
1

Composable Models for Simulation-Based Design

Christiaan J. J. Paredis, Antonio Diaz-Calderon, Rajarishi Sinha, Pradeep K. Khosla

Carnegie Mellon University

Institute for Complex Engineered Systems

Department of Electrical and Computer Engineering

Pittsburgh, PA 15213

{cjp, adiaz, rsinha, pkk}@cs.cmu.edu

Abstract

This article introduces the concept of combining both form (CAD models) and behavior

(simulation models) of mechatronic system components into component objects. By connecting

these component objects to each other through their ports, designers can create both a system-

level design description and a virtual prototype of the system. This virtual prototype, in turn,

can provide immediate feedback about design decisions by evaluating whether the functional

requirements are met in simulation.

To achieve the composition of behavioral models, we introduce a port-based modeling

paradigm. The port-based models are reconfigurable, so that the same physical component can

be simulated at multiple levels of detail without having to modify the system-level model

description. This allows the virtual prototype to evolve during the design process and to achieve

the accuracy required for the simulation experiments at each design stage.

To maintain the consistency between the form and behavior of component objects, we

introduce parametric relations between these two descriptions. In addition, we develop

algorithms that determine the type and parameter values of the lower pair interaction models;

these models depend on the form of both components that are interacting.

This article presents the initial results of our approach. The discussion is limited to high-

level system models consisting of components and lumped component interactions described by

differential algebraic equations. Expanding these concepts to finite element models and

distributed interactions is left for future research.

2

Our composable simulation and design environment has been implemented as a distributed

system in Java and C++, enabling multiple users to collaborate on the design of a single system.

Our current implementation has been applied to a variety of systems ranging from consumer

electronics to electrical train systems. We illustrate its functionality and use with a design

scenario.

1 Introduction and Motivation

Because of the intense competition in the current global economy, successful companies must

react quickly to changing trends in the market place. For example, the need for a new product

can be triggered by the introduction of new technologies, changes in customer demands, or

fluctuations in the cost of basic materials and commodities. To capitalize on these imbalances in

the market, a company must conceive, design, and manufacture new products quickly and

inexpensively. Because the design process consumes a significant portion of the total

development time, a shorter design cycle provides a distinct competitive advantage.

The design cycle can be shortened through virtual prototyping (Haas and Jasnoch 1994). A

virtual prototype enables the designers to test initially whether the design specifications are met

by performing simulations rather than physical experiments. Not only does virtual prototyping

make design verification faster and less expensive, it provides the designer with immediate

feedback on design decisions. This in turn promises a more comprehensive exploration of

design alternatives and a better performing final design. To fully exploit the advantages of

virtual prototyping, however, simulation models have to be accurate and easy to create.

Virtual prototypes need to model the behavior of the equivalent physical prototype adequately

accurately; otherwise, the predicted behavior does not match the actual behavior resulting in poor

design decisions. But creating accurate models is a hard problem. Only recently has computing

performance reached a level where high fidelity simulation models are economically viable. For

instance, it is now feasible to evaluate dynamic simulations of finite element models for crack

propagation (Swenson and Ingraffea 1988; O’Brien and Hodgins 1999). However, not always

are the most detailed and accurate simulation models also the most appropriate; sometimes it is

more important to evaluate many different alternatives quickly with only coarse, high-level

models. For instance, at the early stages of the design process, detailed models are often

unnecessary because many of the design details still have to be decided and accurate parameter

3

values are still unknown. At this stage, the accuracy of the simulation result depends more on

the accuracy of the parameter values than on the model equations; simple equations that describe

the high-level behavior of the system are then most appropriate.

Equally important to accuracy is the requirement that simulation models be easy to create.

Creating high-fidelity simulation models is a complex activity that can be quite time-consuming.

To take full advantage of virtual prototyping, it is necessary to develop a modeling paradigm that

supports model reuse, that is integrated with the design environment, and that provides a simple

and intuitive interface which requires a minimum of analysis expertise. This article introduces

such a paradigm, composable simulation and design, which is based on model composition from

system components.

2 Composable Simulation and Design

To provide better support for simulation-based design of mechatronic systems, we have

developed a simulation and design paradigm based on composition. A wide variety of products,

ranging from consumer electronics to cars, contain mostly off-the-shelve components and

components reused from previous design generations. Some other products have a modular

product architecture allowing them to be customized for a particular application or mass-

produced at low cost (Baldwin and Clark 2000). The design of these categories of products

consists primarily of the configuration or assembly of existing components or modules.

The building blocks within our composable simulation and design environment are

component objects, illustrated in Figure 1. These objects consist of a configuration interface (a

list of ports), CAD model(s), behavioral model(s), and relationships between them.

The configuration interface of a component object consists of ports. A port defines an

intended interaction between a component and its environment. For instance, the configuration

interface of the AC motor in Figure 1 has ports for the fastener holes in the stator, the shaft of the

rotor, and the electrical connector. It is through its ports that a component is connected to and

interacts with other components.

The behavioral models in the component objects are also defined by port-based interfaces.

However, here, the ports model the exchange of energy, mass, or signals between a component

and its environment. Often there is a one-to-one mapping between the ports of the configuration

interface and the ports in the behavioral interface but not always. For instance, the shaft of the

4

AC motor corresponds to a mechanical energy port, while the AC plug is modeled as two

electrical ports, one for each pin. We will describe port-based behavioral modeling in more detail

in Section 4.

The CAD models in component objects serve a dual role. On the one hand, a CAD model is a

specification of the form of a component: it provides nominal dimensions, tolerances, and

material specifications—enough information for a third party manufacturer to manufacture the

object. On the other hand, a CAD model is a mathematical representation of the geometry of an

object. In this role, it can be used for visualization purposes or as part of behavioral models.

Depending on the required accuracy of the analysis, these CAD models may be used to describe

the component at different levels of detail. The component object also includes relationships

between the ports and parameters in the configuration interface and certain form features and

characteristics of the CAD model. This will be further explained in Section 6.

Multiple component objects can be configured into larger systems by connecting their ports.

As is shown in Figure 2, the design prototype consisting of the pulley mounted onto the motor

shaft can be represented by connecting the shaft port of the pulley to the rotor port of the motor.

This configuration specifies the prototype completely: it specifies which components to use and

how to configure these components.

Configuration Interface

Model 1

Behavioral Models

CAD Specification

CAD Models

AC Motor Component

S
p

ec
if

ic
at

io
n

M
o

d
el

s

Configuration InterfaceConfiguration Interface

Model 1

Behavioral Models

Model 1Model 1

Behavioral Models

CAD SpecificationCAD Specification

CAD ModelsCAD Models

AC Motor Component

S
p

ec
if

ic
at

io
n

M
o

d
el

s

AC Motor Component

S
p

ec
if

ic
at

io
n

M
o

d
el

s

Figure 1: Component objects consist of a port-based interface for system configuration,

combined with CAD and behavioral models.

5

In their framework for System Design for Reusability (SyDeR), Feldkamp et al. (Feldkamp et

al. 1998) provide an interface to hierarchically specify modular systems through port-based

composition. Our approach goes beyond the specification of the design prototype, and further

includes analysis capabilities by including CAD and behavioral models.

Because the modeling of systems described as component configurations can also be viewed

as composition, we can obtain a system level simulation model by combining the behavioral

models of the individual components. One important difference between the configuration of

component objects and the configuration of their behavioral models is the inclusion of models

that capture the dynamics of the interactions through the ports (friction, electro-magnetic

interference, contact resistance, etc). The role of interaction models is further investigated in

Section 6.2.

