|
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein
Nice, France
September, 2008
AbstractIn this paper we develop a theory of metamodules and an associated distributed asynchronous planner which generalizes previous work on metamodules for lattice-based modular robotic systems. All extant modular robotic systems have some form of non-holonomic motion constraints. This has prompted many researchers to look to metamodules, i.e., groups of modules that act as a unit, as a way to reduce motion constraints and the complexity of planning. However, previous metamodule designs have been specific to a particular modular robot. By analyzing the constraints found in modular robotic systems we develop a holonomic metamodule which has two important properties: (1) it can be used as the basic unit of an efficient planner and (2) it can be instantiated by a wide variety of different underlying modular robots, e.g., modular robot arms, expanding cubes, hex-packed spheres, etc. Using a series of transformations we show that our practical metamodule system has a provably complete planner. Finally, our approach allows the task of shape transformation to be separated into a planning task and a resource allocation task. We implement our planner for two different metamodule systems and show that the time to completion scales linearly with the diameter of the ensemble.
download pdf
@inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {September},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
Related Papers
Robotics |
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
September, 2008.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {September},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
Movement Primitives for an Orthogonal Prismatic Closed-Lattice-Constrained Self-Reconfiguring Module | pdf bib | |
Michael Philetus Weller, Mustafa Emre Karagozler, Brian Kirby, Jason D. Campbell, and Seth Copen Goldstein.
In Workshop on Self-Reconfiguring Modular Robotics at the IEEE International Conference on Intelligent Robots and Systems (IROS) '07,
October, 2007.
|
| @inproceedings{weller-iros07,
author = {Weller, Michael Philetus and Karagozler, Mustafa Emre and
Kirby, Brian and Campbell, Jason D. and Goldstein, Seth Copen},
title = {Movement Primitives for an Orthogonal Prismatic
Closed-Lattice-Constrained Self-Reconfiguring Module},
booktitle = {Workshop on Self-Reconfiguring Modular Robotics at the
IEEE International Conference on Intelligent Robots and Systems
(IROS) '07},
venue = {Workshop on Self-Reconfigurable Robots/Systems and
Applications at IROS},
year = {2007},
month = {October},
keywords = {Adhesion, Robotics, Planning},
abstract = {We describe a new set of prismatic movement primitives
for cubic modular robots. Our approach appears more practical
than previous metamodule-based approaches. We also describe
recent hardware developments in our cubic robot modules that have
sufficient stiffness and actuator strength so that when they work
together they can realize, in earth's gravity, all of the motion
primitives we describe here.},
url = {http://www.cs.cmu.edu/~claytronics/papers/weller-iros07.pdf},
}
|
|
Ultralight Modular Robotic Building blocks for the Rapid Deployment of Planetary Outposts | pdf bib | |
Mustafa Emre Karagozler, Brian Kirby, W.J. Lee, Eugene Marinelli, T.C. Ng, Michael Philetus Weller, and Seth Copen Goldstein.
In Revolutionary Aerospace Systems Concepts Academic Linkage (RASC-AL) Forum 2006,
May, 2006.
|
| @inproceedings{karagozler-rascal06,
title = {Ultralight Modular Robotic Building blocks for the Rapid
Deployment of Planetary Outposts},
booktitle = {Revolutionary Aerospace Systems Concepts Academic
Linkage {(RASC-AL)} Forum 2006},
venue = {Revolutionary Aerospace Systems Concepts Academic Linkage
{(RASC-AL)} Forum},
author = {Karagozler, Mustafa Emre and Kirby, Brian and Lee, W.J.
and Marinelli, Eugene and Ng, T.C. and Weller, Michael Philetus
and Goldstein, Seth Copen},
year = {2006},
month = {May},
address = {Cape Canaveral, FL},
url = {http://www.cs.cmu.edu/~claytronics/papers/karagozler-rascal06.pdf},
keywords = {Applications of Claytronics, Robotics},
}
|
|
Claytronics: A scalable basis for future robots | pdf bib | |
Seth Copen Goldstein and Todd C. Mowry.
