihood for
SIS model can be expressed as submodular maximization under
both packing and partition matroid constraints.

Proof:

Quadratic terms Q(sv,j−1, su,j−1) from Lj
s are supermod-

ular for SIS but they can be turned into submodular ones as
follows: We define new varible iv,j−1 for every node v ∈
{Sj∪Ij} to represent whether v is infected at time j−1. Then,
we obtain the new objective function F ∗ by replacing each
supermodular Q(sv,j−1, su,j−1) = log(1 − puv)sv,j−1(1 −
su,j−1) with Q∗(sv,j−1, su,j−1) = log(1 − puv)sv,j−1iv,j−1.
We also add assignment constraints of sv,j−1 + iv,j−1 = 1
for every node v ∈ {Sj ∪ Ij} to make sure node v is either
infected or susceptible at j − 1. Each Q∗(sv,j−1, su,j−1) in
F ∗ is submodular since it satisfies the inequality Q∗(0, 0) +
Q∗(1, 1) ≤ Q∗(0, 1)+Q∗(1, 0). Then, F ∗ is submodular since
the rest of the higher-order terms are submodular as proven in
Theorem IV.1. Assignment constraints define partition matroid
and the problem of reconstructing history at time j−1 becomes
submodular maximization under both partition matroid and
existing packing constraints for SIS model.

Theorem IV.3. Algorithm 1 has approximation guarantee
of k + S0

O (1 − k) for k = 1
3 in terms of minimization of

supermodular −F for each of its iteration.

Proof:

Let X be the set of elements returned by the non-monotone
submodular maximization algorithm and F (X) = −M . We
are interested in upper-bounding the supermodular minimiza-
tion ratio (MO ) for −F . Since Fn is obtained by adding
S0 to each set in F , Fn(X)

Fn(Xopt)
= S0−M

S0−O ≥ k and we
obtain M

O <= k + S0

O (1 − k). Here, S0

O (1 − k) makes the
approximation ratio data-dependent and this ratio is the best
we can achieve when k is tight for non-monotone submodular
maximization. This data-dependent bound is also the best we
can achieve in terms of supermodular minimization perspective
since non-negative supermodular minimization problem cannot
be approximated in constant factor unless P = NP [1].

Theorem IV.4. log(Lin
j,k) in Equation 18 is non-monotone

submodular for all SEIRS-type models.

Proof:

We prove the submodularity of log(Lin
j,k) by prov-

ing the submodularity of each of its summation terms.
log(P (Xj+1|Dj)) estimates the most probable diffusion snap-
shot at j + 1 given Dj . It is a forward estimate and if we use
the same variable naming as in Section IV-A, it becomes a
linear function of Xj+1 and thus submodular.

log(P (Dk|Xk−1)) is same as F (17) in Section IV-A and
it is submodular as proven in Theorem IV.1.



Every log(P (Xt+1|Xt)) involves the variables from both
time steps t and t+ 1. Here, we do not know the exact node
states at both time steps so we define all possible state variables
for every node for both time steps (sv,t, ev,t, iv,t, rv,t, sv,t+1,
ev,t+1, iv,t+1, rv,t+1, ∀v ∈ V ). log(P (Xt+1|Xt)) can be
expressed as in Equation 42 where the likelihoods are defined
as in Equation (43)–(46). Each term in log(P (Xt+1|Xt)) is
additive and log-likelihood terms of endogenous transitions
are submodular since they are quadratic terms with negative
coefficient. Log-Likelihood terms of exogenous transitions are
also submodular by following the submodularity proof of the
higher-order terms from Theorem IV.1.

log(P (Xt+1|Xt)) = log(Lt+1
s ) + log(Lt+1

e ) + log(Lt+1
i )

log(Lt+1
r ) (42)

Lexo =
∏

u∈P (v)

(1− puv)iu,tsv,t

Lt+1
e =

∏
v∈V

((1− e2iv)ev,tev,t+1 (1.0− Lexo)ev,t+1 ) (43)

