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Abstract 

This article introduces the concept of combining both form (CAD models) and behavior 

(simulation models) of mechatronic system components into component objects.  By connecting 

these component objects to each other through their ports, designers can create both a system-

level design description and a virtual prototype of the system.  This virtual prototype, in turn, 

can provide immediate feedback about design decisions by evaluating whether the functional 

requirements are met in simulation. 

To achieve the composition of behavioral models, we introduce a port-based modeling 

paradigm.  The port-based models are reconfigurable, so that the same physical component can 

be simulated at multiple levels of detail without having to modify the system-level model 

description.  This allows the virtual prototype to evolve during the design process and to achieve 

the accuracy required for the simulation experiments at each design stage. 

To maintain the consistency between the form and behavior of component objects, we 

introduce parametric relations between these two descriptions.  In addition, we develop 

algorithms that determine the type and parameter values of the lower pair interaction models; 

these models depend on the form of both components that are interacting.  

This article presents the initial results of our approach.  The discussion is limited to high-

level system models consisting of components and lumped component interactions described by 

differential algebraic equations.  Expanding these concepts to finite element models and 

distributed interactions is left for future research. 
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Our composable simulation and design environment has been implemented as a distributed 

system in Java and C++, enabling multiple users to collaborate on the design of a single system.  

Our current implementation has been applied to a variety of systems ranging from consumer 

electronics to electrical train systems.  We illustrate its functionality and use with a design 

scenario. 

1 Introduction and Motivation 

Because of the intense competition in the current global economy, successful companies must 

react quickly to changing trends in the market place.  For example, the need for a new product 

can be triggered by the introduction of new technologies, changes in customer demands, or 

fluctuations in the cost of basic materials and commodities.  To capitalize on these imbalances in 

the market, a company must conceive, design, and manufacture new products quickly and 

inexpensively.  Because the design process consumes a significant portion of the total 

development time, a shorter design cycle provides a distinct competitive advantage. 

The design cycle can be shortened through virtual prototyping (Haas and Jasnoch 1994). A 

virtual prototype enables the designers to test initially whether the design specifications are met 

by performing simulations rather than physical experiments.  Not only does virtual prototyping 

make design verification faster and less expensive, it provides the designer with immediate 

feedback on design decisions.  This in turn promises a more comprehensive exploration of 

design alternatives and a better performing final design.  To fully exploit the advantages of 

virtual prototyping, however, simulation models have to be accurate and easy to create.   

Virtual prototypes need to model the behavior of the equivalent physical prototype adequately 

accurately; otherwise, the predicted behavior does not match the actual behavior resulting in poor 

design decisions.  But creating accurate models is a hard problem. Only recently has computing 

performance reached a level where high fidelity simulation models are economically viable.  For 

instance, it is now feasible to evaluate dynamic simulations of finite element models for crack 

propagation (Swenson and Ingraffea 1988; O’Brien and Hodgins 1999).  However, not always 

are the most detailed and accurate simulation models also the most appropriate; sometimes it is 

more important to evaluate many different alternatives quickly with only coarse, high-level 

models.  For instance, at the early stages of the design process, detailed models are often 

unnecessary because many of the design details still have to be decided and accurate parameter 



3

values are still unknown.  At this stage, the accuracy of the simulation result depends more on 

the accuracy of the parameter values than on the model equations; simple equations that describe 

the high-level behavior of the system are then most appropriate. 

Equally important to accuracy is the requirement that simulation models be easy to create.  

Creating high-fidelity simulation models is a complex activity that can be quite time-consuming.  

To take full advantage of virtual prototyping, it is necessary to develop a modeling paradigm that 

supports model reuse, that is integrated with the design environment, and that provides a simple 

and intuitive interface which requires a minimum of analysis expertise.  This article introduces 

such a paradigm, composable simulation and design, which is based on model composition from 

system components. 

2 Composable Simulation and Design 

To provide better support for simulation-based design of mechatronic systems, we have 

developed a simulation and design paradigm based on composition.  A wide variety of products, 

ranging from consumer electronics to cars, contain mostly off-the-shelve components and 

components reused from previous design generations.  Some other products have a modular 

product architecture allowing them to be customized for a particular application or mass-

produced at low cost (Baldwin and Clark 2000). The design of these categories of products 

consists primarily of the configuration or assembly of existing components or modules. 

The building blocks within our composable simulation and design environment are 

component objects, illustrated in Figure 1.  These objects consist of a configuration interface (a 

list of ports), CAD model(s), behavioral model(s), and relationships between them. 

The configuration interface of a component object consists of ports.  A port defines an 

intended interaction between a component and its environment.  For instance, the configuration 

interface of the AC motor in Figure 1 has ports for the fastener holes in the stator, the shaft of the 

rotor, and the electrical connector.  It is through its ports that a component is connected to and 

interacts with other components. 