In RoboSphere 2004,
November, 2004.
|
| @inproceedings{goldstein-robosphere04,
author = {Goldstein, Seth Copen and Mowry, Todd C.},
title = {Claytronics: A scalable basis for future robots},
booktitle = {RoboSphere 2004},
venue = {RoboSphere 2004},
address = {Moffett Field, CA},
month = {November},
year = {2004},
keywords = {Robotics},
url = {http://www.cs.cmu.edu/~claytronics/papers/goldstein-robosphere04.pdf},
}
|
Planning |
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
September, 2008.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {September},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
Declarative Programming for Modular Robots | pdf bib | |
Michael P. Ashley-Rollman, Michael De Rosa, Siddhartha S. Srinivasa, Padmanabhan Pillai, Seth Copen Goldstein, and Jason D. Campbell.
In Workshop on Self-Reconfigurable Robots/Systems and Applications at IROS '07,
October, 2007.
|
| @inproceedings{ashley-rollman-derosa-iros07wksp,
author = {Ashley-Rollman, Michael P. and De~Rosa, Michael and
Srinivasa, Siddhartha S. and Pillai, Padmanabhan and Goldstein,
Seth Copen and Campbell, Jason D.},
title = {Declarative Programming for Modular Robots},
booktitle = {Workshop on Self-Reconfigurable Robots/Systems and
Applications at {IROS '07}},
venue = {Workshop on Self-Reconfigurable Robots/Systems and
Applications at IROS},
year = {2007},
month = {October},
keywords = {Programming Models, Planning, LDP, Meld},
abstract = {Because of the timing, complexity, and asynchronicity
challenges common in modular robot software we have recently
begun to explore new programming models for modular robot
ensembles. In this paper we apply two of those models to a
metamodule-based shape planning algorithm and comment on the
differences between the two approaches. Our results suggest that
declarative programming can provide several advantages over more
traditional imperative approaches, and that the differences
between declarative programming styles can themselves contribute
leverage to different parts of the problem domain.},
url = {http://www.cs.cmu.edu/~claytronics/papers/ashley-rollman-derosa-iros07wksp.pdf},
}
|
|
Movement Primitives for an Orthogonal Prismatic Closed-Lattice-Constrained Self-Reconfiguring Module | pdf bib | |
Michael Philetus Weller, Mustafa Emre Karagozler, Brian Kirby, Jason D. Campbell, and Seth Copen Goldstein.
In Workshop on Self-Reconfiguring Modular Robotics at the IEEE International Conference on Intelligent Robots and Systems (IROS) '07,
October, 2007.
|
| @inproceedings{weller-iros07,
author = {Weller, Michael Philetus and Karagozler, Mustafa Emre and
Kirby, Brian and Campbell, Jason D. and Goldstein, Seth Copen},
title = {Movement Primitives for an Orthogonal Prismatic
Closed-Lattice-Constrained Self-Reconfiguring Module},
booktitle = {Workshop on Self-Reconfiguring Modular Robotics at the
IEEE International Conference on Intelligent Robots and Systems
(IROS) '07},
venue = {Workshop on Self-Reconfigurable Robots/Systems and
Applications at IROS},
year = {2007},
month = {October},
keywords = {Adhesion, Robotics, Planning},
abstract = {We describe a new set of prismatic movement primitives
for cubic modular robots. Our approach appears more practical
than previous metamodule-based approaches. We also describe
recent hardware developments in our cubic robot modules that have
sufficient stiffness and actuator strength so that when they work
together they can realize, in earth's gravity, all of the motion
primitives we describe here.},
url = {http://www.cs.cmu.edu/~claytronics/papers/weller-iros07.pdf},
}
|
|
Hierarchical Motion Planning for Self-reconfigurable Modular Robots | pdf bib | |
Preethi Srinivas Bhat, James Kuffner, Seth Copen Goldstein, and Siddhartha S. Srinivasa.