By taking advantage of the parallelism between composition in configuration design and

composition in simulation modeling, our framework allows a designer to simultaneously design

and model new artifacts. This is already common practice in electrical CAD software (Mentor

Graphics 2000); when creating a chip layout, the instantiation of a transistor or logic gate creates

the geometry for the silicon layers as well as the corresponding simulation model. In mechanical

CAD, the integration between design and simulation is not as common. For purely mechanical

B
olt_4

B
olt_1

B
olt_3

B
olt_2

Pulley

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

Wire_1

Wire_2

Wire_1

Shaft
Port

Belt
Port

Pulley

Stator Port

Rotor
Port

110V AC
Port

AC Motor

Component Configuration

S
p

ec
if

ic
at

io
n

M
o

d
el

s

B
olt_4

B
olt_1

B
olt_3

B
olt_2

Pulley

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

Wire_1

Wire_2

Wire_1

B
olt_4

B
olt_1

B
olt_3

B
olt_2

B
olt_4

B
olt_1

B
olt_3

B
olt_2

Pulley

Shaft-Pulley
Interaction

Shaft-Pulley
Interaction

AC
Motor

Shaft-PulleyShaft-Pulley

Wire_1

Wire_2

Wire_1

Shaft
Port

Belt
Port

Pulley

Stator Port

Rotor
Port

110V AC
Port

AC Motor
Shaft
Port

Belt
Port

Pulley

Stator Port

Rotor
Port

110V AC
Port

AC Motor

Component Configuration

S
p

ec
if

ic
at

io
n

M
o

d
el

s

Figure 2: Component objects can be hierarchically configured into complex systems. At

the same time, the behavioral and CAD models are configured also.

6

systems, most commercial CAD packages do provide an optional module for multi-body

simulation, but these modules do not support port-based configuration and lack sufficient support

for multi-disciplinary systems. The main goal of our simulation and design environment is to

extend these ideas to simulation-based design of multidisciplinary systems within an integrated

software environment.

We believe that the concept of component objects is general and that the composition of port-

based objects can be applied to many different application areas, energy domains, and levels of

model accuracy. However, in our current research, we have applied this framework only to

system-level modeling of mechatronic systems (Diaz-Calderon et al. 1999; Sinha et al. 2000);

that is, modeling of computer-controlled electro-mechanical systems using differential algebraic

equations (DAEs) (Ascher and Petzold 1998) and/or discrete event systems specifications

(DEVS) (Zeigler et al. 2000).

Furthermore, the port-based modeling paradigm, as presented in this article, is limited to

systems with lumped interactions. When an interaction is distributed in nature, as between a

boat and the water on which it floats, it must be approximated by a large number of lumped

interactions. The internal model of a component, however, may still be distributed. Consider,

for example, a flexible beam attached to a structure by its two ends. A finite element model may

describe the internal behavior of the beam, but, by defining a mapping between the lumped port

variables and distributed boundary conditions of the finite element model, the interaction with

the rest of the structure can still be captured with only two ports. For mechatronic systems, the

primary interactions between components tend to be lumped, so that the port-based modeling

paradigm is applicable. Only when more detailed models are required, may we have to consider

phenomena, such as thermal interactions, that are distributed in nature. In the future, we plan to

expand our modeling paradigm to different energy domains, and distributed interactions.

Our framework for simulation and design has the following characteristics, which we will

address in detail in the subsequent sections:

A port-based modeling paradigm: To take advantage of the compositional nature of both

design and modeling of mechatronic systems, we use a port-based modeling paradigm in which

the user can compose system-level simulations from component models. By connecting the

ports of the subcomponents, the user defines the interactions between them. This port-based

7

modeling paradigm builds on object oriented modeling languages such as VHDL-AMS (IEEE

1999) and Modelica (Mattsson et al. 1998), and is explained in more detail in Section 4.

Reconfigurable Models: At each stage of the design process, the designer performs different

simulation experiments to verify whether the design prototype meets the functional requirements.

In the early, conceptual stage, these experiments may include quick trade-off analyses that

require limited accuracy, while towards the end of the detailed design stage, the designer may

decide to perform a comprehensive, detailed simulation. To accommodate simulations at

different levels of detail without the need for remodeling the complete system, we develop the

concept of reconfigurable models in Section 5. These models can evolve with the design

prototype throughout the design process.

Simulation integrated with CAD: The building blocks in our simulation and design

environment are component objects; they describe both the form and the behavior of system

components. In Section 6, we describe how the CAD description of the form may be used to

extract the lumped parameters of the behavioral models. In addition, we have developed

algorithms that instantiate models of mechanical interactions based on the form of the interacting

components.

A component library: The component objects are organized in a hierarchical component

library. From this library, the designer selects the components that achieve the desired

functionality within the system. We provide a detailed description of the component library and

its implementation in Section 7.

3 Related Work

3.1 Modeling and Simulation

There exist already many modeling paradigms and commercial simulation packages. They

can be characterized according to the following criteria: graph-based versus language-based,

multi-domain versus single-domain, and declarative versus procedural modeling.

The best known of the graph-based modeling paradigms is Bond Graph modeling (Paynter

1961; van Dixhoorn 1980; Rosenberg and Karnopp 1983; Karnopp et al. 1990). It is based on

energy-conserving junctions that connect energy storing or transforming elements with bonds;

the bonds represent the energy flow between the modeling elements. Bond graph modeling has

8

the advantage that it is domain independent and based on energy flow, but it is not very

convenient for the modeling of 3D mechanics or continuous-discrete hybrid systems.

Furthermore, beginning users find it counterintuitive that the topology of a bond graph is

different from the topology of the corresponding physical system.

Linear graph models do reflect the system topology directly (Trent 1955; Branin 1966). They

are also domain independent and can be easily extended to model 3D mechanics (Andrews et al.

1988; Richard et al. 1995; McPhee 1996) and hybrid systems (Roe 1966; Muegge 1996). The

VHDL-AMS language, which we use for modeling, builds on the concepts of linear graph

modeling, although it does not require an explicit graph representation (Christen et al. 1999;

IEEE 1999).

The majority of modeling paradigms is not graph-based, but language-based. A large number

of modeling languages are derived from the CSSL (continuous system simulation language)

standard developed by the Technical Committee of the Society for Computer Simulation (Strauss

et al. 1967). These languages have in common that they are procedural. A model is defined by

a procedure that computes the derivatives of the state for a given state and time. A second group

of modeling languages is equation-based or declarative: Modelica (Elmqvist et al. 1998), Easy5

(The Boeing Company 1999), Dymola (Dynasim AB 1999), Omola (Anderson 1994), and

VHDL-AMS (IEEE 1999). Here, the model is defined by a set of equations that establishes

relations between the states, their derivatives, and time. A model compiler is responsible for

converting these equations into a software expression that can be evaluated by the computer.

The advantage of declarative languages is that the user does not have to define the

mathematical causality of the equations, so that the same model can be used for any causality

imposed by other system components. Many of the declarative languages are also object-

oriented and support multiple energy domains. This is the case for VHDL-AMS and Modelica,

which have the additional advantage that they support both continuous time and discrete time

systems simulation.

The modeling paradigm presented in this article builds on the current state-of-the-art

modeling languages (Modelica and VHDL-AMS). The reconfigurable port-based models,

introduced in Section 4 and 5, are compiled into either Modelica or VHDL-AMS models once

the parameter values have been extracted from the CAD data and the user has specified the

implementation bindings.

9

3.2 Simulation-based Design

Many companies are resorting to simulation tools to improve their design process. A well-

publicized example of virtual prototyping is the design of the Boeing 777 airplane (Upton 1998).

Boeing switched from a paper-based design process to a digital CAD representation, allowing

them to perform some of the performance analysis (using CFD software) and assemblability

analysis without the need for building physical prototypes. This resulted in a shorter design and

testing period. A similar all-digital approach is also being adopted by car manufacturers

(Bullinger et al. 1999).