Lt+1
s =

∏
v∈V

(
Lsv,t+1
exo (r2sv)

rv,tsv,t+1

)
(44)

Lt+1
r =

∏
v∈V

(
(i2rv)

iv,trv,t+1 (1.0− r2sv)rv,trv,t+1
)

(45)

Lt+1
i =

∏
v∈V

(
(e2iv)

ev,tiv,t+1 (1.0− i2rv)iv,tiv,t+1
)

(46)

Theorem V.1. Prize Collecting Dominating Set Vertex
Cover (PCDSVC) is NP-hard, and it can be approximated by
O(log(|V ∗|)).

Proof:

PCDSVC is NP-hard since its special case Dominating Set
is NP-hard that is obtained when all edge weights are 0 (wuv =
0).

Given PCDSVC problem over graph G∗ = (V ∗, E∗), we
construct Minimum Hitting Set instance (S,C) as follows: We
define the set of elements as S = {v ∈ V ∗}∪{e ∈ E∗} where
the cost of each each item in E∗ is wu for every u ∈ V ∗

and wuv for every (u, v) ∈ E∗. Subsets C = C1 ∪ C2 of S
are defined as: C1 = {eu, ev, euv} ,∀(u, v) ∈ E∗ and C2 =
{eu, u ∈ P (v)∪{v}} ,∀v ∈ V ∗. This reduction is linear time,
approximation preserving and the solution of this Minimum
Hitting Set gives us the solution for PCDSVC. Here |S| =
|E∗| + |V ∗| and Greedy method for Set Cover approximates
this problem by log(|S|) + 1 ≈ O(log(|E∗| + |V ∗|)) + 1 ≈
O(log(|V ∗|)) + 1.

One can also easily show that each Minimum Hitting Set
instance can be reduced to PCDSVC and this reduction is
also approximation preserving. Then, Minimum Hitting Set
and PCDSVC are equivalent under linear reduction and this
approximation ratio for PCDSVC is the best we can achieve
unless P=NP [2].

Theorem V.2. The Taylor expansion relaxation of (17) for
bipartite diffusion models can be expressed as s-t mincut.

Proof:

Minimization problem for bipartite M has objective Fbi

as seen in Equation 47. Fbi is a regular function [3]: when
expressed as the summation of first and second-order terms as
in Equation 48, each second order term Eu,v(sv,j−1, iu,j−1)
satisfies Eu,v(0, 0) + Eu,v(1, 1) ≤ Eu,v(0, 1) + Eu,v(1, 0) in
regular functions. Regular functions can be solved optimally
by transforming it into s-t mincut [3]. Transformation is as
follows:

min − Fbi =
∑

(u,v)∈E∗

1

log(1− puv)
(1− iu,j−1)sv,j−1

+
∑

v∈Ej∪Sj

wvsv,j−1 +
∑

v∈Ij∪Rj

wviv,j−1
(47)

−Fbi =
∑

u∈Ij∪Rj ,v∈Ej∪Sj

Eu,v(iu,j−1, sv,j−1) +

∑
v∈Ij∪Rj

Ev(iv,j−1) +
∑

v∈Sj∪Ej

Ev(sv,j−1)
(48)

We define new directed graph G′ = (V ′, E′) where V ′ = V ∗∪
{s} ∪ {t}. For every v ∈ V ∗, we add edge (s, v) with weight
Ev(1) if Ev(1) > 0 and add edge (v, t) with weight −Ev(1)
if −Ev(1) < 0. For every u ∈ Ij ∪ Rj and v ∈ Sj ∪ Ej , we
add edge (u, v) with weight Eu,v(0, 1). s-t mincut solution of
this graph gives us the resulting node partition; after the cut
edges removed, variables of the nodes that are reachable from
s are assigned 1 and the variables of the nodes that have a
path to t are assigned 0.
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