In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
October, 2006.
|
| @inproceedings{bhat06,
author = {Bhat, Preethi Srinivas and Kuffner, James and Goldstein,
Seth Copen and Srinivasa, Siddhartha S.},
title = {Hierarchical Motion Planning for Self-reconfigurable
Modular Robots},
booktitle = {2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)},
venue = {IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)},
year = {2006},
month = {October},
keywords = {Planning, Controlling Ensembles, Hierarchical
Algorithms},
url = {http://www.cs.cmu.edu/~claytronics/papers/bhat06.pdf},
abstract = {Motion planning for a self-reconfigurable robot involves
coordinating the movement and connectivity of each of its
homogeneous modules. Reconfiguration occurs when the shape of the
robot changes from some initial configuration to a target
configuration. Finding an optimal solution to reconfiguration
problems involves searching the space of possible robot
configurations. As this space grows exponentially with the number
of modules, optimal planning becomes intractable. We propose a
hierarchical planning approach that computes heuristic global
reconfiguration strategies efficiently. Our approach consists of
a base planner that computes an optimal solution for a few
modules and a hierarchical planner that calls this base planner
or reuses pre-computed plans at each level of the hierarchy to
ultimately compute a global suboptimal solution. We present
results from a prototype implementation of the method that
efficiently plans for self-reconfigurable robots with several
thousand modules.We also discuss tradeoffs and performance issues
including scalability, heuristics and plan optimality.},
}
|
|
Scalable Shape Sculpting via Hole Motion: Motion Planning in Lattice-Constrained Module Robots | pdf bib | |
Michael De Rosa, Seth Copen Goldstein, Peter Lee, Jason D. Campbell, and Padmanabhan Pillai.
In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA '06),
May, 2006.
|
| @inproceedings{derosa-icra06,
author = {De~Rosa, Michael and Goldstein, Seth Copen and Lee, Peter
and Campbell, Jason D. and Pillai, Padmanabhan},
title = {Scalable Shape Sculpting via Hole Motion: Motion Planning
in Lattice-Constrained Module Robots},
month = {May},
booktitle = {Proceedings of the 2006 {IEEE} International Conference
on Robotics and Automation (ICRA '06)},
venue = {IEEE International Conference on Robotics and Automation
(ICRA)},
year = {2006},
keywords = {Planning, Controlling Ensembles, Stochastic Algorithms},
url = {http://www.cs.cmu.edu/~claytronics/papers/derosa-icra06.pdf},
abstract = {We describe a novel shape formation algorithm for
ensembles of 2-dimensional lattice-arrayed modular robots, based
on the manipulation of regularly shaped voids within the lattice
(``holes''). The algorithm is massively parallel and fully
distributed. Constructing a goal shape requires time proportional
only to the complexity of the desired target geometry.
Construction of the shape by the modules requires no global
communication nor broadcast floods after distribution of the
target shape. Results in simulation show 97.3\% shape compliance
in ensembles of approximately 60,000 modules, and we believe that
the algorithm will generalize to 3D and scale to handle millions
of modules.},
}
|
Meld |
|
A Language for Large Ensembles of Independently Executing Nodes | pdf bib | |
Michael P. Ashley-Rollman, Peter Lee, Seth Copen Goldstein, Padmanabhan Pillai, and Jason D. Campbell.
In Proceedings of the International Conference on Logic Programming (ICLP '09),
July, 2009.
|
| @inproceedings{ashley-rollman-iclp09,
author = {Ashley-Rollman, Michael P. and Lee, Peter and Goldstein,
Seth Copen and Pillai, Padmanabhan and Campbell, Jason D.},
title = {A Language for Large Ensembles of Independently Executing
Nodes},
year = {2009},
month = {July},
keywords = {Distributed Systems, Meld, Programming Languages},
url = {http://www.cs.cmu.edu/~claytronics/papers/ashley-rollman-iclp09.pdf},
abstract = {We address how to write programs for distributed
computing systems in which the network topology can change
dynamically. Examples of such systems, which we call {\em
ensembles}, include programmable sensor networks (where the
network topology can change due to failures in the nodes or
links) and modular robotics systems (whose physical configuration
can be rearranged under program control). We extend Meld, a logic
programming language that allows an ensemble to be viewed as a
single computing system. In addition to proving some key
properties of the language, we have also implemented a complete
compiler for Meld. It generates code for TinyOS and for a
Claytronics simulator. We have successfully written correct,
efficient, and complex programs for ensembles containing over one
million nodes.},
booktitle = {Proceedings of the International Conference on Logic
Programming (ICLP '09)},
}
|
|
Distributed Localization of Modular Robot Ensembles | pdf bib | |
Stanislav Funiak, Padmanabhan Pillai, Michael P. Ashley-Rollman, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of Robotics: Science and Systems,
June, 2008.