Although the success of simulation-based design has already been demonstrated

commercially (Upton 1998; Bullinger et al. 1999), many unresolved research issues remain to be

addressed. Ongoing research includes model validation, automatic meshing and model creation,

integration of simulation engines in different domains, architectures for collaboration, and

visualization using virtual reality technology. In this article, we focus on simplifying the process

of model creation, by integrating form and behavior into component objects.

Our approach is based on the characterization of a design prototype by its form, function, and

behavior (Pahl and Beitz 1996; Shooter et al. 2000). The form is a description of the physical

embodiment of an artifact, while function is the purpose of the artifact—the behavior that the

designer intended to achieve. As is illustrated in Figure 3, the actual behavior does not depend

on the function, but only on the form. During design or synthesis, we instantiate a form to satisfy

a given function, while, during design verification, we derive the behavior from the form and

Form
Synthesis

Modeling &
Analysis

BehaviorFunction

Evaluation

Form
Synthesis

Modeling &
Analysis

BehaviorFunction

Evaluation

Figure 3: The relation between form, function, and behavior

in the context of virtual prototyping.

10

verify whether this behavior matches the function. In the context of virtual prototyping, the

behavior is described by mathematical models and design verification is achieved by performing

simulation experiments with these models.

The design process is iterative and hierarchical in nature. To solve complex design problems,

a design team typically considers the problem at different levels of abstraction, ranging from

very high-level system decompositions to very low-level detailed specification of components

(de Vries and Breunese 1995; Shooter et al. 2000). During this process, the design team adds

information and thus transforms the design representations. For instance, a needs assessment is

transformed into design specifications and engineering requirements; engineering requirements,

in turn, are converted into a family of solutions that are evaluated and compared (possibly using

simulation) to iterate on the description of the artifact in terms of form, function, and behavior

(Pahl and Beitz 1996). As a result, all representations evolve simultaneously from the initial

high-level decompositions to increasingly detailed descriptions of the design artifact.

In the early stages of the design process, when only few physical details have been defined,

simulation models can capture the high-level, intended behavior of sub-systems, allowing one to

use simulation to make important conceptual trade-offs. As more details of the actual

embodiment or form are included in design artifacts, these high-level models can be replaced

gradually by more detailed behavioral models of the physical components. The modularity and

encapsulation of our port-based modeling paradigm facilitates these model substitutions.

4 Port-Based Modeling Paradigm

To achieve composability of behavioral models, we have developed a port-based modeling

paradigm. This paradigm is based on two concepts: ports and connections (Diaz-Calderon et al.

2000a; Diaz-Calderon et al. 2000c).

Ports correspond to the points where a component exchanges energy or signals with the

environment. All energy is exchanged through ports. There is one port for each separate inter-

action point, and the type of a port matches the type of the energy exchange. For example, a DC

motor has four ports, two electrical and two mechanical. The electrical ports correspond to the

electrical connectors of the motor, the mechanical ports to the stator and the rotor—one port for

each rigid body.

11

The energy flowing through a port is characterized by an across and a through variable, also

called effort and flow variables in Bond Graph modeling (Paynter 1961; Rosenberg and Karnopp

1983). Examples of across variables are voltage in the electrical domain and velocity in the

mechanical domain. They are measured across the port relative to a global reference. The

corresponding through variables, electrical current and mechanical force, are measured through

the port.

The interactions between component models are represented by connections between ports.

Each connection imposes algebraic constraints on the port variables. These constraints are the

equivalents of the Kirchhoff voltage and current laws in electrical circuits. One type of

constraint requires that the across variables be equal, the other that the sum of the through

variables be zero. A single energy connection in our framework is equivalent to two connections

in block-diagram modeling languages such as SimuLink (The Mathworks Inc. 1999). In block

diagrams, all interactions occur through signals. The user is responsible for determining which

of these signals are dependent and which are independent, that is, the mathematical causality of

the model.

Combining across and through variables in a single connection allows us to model

components and ports as declarative equations rather than procedural assignments. Many recent

simulation languages are declarative, including Modelica (Elmqvist and Mattsson 1997), VHDL-

AMS (IEEE 1999), and Dymola (Dynasim AB 1999); SimuLink (The Mathworks Inc. 1999), on

the other hand, is procedural. When solving a set of declarative differential equations, the solver

must first determine the mathematical causality of the equations.

As a reflection of the underlying physics, the declarative representations of both energy

connections and energy ports are undirected. An electrical resistor, modeled by RIV = , does not

have an input and an output (no predetermined mathematical causality), and the energy through

its ports can flow in either direction (no sign restrictions on the flow variable). Since the model

is declarative, the solver may instantiate this single equation as either RIV = or RVI /= ,

depending on how the resistor is used in the circuit. Even when considering the heat dissipated

by the resistor, 2RIQ = , the user does not have to worry about the direction of the heat transfer or

its causality as defined by the second law of thermodynamics. The solver will recognize that Q

is always positive and that the only valid mathematical causality assignment is to compute the

dissipated heat from the voltage and current; the opposite causality would impose simultaneous

12

constraints on the voltage and current through the resistor, resulting in overconstrained equations

for the electrical system.

All the ports combined form the interface of the model. This interface defines how the

component can interact with the other components in the system, but does not contain any

information about the internal behavior of the component. Instead, the interface encapsulates the

implementation of the model, which defines the internal behavior of the component

As illustrated in Figure 4, a port-based model can be hierarchically defined when it consists of

a composition of sub-models, resulting in a compound component. When the sub-models are

also compound, multiple levels of hierarchy occur. The bottom of the hierarchy consists of

primitive models that are defined only by their constitutive equations; these relate the across and

through variables of a component model. For example, the constitutive equation for a resistor

relates the voltage difference between the two ports with the current through the ports according

to Ohm’s law, RIV = . In general, the model equations may include a combination of both

algebraic and ordinary differential equations.

In addition to ports and connections that model energy flow, we also consider signal ports and

signal connections. No energy flows through signal ports, and the connections between them are

directed. This reflects the physics of a low-impedance electrical output driving a high-

impedance input; the signal can only flow from the output to the input, an operation that requires

almost no power (Sedra and Smith 1997). Examples of systems with signals are computer

networks, data buses, or embedded controllers; they can be modeled as block diagrams similar to

SimuLink models (The Mathworks Inc. 1999). Signal components are defined by procedures

rather than constitutive equations. Procedures differ from constitutive equations in that their

mathematical causality is fixed (inputs are independent, and outputs are dependent variables).

Most mechatronic systems contain both energy-based and signal components and are thus hybrid

systems (Shetty and Kolk 1997).

5 Reconfigurable Models

Most object-oriented modeling languages have a concept similar to ports (sometimes called

terminals, or connectors) (Anderson 1994; Sahlin 1996; Elmqvist et al. 1998; IEEE 1999), and it

is possible to use these languages to describe the composable and hierarchical port-based models

introduced in the previous section. However, these languages do not guarantee a clear separation

13

between the interface of the model and the implementation of its behavior, often merging both

concepts into a single modeling object. To create models that can evolve with the design, we

need the capability to bind different implementations to the same interface, allowing the designer

to select a more detailed behavior for a component, without having to remodel its interactions

with the rest of the system.

Complex system

Primitive system

Interface

System E

system
C

system
D

system
B

system
A

system
B

system
C

a

b

c

d e f

d

constitutive
equations

ports

Non-causal connection

Causal connection

d.p1

d.p2

d.p3

C.p1

C.p2

C.p3

E.p1

E.p2

E.p3

E.p4

Figure 4: Port-based simulation models may be hierarchically defined.

14

In traditional object-oriented modeling languages, the behavior of a model can only be

modified by changing the values of the parameters. In our approach, the structure of the model

can be modified also, resulting in reconfigurable models. In a reconfigurable model, the

interface of the model and the implementation of its behavior are defined separately. As is

illustrated in Figure 5, each implementation has a corresponding interface, but a single interface

may have multiple implementations associated with it.

In the definition of reconfigurable models, we consider two principles: composition and

instantiation.

Through the principle of composition, a model implementation can be defined as a set of sub-

component interfaces and the interactions between them, as in implementation A in Figure 5. At

this point, the sub-components do not yet have any behavior; they are represented only by their

interface. This allows us to define the interactions between sub-components independently of

their internal behavior. One can think of an interface as the equivalent of an abstract class in

object oriented programming; it defines the methods through which one can interact with the

object, but it does not provide an implementation.

An abstract model becomes concrete by instantiating an implementation. Only

System E

constitutive
equations

implementation C

implementation B

implementation A

Figure 5: A reconfigurable model consisting of an interface and three implementations.

15

implementations that match the interface can be instantiated. Moreover, the semantics of the

implementation must match the semantics of the interface. For example, the interface of an

electrical resistor has the same ports as the interface of a capacitor. However, because the

semantics of the two components are different, only resistor implementations can be instantiated

for a resistor interface.

 Like general port-based models, reconfigurable models can be hierarchical. Because

compound implementations are a composition of abstract interfaces, they themselves are also

abstract. The instantiation of a compound model, therefore, requires the recursive instantiation

of all the interfaces of its subcomponents. The number of possible configurations of a compound

model can grow very large when considering all possible combinations of implementation

bindings. We call this set the model space of the component. The advantage of reconfigurable

models is that all the elements of the model space can be instantiated without having to redefine

the interactions with other system components because the interface remains the same.

The instantiation principle also allows the definition of families of components. In this case,

the implementations for an interface do not represent different behavioral models for a single

component, but instead represent models for a family of components that all share the same

interface. For example, a family of DC motors may all share an interface consisting of two

mechanical and two electrical ports. When designing a system, the designer can include this

interface in the system model without having to select a particular DC motor. It may be possible

to select the most appropriate DC motor, by performing a series of simulation experiments each

with a different motor from the family; each new experiment only requires that a new

implementation be bound to the DC motor interface.

As is illustrated in Figure 6, the set of implementations for an interface can be represented as

an AND-OR tree (Diaz-Calderon et al. 2000c). The structure of the AND-OR tree and the

principles of composition and instantiation are closely related. AND arcs point from an

implementation to the interfaces from which it is composed. Similarly, OR arcs point from an

interface to the implementations from which it can be instantiated. For example, the AND-OR

tree in Figure 6 depicts a DC-motor model. The top-level interface has three different

implementations associated with it, represented by three OR arcs. The electro-mechanical model

implementation has three AND arcs, meaning that it is a compound model consisting of three

interfaces: electrical, conversion, and mechanical. When instantiating a particular model in the

16

model space, we must bind implementations to interfaces. Working our way down from the top

to the bottom of the AND-OR tree, we must first assign an implementation to the top-level

interface and then recursively to each of the interfaces that constitute the selected

implementations.

In general, a component object can contain multiple behavioral models, describing the

component at different levels of detail. Sometimes it is possible to capture this set of behavioral

models in a single reconfigurable model, as described above. This requires, however, that all

behavioral models have the same interface, a condition that may not always be satisfied. For

instance, if we decided to model the thermal losses in the DC-motor in Figure 6, the interface

would have to be expanded to include a thermal port. Our current research is addressing the

issues that arise when including behavioral models with different interfaces.

6 Relation between Behavior and Form

Composable simulation and design are based on the concept of component objects that

combine form and behavior. By composing component objects into systems, a designer

simultaneously designs and models new artifacts. The previous two sections introduced a

Loss Free
Power Conversion

Electro-Mech.
Implementation

Implementation
n

DC motor

Conversion

OR OR

OROR

AND AND

Mechanical

Friction No Friction

Interface

Implementation

Electro-
Mechanical
Conversion

BothInductanceResistance

Electrical

Ideal Model Armature
Losses

AND AND

V=RI V=LdI/dt V=RI+LdI/dt

Loss Free
Power Conversion

Electro-Mech.
Implementation

Implementation
n

DC motor

Conversion

OR OR

OROR OROR

AND ANDAND AND

Mechanical

Friction No Friction

Interface

Implementation

Mechanical

Friction No Friction

Interface

Implementation

Interface

Implementation

Electro-
Mechanical
Conversion

BothInductanceResistance

Electrical

Ideal Model Armature
Losses

AND AND

V=RI V=LdI/dt V=RI+LdI/dt

BothInductanceResistance

Electrical

Ideal Model Armature
Losses

AND AND

BothInductanceResistance

Electrical

Ideal Model Armature
Losses

AND ANDAND AND

V=RI V=LdI/dt V=RI+LdI/dt

Figure 6: An example AND-OR tree representation of a reconfigurable model.

17

modular modeling paradigm that supports such composition. In this section, we focus on

maintaining consistency between these behavioral models and the corresponding form

descriptions as represented by the CAD specification model.

In model compositions, we distinguish between two different types of behavioral models:

models representing physical components, and models representing interactions between

components. Examples of physical components are motors, screws, shafts, or controllers. Their

component objects contain a description of both form and behavior. Interaction models, on the

other hand, only occur when two component objects are connected to each other. They do not

have associated form, but their model parameters can be extracted from the form of the two

interacting components. Examples of interaction models are lower pairs that result from

mechanical contact, contact resistance in an electrical switch, or magnetic forces between two

magnets.

6.1 Form and Behavior of Component Families

A component object contains a specification of the form of the component as well as CAD

models and reconfigurable models describing its behavior. The reconfigurable models may

describe the component at different levels of abstraction or with respect to different energy

domains, and provides, in this way, different views of the component. Similarly, multiple CAD

models may provide different views, at multiple levels of detail, of the geometry of the

component.

When a component object is defined as a composition of sub-components, both the form

specification and the models are derived automatically by applying the compositional concepts

described in the previous sections. When a component is not compound but primitive, however,

a fair amount of work is required to define a CAD specification of the form, additional CAD

models for visualization, behavioral models, and the relationships between them.

To facilitate the specification of primitive component objects, one can group them into

families. A family of component objects is parameterized by one or more instantiation

parameters that, when assigned particular values, completely specify the form of the component.

All other parameters describing the geometry or behavior of the component can then be derived

from these instantiation parameters.

18

For instance, as is illustrated in Figure 7, given the value for a single instantiation parameter

(the model-type of a DC-motor), a lookup table provides all the parameters specifying the form

of the configuration ports as well as the parameters of all behavioral and CAD models. This

CAD geometry may simply be a high-level abstraction, capturing only the external geometry

through which the motor can interact with other components.

In a second example, we can automatically generate behavioral models for component

families specified by parametric CAD models. In a parametric CAD model, the designer

establishes relationships between certain geometric dimensions or parameters. As a result, the

form is completely defined by a limited set of characteristic parameters or features, the

instantiation parameters. The parameters in the behavioral models can, in turn, be derived from

the CAD parameters. As is illustrated in Figure 7, the flow resistance of a hydraulic pipe

depends on its length, diameter, and bending radii. Although these dimensions may not be

defined explicitly in the CAD model, they can be extracted through parametric relations captured

as procedures (Shah and Mantyla 1995; Bettig et al. 2000).