|
| |
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
September, 2008.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {September},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
Declarative Programming for Modular Robots | pdf bib | |
Michael P. Ashley-Rollman, Michael De Rosa, Siddhartha S. Srinivasa, Padmanabhan Pillai, Seth Copen Goldstein, and Jason D. Campbell.
In Workshop on Self-Reconfigurable Robots/Systems and Applications at IROS '07,
October, 2007.
|
| @inproceedings{ashley-rollman-derosa-iros07wksp,
author = {Ashley-Rollman, Michael P. and De~Rosa, Michael and
Srinivasa, Siddhartha S. and Pillai, Padmanabhan and Goldstein,
Seth Copen and Campbell, Jason D.},
title = {Declarative Programming for Modular Robots},
booktitle = {Workshop on Self-Reconfigurable Robots/Systems and
Applications at {IROS '07}},
venue = {Workshop on Self-Reconfigurable Robots/Systems and
Applications at IROS},
year = {2007},
month = {October},
keywords = {Programming Models, Planning, LDP, Meld},
abstract = {Because of the timing, complexity, and asynchronicity
challenges common in modular robot software we have recently
begun to explore new programming models for modular robot
ensembles. In this paper we apply two of those models to a
metamodule-based shape planning algorithm and comment on the
differences between the two approaches. Our results suggest that
declarative programming can provide several advantages over more
traditional imperative approaches, and that the differences
between declarative programming styles can themselves contribute
leverage to different parts of the problem domain.},
url = {http://www.cs.cmu.edu/~claytronics/papers/ashley-rollman-derosa-iros07wksp.pdf},
}
|
|
Meld: A Declarative Approach to Programming Ensembles | pdf bib | |
Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padmanabhan Pillai.
In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS '07),
October, 2007.
|
| @inproceedings{ashley-rollman-iros07,
author = {Ashley-Rollman, Michael P. and Goldstein, Seth Copen and
Lee, Peter and Mowry, Todd C. and Pillai, Padmanabhan},
title = {Meld: A Declarative Approach to Programming Ensembles},
booktitle = {Proceedings of the IEEE International Conference on
Intelligent Robots and Systems ({IROS '07})},
venue = {IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)},
year = {2007},
month = {October},
keywords = {Programming Languages, Meld},
abstract = {This paper presents Meld, a programming language for
modular robots, i.e., for independently executing robots where
inter-robot communication is limited to immediate neighbors. Meld
is a declarative language, based on P2, a logic-programming
language originally designed for programming overlay networks. By
using logic programming, the code for an ensemble of robots can
be written from a global perspective, as opposed to a large
collection of independent robot views. This greatly simplifies
the thought process needed for programming large ensembles.
Initial experience shows that this also leads to a considerable
reduction in code size and complexity. An initial implementation
of Meld has been completed and has been used to demonstrate its
effectiveness in the Claytronics simulator. Early results
indicate that Meld programs are considerably more concise (more
than 20x shorter) than programs written in C++, while running
nearly as efficiently.},
url = {http://www.cs.cmu.edu/~claytronics/papers/ashley-rollman-iros07.pdf},
}
|
Controlling Ensembles |
|
Collective Actuation | bib | |
Jason D. Campbell and Padmanabhan Pillai.