Finally, in the most general case, behavioral models can be automatically derived for

Mass, Center of Gravity

Inertia Tensor

Component Model

ωωα IIM

xmF

×+=

=

∑
∑ &&

Pipe diameter

Pipe shape

Pipe Model

Flow Resistance =
F(L, R1, R2, D, …)

R1

R2

D

L

MicroMo XYZ DC-Motor

Parameters =
Lookup(XYZ)

Mass, Center of Gravity

Inertia Tensor

Component Model

ωωα IIM

xmF

×+=

=

∑
∑ &&

Mass, Center of Gravity

Inertia Tensor

Component Model

ωωα IIM

xmF

×+=

=

∑
∑ &&

Pipe diameter

Pipe shape

Pipe Model

Flow Resistance =
F(L, R1, R2, D, …)

R1

R2

D

L
Pipe diameter

Pipe shape

Pipe Model

Flow Resistance =
F(L, R1, R2, D, …)

R1

R2

D

L R1

R2

DD

L

MicroMo XYZ DC-Motor

Parameters =
Lookup(XYZ)

MicroMo XYZ DC-Motor

Parameters =
Lookup(XYZ)

Figure 7: The relation between form and behavior parameters.

19

components specified by generic CAD models. This requires combining information about

geometry and materials with knowledge of the physical phenomena occurring in the component.

Creating such models automatically is too difficult in the general case, but can be achieved for

certain classes of behavioral models. For example, as is shown in Figure 7, a rigid body model

for a component with homogeneous material properties is completely defined by the mass and

inertial parameters of the component. Most CAD software packages provide procedures that

compute the inertial parameters from the density and the geometry of a part, as defined in a

general CAD model. As a result, the behavior models of homogeneous rigid bodies can be

derived automatically for any material and arbitrary geometry.

6.2 Form and Behavior of Component Interactions

In addition to the behavioral models of component objects, system models include models

describing the interactions between component objects. For each pair of interacting component

objects, there is an interaction model that relates the port variables of the two objects to each

other.

Every interaction requires an interaction model. However, for the electrical domain, the

interaction model is usually very simple. An electrical connection between two components is

often modeled sufficiently accurately by constraining the voltage at the two connecting ports to

be equal and the current through them to add to zero (Kirchhoff’s voltage and current laws).

Because this interaction model is so common, we allow it to be omitted as shorthand in our

modeling paradigm, as is shown in Figure 8.

In the mechanical domain, the equivalent default model is a rigid connection between

components (the positions of the reference frames are equal and the forces and torques add to

zero). Besides rigid connections, other common mechanical interaction models are the lower

pair kinematic constraints. We have developed algorithms to extract the type and parameters of

a lower pair from the geometry of the interacting components (Sinha et al. 1998; Sinha et al.

2000). Previously, kinematic analysis was limited to geometry with only planar faces

(Mattikalli et al. 1994). When approximating curved faces, which are common in engineering

devices, with polygonal facets, these analyses may fail to recognize certain degrees of freedom.

In our work (Sinha et al. 1998; Sinha et al. 2000), we have extended these results to curved

contacts, as is shown in Figure 9. When two rigid parts share a surface-to-surface contact, every

20

contact point is subject to a non-penetration condition. This condition requires that the

instantaneous velocity between the two bodies does not have a component in the direction

opposite to the surface normal at the contact point. We write this condition as a linear inequality

of the form:

0)(≥•×+ nrv
rrrr ω , (1)

where v
r

 and ωr are the relative translational and angular velocities between the two bodies, r
r

 is

the position of the point, and n
r

 is the normal to the contact surface. Imposing Equation (1) at

every point on the contact surface is equivalent to imposing the constraint at the vertices of the

convex hull (Sinha et al. 1998). For instance, the non-penetration conditions for the two bodies in

Figure 9 result in eight equations, one for each of the eight corners of the two contact surfaces. In

general, the analysis results in a linear relationship of the form:

0≥

ωr
r
v

J assembly , (2)

where each row of Jassembly represents a non-penetration constraint, as in Equation (1). From the

properties of the Jassembly matrix, we can determine the kinematic constraints between two

interacting component objects. For example, the basis vectors of the nullspace of Jassembly define

the contact-preserving degrees of freedom, as is illustrated in Figure 9.

Physical
Object A

Physical
Object B

Interaction
Model

Interaction
Model

Mechanical Domain
(complex interaction)
Mechanical Domain
(complex interaction)

Joint Model, Gear Model, Friction.

Electrical Domain
(default interaction)
Electrical Domain
(default interaction)

BA acrossacross =
0throughi =∑

Component
A

Component
B

Node Component
A

Component
B

Interaction
Component

Physical
Object A

Physical
Object B

Interaction
Model

Interaction
Model

Mechanical Domain
(complex interaction)
Mechanical Domain
(complex interaction)

Joint Model, Gear Model, Friction.

Electrical Domain
(default interaction)
Electrical Domain
(default interaction)

BA acrossacross =
0throughi =∑

BA acrossacross =
0throughi =∑

Component
A

Component
B

Node Component
A

Component
B

Interaction
Component

Figure 8: Modeling the nteractions between system components.

21

Our method can infer behavior from devices with curved geometry, while at the same time

resolving global, multi-part interactions. We have developed procedures that derive the Jassembly

matrix directly from the CAD models, and from it determine the type and parameters of the

interaction models (Sinha et al. 1998; Sinha et al. 2000).

7 Component Libraries

While the previous sections described the properties and characteristics of individual

component objects, this section focuses on the organization of multiple component objects into

libraries. By searching through the components in these libraries, the designer can locate the

appropriate component (or system of components) for a particular desired function. In our

current research, we are developing methodologies for assisting the designer in this search

process. Such an intelligent synthesis assistant may search the component library based on

queries regarding the component’s behavior and form. When extending this idea even further, a

component object could contain design rules or expert knowledge that allow it to adapt its form

to meet the design specifications. Such “intelligent” components are introduced in (Susca et al.

2000).

3DUWLDO�F\OLQGULFDO
FRQWDFW�ZLWK���SRLQWV�

7ZR�YLHZV�RI�D���SDUW�DVVHPEO\

0

0025.025.0

252525.025.0

0025.025.0

252525.025.0

252525.025.0

0025.025.0

252525.025.0

0025.025.0

≤

−
−

−
−−−

−−
−−−

−

y

x

y

x

v

v

ω
ωnedunconstrai ,

0

zz

yxyx

v

vv

ω
ωω ====

3DUWLDO�F\OLQGULFDO
FRQWDFW�ZLWK���SRLQWV�

7ZR�YLHZV�RI�D���SDUW�DVVHPEO\

0

0025.025.0

252525.025.0

0025.025.0

252525.025.0

252525.025.0

0025.025.0

252525.025.0

0025.025.0

≤

−
−

−
−−−

−−
−−−

−

y

x

y

x

v

v

ω
ωnedunconstrai ,

0

zz

yxyx

v

vv

ω
ωω ====

Figure 9: Extracting the type and parameters for lower pair interaction models.

22

As is illustrated in Figure 10, we have organized the component objects in a hierarchical

taxonomy instead of a flat organization. When moving from the top to the bottom of the

hierarchy, the component objects become more concrete. At the top, the objects are abstract and

represent families of components, such as the family of electrical two-ports or mechanical rigid

bodies; at the bottom, the leaf nodes of the hierarchy represent completely specified physical

components. A component can be completely specified for instance by identifying its

manufacturer and part number—this allows a manufacturer to implement the design without

ambiguity. However, the corresponding behavioral model(s) remain approximations of the

actual physical behavior.

We call a component abstract when its implementation is not completely defined: It may not

include any implementation, or its implementation may contain one or more unspecified

parameter values.

A single component may appear in multiple locations in the taxonomy, depending on the

viewpoint for its classification. For example, a DC-motor is an energy conversion component,

but can also be considered as a structural element that implements a rotary joint. Conversely,

each object in the library includes multiple behavioral views in the form of a reconfigurable

model. Figure 10 shows the browser that allows the designer to navigate through the model

space of a component, as defined by the AND-OR tree of model implementations.

Figure 10: The component library browser with visualization

of the corresponding reconfigurable models.

23

When including a component into a larger system, the designer has to complete two steps:

component selection and model selection. In the first step, the designer decides which

component to use for the implementation of a particular function of the device. Initially, this

may be an abstract object that represents a family of components and will later be replaced by a

specific instance. For example, initially, the designer decides to use a DC-motor component,

which represents the family of all DC-motors, and replaces it later by the specific component

object for motor XYZ by company ABC Inc. In the second step, the designer selects the

component implementation that is best suited for a particular simulation experiment. For

example, the high-level “Loss Free Power Conversion” model of Figure 6 in the early stages of

design and the more detailed model, including armature losses and friction, towards the end.

Both the hierarchy of the library and the individual entries are defined in XML format

(extensible markup language) (W3C 1999). XML is a neutral and extensible format that can be

easily parsed, searched, and shared over the Web. Our XML representation for component

objects includes pointers to geometric models (ACIS or Pro/E), an interface definition of the

behavioral model, and pointers to the corresponding implementations.

The definition of an implementation is also stored in XML format. The equations tags in

primitive implementations are based on the VHDL-AMS standard (IEEE 1999). The component

descriptions may also contain meta-knowledge capturing the semantics of the model: What are

the assumptions? When is the model valid? Or, what is the meaning of the model? We anticipate

using this meta-knowledge extensively when searching for components based on their function.

Examples and a more detailed description of the XML model definition format is provided in

(Diaz-Calderon et al. 2000b).

8 Software Architecture and Implementation

The implementation architecture of our simulation-based design environment is similar to the

Open Assembly Design Environment (OpenADE) developed at NIST (Keirouz et al. 2000). As

is shown in Figure 11, the core of our system is a central design database in which the

representations for the current design are stored: function, behavior, product structure, and CAD

data. Furthermore, the database contains the relationships between these representations; for

instance, if a system component implements a particular function, the database will contain a

24

“has_function” relation pointing from the object to its functional model, and an

“implemented_by” relation from the model to the object.

During the design process, the information in the central database is continually transformed

by autonomous software agents or by the designer—through graphical user interfaces, shown in

Figure 12.

The main interaction between the designer and the database occurs through the 3D CAD GUI

and the behavior model GUI. The 3D CAD GUI is implemented using the Java3D toolkit. It

allows the user to view and manipulate the geometry associated with the system components,

and to define mechanical interactions between components. It does not allow the geometry of

individual components to be modified; we plan to provide that functionality in the future by

integrating our framework with Pro/Engineer. The current Java-based 3D GUI will still remain

useful for system-level interactions that do not require the design of new components.

The behavioral modeler provides a 2D view of the system. Each of the system components

appears in this view as a port-based model.

In addition to the user interfaces, software agents interact with the design repository. These

agents can act as design assistants, working in the background. The tasks performed by such

agents include the following:

• the translation of CAD data to VRML format for rendering,

• the extraction and verification of mechanical component interactions,

Design
Database:

• Functional Model
• Behavioral Model
• Product Structure
• CAD data
• …

Design
Database:

• Functional Model
• Behavioral Model
• Product Structure
• CAD data
• …

CAD GUICAD GUI

Structure GUIStructure GUI

Function GUIFunction GUI

Behavior GUIBehavior GUI

Param. ExtractionParam. Extraction

Simulation EngineSimulation Engine

Data TranslatorData Translator

……

Design
Database:

• Functional Model
• Behavioral Model
• Product Structure
• CAD data
• …

Design
Database:

• Functional Model
• Behavioral Model
• Product Structure
• CAD data
• …

CAD GUICAD GUI

Structure GUIStructure GUI

Function GUIFunction GUI

Behavior GUIBehavior GUI

Param. ExtractionParam. Extraction

Simulation EngineSimulation Engine

Data TranslatorData Translator

……

Figure 11: Java-Based GUI components and services interact

through a shared design database.

25

• the compilation of behavioral models in XML format to VHDL-AMS simulation

models.

The framework is implemented in a distributed fashion using Java and C++. The

coordination between the distributed software components is event-based (Spell 2000). When a

user or a software agent modifies a portion of the design representation, the design database

broadcasts an event to all the subscribing agents and GUIs. If necessary, these components will

then update their local cache to reflect the changes in the design database. This allows us to

maintain consistency between the internal design data and its presentation to the user.

Because of its distributed implementation, our framework can also serve as a tool for

collaboration. Multiple users can interact with the same design simultaneously, and design

modifications introduced by one user can be propagated immediately to all other users.

3D CAD modeling

Component library

Behavior Modeling

Component editor

3D CAD modeling

Component library

Behavior Modeling

Component editor

Figure 12: The CAD GUI and Behavioral Model GUI

26

9 Example Scenario

To illustrate the use of our composable simulation framework, we examine the design of a

missile seeker (Cutkosky et al. 1996). It is not our goal here to present a detailed design case

study, but to focus on the use of modeling and simulation during the design process.

The seeker is a device with two rotational degrees of freedom that allow it to scan a 2-

dimensional area with its camera. Besides the articulated mechanism that realizes the desired

degrees of freedom, the seeker consists of actuators, sensors, and embedded controllers for

accurate positioning.

9.1 Kinematic Design

As mentioned in Section 3.2, one can think of design as the process of decomposing the

function of an artifact, and transforming it into form, such that the form’s behavior matches the

function (Figure 3). By performing a functional decomposition of the missile seeker, the

designer has decided to achieve the two desired degrees of freedom with a serial chain of two

rotational joints. He specifies this kinematic function with a ball and stick model and a

corresponding simulation model, as shown in Figure 13. This model reflects the intended

behavior or function, but no specific physical components have yet been assigned to implement

this intended behavior. Nevertheless, the designer can still use our simulator to verify whether

these intended kinematics satisfy the design requirements.

9.2 Instantiation of the geometry

Next, the designer instantiates physical components to realize the kinematic structure. The

revolute joints of the ball-and-stick model are replaced with DC-motors selected from the

component library. Because the designer still needs to determine the dimensions of the motors,

he instantiates them with a default parameter set. The corresponding behavioral model

represents a complete family of DC-motors, from which he can later select a particular instance.

1 R-DOF
1 R-DOF

Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Reference

Frame
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Reference

Frame
Revolute

Joint

Revolute

Joint
Revolute

Joint

Revolute

Joint
Revolute

Joint

Reference

Frame

Figure 13: Kinematic model for the 2-DOF seeker.

27

To connect the motors physically, the designer creates the geometry of a gimbal ring in a

CAD package linked to our design environment. This causes the corresponding rigid body

model to be instantiated in the system-level behavioral model. From the CAD model, the

geometric compiler automatically extracts the mass and inertial parameters, and applies them to

the rigid body model. The designer also defines the configuration ports on the gimbal that

correspond to the mounting locations of the motors and potentiometers. The resulting design

configuration and simulation model is shown in Figure 14.