International Journal of Robotics Research,
27(3-4):299–314,2008.
|
| @article{campbell-ijrr-srmr,
author = {Campbell, Jason D. and Pillai, Padmanabhan},
title = {Collective Actuation},
journal = {International Journal of Robotics Research},
volume = {27},
number = {3-4},
year = {2008},
pages = {299-314},
keywords = {Actuation, Controlling Ensembles},
abstract = {Modular robot designers confront an inherent tradeoff
between size and power: Smaller, more numerous modules increase
the adaptability of a given volume or mass of robot---allowing
the aggregate robot to take on a wider variety of
configurations---but do so at a cost of reducing the power and
complexity budget of each module. Fewer, larger modules can
incorporate more powerful actuators and stronger hinges but at a
cost of overspecializing the resulting robot in favor of
corresponding uses. In the paper we describe a technique for
coordinating the efforts of many tiny modules to achieve forces
and movements larger than those possible for individual modules.
In a broad sense, the question of actuator capacity and range
thus may become one of software coding and ensemble topology as
well as of hardware design. An important aspect of this technique
is its ability to bend complex and large-scale structures and to
realize the equivalent of large scale joints. Although our
results do not suggest that modular robots will replace high
power purpose-built robots, they do offer an increase in the
plausible scalability of modular robot self-reconfiguration and
facilitate a corresponding increase in adaptability.},
}
|
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
September, 2008.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {September},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
Locomotion of Miniature Catom Chains: Scale Effects on Gait and Velocity | bib | |
David Johan Christensen and Jason D. Campbell.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '07),
pages 2254–2260, April, 2007.
|
| @inproceedings{Christensen-icra07,
author = {Christensen, David Johan and Campbell, Jason D.},
title = {Locomotion of Miniature Catom Chains: Scale Effects on Gait
and Velocity},
booktitle = {Proceedings of the IEEE International Conference on
Robotics and Automation ({ICRA '07})},
venue = {IEEE International Conference on Robotics and Automation
(ICRA)},
month = {April},
pages = {2254-2260},
keywords = {Biologically Inspired, Actuation, Controlling
Ensembles},
year = {2007},
}
|
|
Collective Actuation | pdf bib | |
Jason D. Campbell and Padmanabhan Pillai.
In RSS 2006 Workshop on Self-Reconfigurable Modular Robots,
August, 2006.
|
| |
|
Hierarchical Motion Planning for Self-reconfigurable Modular Robots | pdf bib | |
Preethi Srinivas Bhat, James Kuffner, Seth Copen Goldstein, and Siddhartha S. Srinivasa.
In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
October, 2006.
|
| @inproceedings{bhat06,
author = {Bhat, Preethi Srinivas and Kuffner, James and Goldstein,
Seth Copen and Srinivasa, Siddhartha S.},
title = {Hierarchical Motion Planning for Self-reconfigurable
Modular Robots},
booktitle = {2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)},
venue = {IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)},
year = {2006},
month = {October},
keywords = {Planning, Controlling Ensembles, Hierarchical
Algorithms},
url = {http://www.cs.cmu.edu/~claytronics/papers/bhat06.pdf},
abstract = {Motion planning for a self-reconfigurable robot involves
coordinating the movement and connectivity of each of its
homogeneous modules. Reconfiguration occurs when the shape of the
robot changes from some initial configuration to a target
configuration. Finding an optimal solution to reconfiguration
problems involves searching the space of possible robot
configurations. As this space grows exponentially with the number
of modules, optimal planning becomes intractable. We propose a
hierarchical planning approach that computes heuristic global
reconfiguration strategies efficiently. Our approach consists of
a base planner that computes an optimal solution for a few
modules and a hierarchical planner that calls this base planner
or reuses pre-computed plans at each level of the hierarchy to
ultimately compute a global suboptimal solution. We present
results from a prototype implementation of the method that
efficiently plans for self-reconfigurable robots with several
thousand modules.We also discuss tradeoffs and performance issues
including scalability, heuristics and plan optimality.},
}
|
|
Scalable Shape Sculpting via Hole Motion: Motion Planning in Lattice-Constrained Module Robots | pdf bib | |
Michael De Rosa, Seth Copen Goldstein, Peter Lee, Jason D. Campbell, and Padmanabhan Pillai.