9.3 Motor Selection

For the next phase of the design, the mechanical engineer who has generated the kinematic

structure of the seeker collaborates with a control engineer. From the component library, the

control engineer instantiates simple PD controllers that control the position of the two degrees of

freedom. Together with the mechanical engineer, he iterates on the selection of an appropriate

DC motor. Our simulation framework provides the tools to verify the performance of this

multidisciplinary system. The geometrical changes introduced by the mechanical engineer are

reflected immediately in the corresponding behavioral models, so that the control engineer can

Optical
Housing

Optical
Housing

Optical
Housing

Optical
Housing

Yaw
Motor

Yaw
Motor

Yaw
Motor

Yaw
Motor

GimbalGimbalGimbalGimbal

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

HousingHousingHousingHousing

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint RotorStator

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint

Revolute
Joint

Revolute
Joint RotorRotorStatorStator

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Behavioral Model

Yaw
Motor

Yaw
Potentiometer

Optical
Housing

Pitch
Motor

Pitch
PotentiometerHousing

Gimbal

Design ConfigurationCAD Model

Optical
Housing

Optical
Housing

Optical
Housing

Optical
Housing

Yaw
Motor

Yaw
Motor

Yaw
Motor

Yaw
Motor

GimbalGimbalGimbalGimbal

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

HousingHousingHousingHousing

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint RotorStator

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint

Revolute
Joint

Revolute
Joint RotorRotorStatorStator

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Behavioral Model

Optical
Housing

Optical
Housing

Optical
Housing

Optical
Housing

Yaw
Motor

Yaw
Motor

Yaw
Motor

Yaw
Motor

GimbalGimbalGimbalGimbal

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

HousingHousingHousingHousing

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint RotorStator

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint

Revolute
Joint

Revolute
Joint RotorRotorStatorStator

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Optical
Housing

Optical
Housing

Optical
Housing

Optical
Housing

Optical
Housing

Optical
Housing

Optical
Housing

Optical
Housing

Yaw
Motor

Yaw
Motor

Yaw
Motor

Yaw
Motor

Yaw
Motor

Yaw
Motor

Yaw
Motor

Yaw
Motor

GimbalGimbalGimbalGimbalGimbalGimbalGimbalGimbal

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

Yaw
Potentiometer

HousingHousingHousingHousingHousingHousingHousingHousing

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Pitch
Potentiometer

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint RotorStator

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint

Revolute
Joint

Revolute
Joint RotorRotorStatorStator

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint

Revolute
Joint

Revolute
Joint RotorRotorStatorStator

Pitch MotorPitch Motor

Revolute
Joint

Revolute
Joint

Revolute
Joint

Revolute
Joint RotorRotorStatorStator

Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint
Rigid
Joint

Rigid
Joint

Behavioral Model

Yaw
Motor

Yaw
Potentiometer

Optical
Housing

Pitch
Motor

Pitch
PotentiometerHousing

Gimbal

Design ConfigurationCAD Model

Yaw
Motor

Yaw
Potentiometer

Optical
Housing

Pitch
Motor

Pitch
PotentiometerHousing

Gimbal

Yaw
Motor

Yaw
Potentiometer

Optical
Housing

Yaw
Motor

Yaw
Potentiometer

Optical
Housing

Pitch
Motor

Pitch
PotentiometerHousing

Pitch
Motor

Pitch
PotentiometerHousingHousing

GimbalGimbal

Design ConfigurationCAD Model

Figure 14: Form and behavior of an incomplete design prototype.

28

test the choice of controller with the most up-to-date dynamics models. The behavioral models

in the different energy domains are combined into a system-level VHDL-AMS model that is

evaluated using a commercial solver, as is shown in Figure 15.

9.4 Final Design Verification

For the final design verification, the designers decide to increase the level of detail of the

model. The mechanical designer reconfigures the motor models to include nonlinear friction,

while the control engineer replaces the analog implementation of the motor controller with a

digital version that includes a PWM amplifier. The resulting system model requires significantly

Figure 15: The VHDL-AMS simulation environment, ADVanceMS, by Mentor Graphics.

This intermediate analysis shows an increasing position error in the control of the yaw

motor for a 2 Hz sinusoidal input signal. The ADVanceMS environment lists the content

and directory structure of the VHDL-AMS models, and provides access to all the variables

that are defined in the models.

29

more time to evaluate, but increases the design team’s confidence that the final design will

perform as desired.

10 Summary and Discussion

To support simulation-based design, we have developed a simulation and design environment

in which design and modeling are tightly integrated. This integration is based on component

objects that combine descriptions of both form and behavior of system components. By

composing component objects into systems, the design team simultaneously designs and models

new artifacts.

To enable this composition we have developed a modular port-based modeling paradigm that

also facilitates the reconfiguration of models. The integration between form and behavior is

further enhanced by defining relationships between CAD and behavioral parameters for

component families. To extract the parameters of interaction models from the form of

interacting components, we have developed procedures that automatically determine the type and

parameters of lower pair mechanical interactions.

The research presented in this article is only an initial step towards an integrated framework

for simulation-based design. Our current implementation is limited to component models with

lumped interactions and fixed interfaces. We have successfully applied it to applications in the

mechatronics area and have developed a system-level simulation for modular train systems in

collaboration with DaimlerChrysler Rail Systems (AdtranzNA). However, to carefully evaluate

its expected benefits in terms of component reuse and a faster, less expensive design cycle will

require significant further research.

Additional research is also needed to expand the functionality of the framework. With respect

to systems modeling, the aspect of automatically instantiating interaction models, given a

component configuration, requires further investigation. We are currently developing

taxonomies of ports and interaction models to address this need. The selection of an adequate

level of detail for simulation models also requires further expansion of the capabilities of our

framework. We currently provide the capability to include models at different levels of detail in

reconfigurable models, but have not yet addressed the issue of aiding the user in selecting the

most appropriate model for a particular simulation experiment—the model that has adequate

accuracy and requires minimum computational resources. Finally, to allow very detailed

30

analyses, finite-element models need to be included in our framework. Future research should

focus on the interfacing between finite element models and lumped models so that we can

includes models of distributed physical phenomena such as mechanical flexure, or complex

electromagnetic and thermal behavior in system-level models.

Acknowledgments

We would like to thank Li Han, Werner Juengst, Veichung Liang, Simon Szykman, Ram

Sriram, Eswaran Subrahmanian, and Art Westerberg for the insightful discussions, and Peder

Andersen and Alex Cunha for their help with the implementation.

We would also like to thank the reviewers for their constructive comments; they greatly

improved the accuracy and clarity of the ideas presented in this article.

This research was funded in part by DARPA under contract ONR #N00014-96-1-0854, by the

National Institute of Standards and Technology, by the NSF under grant #CISE/IIS/KDI

9873005, and by the Pennsylvania Infrastructure Technology Alliance. Additional support was

provided by DaimlerChrysler Rail Systems (AdtranzNA) and by the Institute for Complex

Engineered Systems at Carnegie Mellon University.

References

Anderson, M. (1994). Object-Oriented Modeling and Simulation of Hybrid Systems. Ph. D.

Thesis. Lund Institute of Technology, Department of Automatic Control. Lund, Sweden.

Andrews, G. C., Richard, M. J. and Anderson, R. J. (1988). “A General Vector-Network

Formulation for Dynamic Systems with Kinematic Constraints.” Mechanisms and

Machine Theory. 23(3):243-256.

Ascher, U. M. and Petzold, L. R. (1998). Computer Methods for Ordinary Differential Equations

and Differential-Algebraic Equations. Philadelphia, Pennsylvania, SIAM.

Baldwin, C. Y. and Clark, K. B. (2000). Design Rules: The Power of Modularity, MIT Press.

Bettig, B., Summers, J. D. and Shah, J. J. (2000). "Geometric Examplars: A Bridge between

CAD and AI." The Fourth IFIP Working Group 5.2 Workshop on Knowledge Intensive

CAD (KIC-4). Parma, Italy. 57-71.

31

Branin, F. H. (1966). "The Algebraic-Topological Basis for Network Analogies and the Vector

Calculus." Symposium on Generalized Networks. Brooklyn, New York. 453-491.

Bullinger, H.-J., Breining, R. and Bauer, W. (1999). "Virtual Prototyping – State of the Art in

Product Design." 26th International Conference on Computers & Industrial Engineering.

Melbourne, Australia. 103-107.

Christen, E., Bakalar, K., Dewey, A. M. and Moser, E. (1999). "Analog and Mixed-Signal

Modeling Using the VHDL-AMS Language." 36th ACM/IEEE Design and Automation

Conference. New Orleans. IEEE.