In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA '06),
May, 2006.
|
| @inproceedings{derosa-icra06,
author = {De~Rosa, Michael and Goldstein, Seth Copen and Lee, Peter
and Campbell, Jason D. and Pillai, Padmanabhan},
title = {Scalable Shape Sculpting via Hole Motion: Motion Planning
in Lattice-Constrained Module Robots},
month = {May},
booktitle = {Proceedings of the 2006 {IEEE} International Conference
on Robotics and Automation (ICRA '06)},
venue = {IEEE International Conference on Robotics and Automation
(ICRA)},
year = {2006},
keywords = {Planning, Controlling Ensembles, Stochastic Algorithms},
url = {http://www.cs.cmu.edu/~claytronics/papers/derosa-icra06.pdf},
abstract = {We describe a novel shape formation algorithm for
ensembles of 2-dimensional lattice-arrayed modular robots, based
on the manipulation of regularly shaped voids within the lattice
(``holes''). The algorithm is massively parallel and fully
distributed. Constructing a goal shape requires time proportional
only to the complexity of the desired target geometry.
Construction of the shape by the modules requires no global
communication nor broadcast floods after distribution of the
target shape. Results in simulation show 97.3\% shape compliance
in ensembles of approximately 60,000 modules, and we believe that
the algorithm will generalize to 3D and scale to handle millions
of modules.},
}
|
Multi-Robot Formations |
|
An Energy and Memory-Efficient Distributed Self-reconfiguration for Modular Sensor/Robot Networks | bib | |
Hicham Lakhlef, Hakim Mabed, and Julien Bourgeois.
Journal of Supercomputing,
*(*):***–***,2014.
|
| @article{Lakhlef-SUPE14,
author = {Lakhlef, Hicham and Mabed, Hakim and Bourgeois, Julien},
title = {An Energy and Memory-Efficient Distributed
Self-reconfiguration for Modular Sensor/Robot Networks},
journal = {Journal of Supercomputing},
pages = {***--***},
volume = {*},
number = {*},
publisher = {Springer},
year = {2014},
keywords = {Multi-Robot Formations},
}
|
|
Optimization of the Logical Topology for Mobile MEMS Networks | bib | |
Hicham Lakhlef, Hakim Mabed, and Julien Bourgeois.
JNCA, Journal of Network and Computer Applications,
*(*):***–***,2014.
|
| @article{Lakhlef-JNCA14,
author = {Lakhlef, Hicham and Mabed, Hakim and Bourgeois, Julien},
title = {Optimization of the Logical Topology for Mobile {MEMS}
Networks},
journal = {JNCA, Journal of Network and Computer Applications},
pages = {***--***},
volume = {*},
number = {*},
publisher = {Elsevier},
year = {2014},
keywords = {Multi-Robot Formations},
}
|
|
Robust Parallel Redeployment Algorithm for MEMS Microrobots. | bib | |
Hicham Lakhlef, Julien Bourgeois, and Hakim Mabed.
In AINA 2014, 28th IEEE Int. Conf. on Advanced Information Networking and Applications,
pages 1–8, May, 2014.
|
| @inproceedings{Lakhlef-AINA14,
author = {Lakhlef, Hicham and Bourgeois, Julien and Mabed, Hakim},
title = {Robust Parallel Redeployment Algorithm for {MEMS}
Microrobots.},
booktitle = {AINA 2014, 28th IEEE Int. Conf. on Advanced Information
Networking and Applications},
pages = {1--8},
address = {Victoria, Canada},
publisher = {IEEE},
month = {May},
year = {2014},
keywords = {Multi-Robot Formations},
}
|
|
Distributed and Efficient Algorithm for Self-reconfiguration of MEMS Microrobots | bib | |
Hicham Lakhlef, Hakim Mabed, and Julien Bourgeois.
In SAC 2013, 28-th ACM Symposium On Applied Computing,
pages 1–6, March, 2013.
|
| @inproceedings{lakhlef-sac13,
author = {Lakhlef, Hicham and Mabed, Hakim and Bourgeois, Julien},
title = {Distributed and Efficient Algorithm for
Self-reconfiguration of {MEMS} Microrobots},
booktitle = {SAC 2013, 28-th ACM Symposium On Applied Computing},
pages = {1--6},
address = {Coimbra, Portugal},
month = {March},
year = {2013},
keywords = {Multi-Robot Formations},
}
|
|
Generalizing Metamodules to Simplify Planning in Modular Robotic Systems | pdf bib | |
Daniel Dewey, Siddhartha S. Srinivasa, Michael P. Ashley-Rollman, Michael De Rosa, Padmanabhan Pillai, Todd C. Mowry, Jason D. Campbell, and Seth Copen Goldstein.
In Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems IROS '08,
September, 2008.
|
| @inproceedings{dewey-iros08,
author = {Dewey, Daniel and Srinivasa, Siddhartha S. and
Ashley-Rollman, Michael P. and De~Rosa, Michael and Pillai,
Padmanabhan and Mowry, Todd C. and Campbell, Jason D. and
Goldstein, Seth Copen},
title = {Generalizing Metamodules to Simplify Planning in Modular
Robotic Systems},
booktitle = {Proceedings of IEEE/RSJ 2008 International Conference
on Intelligent Robots and Systems {IROS '08}},
year = {2008},
address = {Nice, France},
month = {September},
abstract = {In this paper we develop a theory of metamodules and an
associated distributed asynchronous planner which generalizes
previous work on metamodules for lattice-based modular robotic
systems. All extant modular robotic systems have some form of
non-holonomic motion constraints. This has prompted many
researchers to look to metamodules, i.e., groups of modules that
act as a unit, as a way to reduce motion constraints and the
complexity of planning. However, previous metamodule designs have
been specific to a particular modular robot. By analyzing the
constraints found in modular robotic systems we develop a
holonomic metamodule which has two important properties: (1) it
can be used as the basic unit of an efficient planner and (2) it
can be instantiated by a wide variety of different underlying
modular robots, e.g., modular robot arms, expanding cubes,
hex-packed spheres, etc. Using a series of transformations we
show that our practical metamodule system has a provably complete
planner. Finally, our approach allows the task of shape
transformation to be separated into a planning task and a
resource allocation task. We implement our planner for two
different metamodule systems and show that the time to completion
scales linearly with the diameter of the ensemble.},
url = {http://www.cs.cmu.edu/~claytronics/papers/dewey-iros08.pdf},
keywords = {Meld, Planning, Multi-Robot Formations, Controlling
Ensembles, Robotics},
}
|
|
A Scalable Distributed Algorithm for Shape Transformation in Multi-Robot Systems | pdf bib | |
Ramprasad Ravichandran, Geoffrey Gordon, and Seth Copen Goldstein.
In Proceedings of the IEEE International Conference on Intelligent Robots and Systems IROS '07,
October, 2007.
|
| @inproceedings{ravichandran-iros07,
author = {Ravichandran, Ramprasad and Gordon, Geoffrey and
Goldstein, Seth Copen},
title = {A Scalable Distributed Algorithm for Shape Transformation
in Multi-Robot Systems},
booktitle = {Proceedings of the IEEE International Conference on
Intelligent Robots and Systems {IROS '07}},
venue = {IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)},
year = {2007},
month = {October},
keywords = {Multi-Robot Formations},
abstract = {Distributed reconfiguration is an important problem in
multi-robot systems such as mobile sensor nets and metamorphic
robot systems. In this work, we present a scalable distributed
reconfiguration algorithm, Hierarchical Median Decomposition, to
achieve arbitrary target configurations. Our algorithm is built
on top of a novel distributed median consensus estimator. The
algorithms presented are fully distributed and do not require
global communication. We show results from simulations in an open
source multi-robot simulator.},
url = {http://www.cs.cmu.edu/~claytronics/papers/ravichandran-iros07.pdf},
}
|
Back to publications list
|