Cutkosky, M. R., Tenenbaum, J. M. and Glicksman, J. (1996). “Madefast: Collaborative

Engineering over the Internet.” Communications of the ACM. 39(9):78-87.

de Vries, T. J. A. and Breunese, A. P. J. (1995). "Structuring Product Models to Facilitate Design

Manipulations." International Conference on Engineering Design. Prague, Czech

Republic. 1430-1436.

Diaz-Calderon, A., Paredis, C. J. J. and Khosla, P. K. (1999). "A Composable Simulation

Environment for Mechatronic Systems." SCS 1999 European Simulation Symposium.

Erlangen, Germany. Society for Computer Simulation.

Diaz-Calderon, A., Paredis, C. J. J. and Khosla, P. K. (2000a). “Automatic Generation of

System-Level Dynamic Equations for Mechatronic Systems.” Journal of Computer-

Aided Design. 32(5-6):339-354.

Diaz-Calderon, A., Paredis, C. J. J. and Khosla, P. K. (2000b). "Organization and Selection of

Reconfigurable Models." 2000 Winter Simulation Conference. Orlando, Florida. IEEE.

Diaz-Calderon, A., Paredis, C. J. J. and Khosla, P. K. (2000c). "Reconfigurable Models: A

Modeling Paradigm to Support Simulation-Based Design." 2000 Summer Computer

Simulation Conference. Vancouver, Canada. Society for Computer Simulation.

Dynasim AB (1999). Dymola. Lund, Sweden. http://www.dynasim.se.

Elmqvist, H. and Mattsson, S. E. (1997). "An Introduction to the Physical Modeling Language

Modelica." European Simulation Symposium. Passau, Germany. Society for Computer

Simulation.

32

Elmqvist, H., Mattsson, S. E. and Otter, M. (1998). "Modelica: The New Object-Oriented

Modeling Language." The 12th European Simulation Multiconference. Manchester, UK.

Feldkamp, F., Heinrich, M. and Meyer-Gramann, K. D. (1998). “SyDeR—System Design for

Reusability.” Artificial Intelligence for Engineering, Design, Analysis and

Manufacturing. 12(4):373-382.

Haas, S. and Jasnoch, U. (1994). "Cooperative Working on Virtual Prototypes." IFIP Workshop

on Virtual Prototyping. Providence, RI. IFIP.

IEEE (1999). 1076.1 Working Group: Analog and Mixed-Signal Extensions for VHDL, IEEE.

Karnopp, D. C., Margolis, D. L. and Rosenberg, R. C. (1990). System Dynamics: A Unified

Approach. New York, John Wiley & Sons, Inc.

Keirouz, W., Shooter, S. and Szykman, S. (2000). "A Model for the Flow of Design Information

in Openade. Gaithersburg, MD, National Institute for Standards and Technology.

Mattikalli, R., Barraff, D. and Khosla, P. K. (1994). "Finding All Gravitationally Stable

Orientations of Assemblies." IEEE International Conference on Robotics and

Automation. San Diego, CA. 251-257.

Mattsson, S. E., Elmqvist, H. and Otter, M. (1998). “Physical System Modeling with Modelica.”

Control Engineering Practice. 6:501-510.

McPhee, J. J. (1996). “On the Use of Linear Graph Theory in Multibody System Dynamics.”

Nonlinear Dynamics. 9:73-90.

Mentor Graphics (2000). IC-Design Suite. Wilsonville, OR. http://www.mentor.com/ic_design.

Muegge, B. J. (1996). Graph-Theoretic Modeling and Simulation of Planar Mechatronic

Systems. MASc. Thesis. University of Waterloo, Systems Design Engineering. Waterloo.

O'Brien, J. and Hodgins, J. (1999). "Graphical Modeling and Animation of Brittle Fracture."

SIGGRAPH. Los Angeles, CA, USA. ACM Press, NY 137-146.

Pahl, G. and Beitz, W. (1996). Engineering Design: A Systematic Approach. London, U.K.,

Springer-Verlag.

33

Paynter, H. M. (1961). Analysis and Design of Engineering Systems. Cambridge, MA, MIT

Press.

Richard, M. J., Bindzi, I. and Gosselin, C. M. (1995). “A Topological Approach to the Dynamic

Simulation of Articulated Machinery.” Journal of Mechanical Design. 117:199-202.

Roe, P. H. O. n. (1966). Networks and Systems. Reading, Massachusetts, Addison-Wesley.

Rosenberg, R. C. and Karnopp, D. C. (1983). Introduction to Physical System Dynamics. New

York, McGraw-Hill.

Sahlin, P. (1996). "Nmf Handbook. Stockholm, Sweeden, Department of Building Sciences,

Division of Building Services, Royal Institute of Technology.

Sedra, A. S. and Smith, K. C. (1997). Microelectronic Circuits, Oxford Univ Press.

Shah, J. J. and Mantyla, M. (1995). Parametric and Feature-Based CAD/CAM: Concepts,

Techniques, Applications. New York, NY, John Wiley & Sons.

Shetty, D. and Kolk, R. (1997). Mechatronics System Design, Brooks/Cole Pub Co.

Shooter, S. B., Keirouz, W., Szykman, S. and Fenves, S. J. (2000). "A Model for the Flow of

Design Information." ASME DETC 2000, 12th International Conference on Design

Theory and Methodology. Baltimore, MD. DETC2000/DTM-14550.

Sinha, R., Paredis, C. J. J., Gupta, S. K. and Khosla, P. K. (1998). "Capturing Articulation in

Assemblies from Component Geometry." ASME Design Engineering Technical

Conference. Atlanta, GA. ASME.

Sinha, R., Paredis, C. J. J. and Khosla, P. K. (2000). "Kinematics Support for Design and

Simulation of Mechatronic Systems." The Fourth IFIP Working Group 5.2 Workshop on

Knowledge Intensive CAD (KIC-4). Parma, Italy. 246-258.

Spell, B. (2000). Professional Java Programming: Class Design, Threads, Event Handling,

Layout Managers, Swing Components, JDBC, XML, Security, Javahelp, JNI,

Performance, and Distributed Objects, Mass Market Paperback.

Strauss, J. C., Augustin, D. C., Fineberg, M. S., Johnson, B. B., Linebarger, R. N. and Sanson, F.

J. (1967). “The SCI Continuous System Simulation Language (CSSL).” Simulation.

9(6):281-303.

34

Susca, L., Mandorli, F. and Rizzi, C. (2000). "How to Represent "Intelligent" Components in a

Product Model: A Practical Example." The Fourth IFIP Working Group 5.2 Workshop on

Knowledge Intensive CAD (KIC-4). Parma, Italy. 197-208.

Swenson, D. V. and Ingraffea, A. R. (1988). “Modelling Mixed-Mode Dynamic Crack

Propagation Using Finite Elements: Theory and Applications.” Computational

Mechanics. 3:187-192.

The Boeing Company (1999). Easy5: Engineering Analysis System.

http://www.boeing.com/assocproducts/easy5/.

The Mathworks Inc. (1999). Matlab/Simulink. http://www.mathworks.com.

Trent, H. M. (1955). “Isomorphisms between Oriented Linear Graphs and Lumped Physical

Systems.” The Journal of the Acoustical Society of America. 27(3):500-527.

Upton, J., Ed. (1998). Boeing 777. Airlinertech Series, Specialty Press.

van Dixhoorn, J. J. (1980). "Bond Graphs and the Challenge of a Unified Modeling Theory of

Physical Systems." Progress in Modeling and Simulation. Ed.: Cellier. London,

Academic Press. 207-245.

W3C (1999). Extensible Markup Language (XML), World Wide Web Consortium.

http://www.w3.org/XML.

Zeigler, B. P., Praehofer, H. and Kim, T. G. (2000). Theory of Modeling and Simulation:

Integrating Discrete Event and Continuous Complex Dynamic Systems, Academic Press.