The behavioral models in the component objects are also defined by port-based interfaces.  

However, here, the ports model the exchange of energy, mass, or signals between a component 

and its environment.  Often there is a one-to-one mapping between the ports of the configuration 

interface and the ports in the behavioral interface but not always.  For instance, the shaft of the 
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AC motor corresponds to a mechanical energy port, while the AC plug is modeled as two 

electrical ports, one for each pin. We will describe port-based behavioral modeling in more detail 

in Section 4. 

The CAD models in component objects serve a dual role.  On the one hand, a CAD model is a 

specification of the form of a component: it provides nominal dimensions, tolerances, and 

material specifications—enough information for a third party manufacturer to manufacture the 

object.  On the other hand, a CAD model is a mathematical representation of the geometry of an 

object.  In this role, it can be used for visualization purposes or as part of behavioral models.  

Depending on the required accuracy of the analysis, these CAD models may be used to describe 

the component at different levels of detail.  The component object also includes relationships 

between the ports and parameters in the configuration interface and certain form features and 

characteristics of the CAD model.  This will be further explained in Section 6. 

Multiple component objects can be configured into larger systems by connecting their ports. 

As is shown in Figure 2, the design prototype consisting of the pulley mounted onto the motor 

shaft can be represented by connecting the shaft port of the pulley to the rotor port of the motor.  

This configuration specifies the prototype completely: it specifies which components to use and 

how to configure these components. 
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Figure 1: Component objects consist of a port-based interface for system configuration, 

combined with CAD and behavioral models. 



5

In their framework for System Design for Reusability (SyDeR), Feldkamp et al. (Feldkamp et 

al. 1998) provide an interface to hierarchically specify modular systems through port-based 

composition.  Our approach goes beyond the specification of the design prototype, and further 

includes analysis capabilities by including CAD and behavioral models. 

Because the modeling of systems described as component configurations can also be viewed 

as composition, we can obtain a system level simulation model by combining the behavioral 

models of the individual components.  One important difference between the configuration of 

component objects and the configuration of their behavioral models is the inclusion of models 

that capture the dynamics of the interactions through the ports (friction, electro-magnetic 

interference, contact resistance, etc).  The role of interaction models is further investigated in 

Section 6.2. 

By taking advantage of the parallelism between composition in configuration design and 

composition in simulation modeling, our framework allows a designer to simultaneously design 

and model new artifacts.  This is already common practice in electrical CAD software (Mentor 

Graphics 2000); when creating a chip layout, the instantiation of a transistor or logic gate creates 

the geometry for the silicon layers as well as the corresponding simulation model.  In mechanical 

CAD, the integration between design and simulation is not as common.  For purely mechanical 
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Figure 2: Component objects can be hierarchically configured into complex systems.  At 

the same time, the behavioral and CAD models are configured also. 
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systems, most commercial CAD packages do provide an optional module for multi-body 

simulation, but these modules do not support port-based configuration and lack sufficient support 

for multi-disciplinary systems.  The main goal of our simulation and design environment is to 

extend these ideas to simulation-based design of multidisciplinary systems within an integrated 

software environment. 

We believe that the concept of component objects is general and that the composition of port-

based objects can be applied to many different application areas, energy domains, and levels of 

model accuracy.  However, in our current research, we have applied this framework only to 

system-level modeling of mechatronic systems (Diaz-Calderon et al. 1999; Sinha et al. 2000); 

that is, modeling of computer-controlled electro-mechanical systems using differential algebraic 

equations (DAEs) (Ascher and Petzold 1998) and/or discrete event systems specifications 

(DEVS) (Zeigler et al. 2000). 

Furthermore, the port-based modeling paradigm, as presented in this article, is limited to 

systems with lumped interactions.  When an interaction is distributed in nature, as between a 

boat and the water on which it floats, it must be approximated by a large number of lumped 

interactions.  The internal model of a component, however, may still be distributed.  Consider, 

for example, a flexible beam attached to a structure by its two ends. A finite element model may 

describe the internal behavior of the beam, but, by defining a mapping between the lumped port 

variables and distributed boundary conditions of the finite element model, the interaction with 

the rest of the structure can still be captured with only two ports.  For mechatronic systems, the 

primary interactions between components tend to be lumped, so that the port-based modeling 

paradigm is applicable.  Only when more detailed models are required, may we have to consider 

phenomena, such as thermal interactions, that are distributed in nature.  In the future, we plan to 

expand our modeling paradigm to different energy domains, and distributed interactions. 

Our framework for simulation and design has the following characteristics, which we will 

address in detail in the subsequent sections: 

A port-based modeling paradigm:  To take advantage of the compositional nature of both 

design and modeling of mechatronic systems, we use a port-based modeling paradigm in which 

the user can compose system-level simulations from component models.  By connecting the 

ports of the subcomponents, the user defines the interactions between them. This port-based 
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modeling paradigm builds on object oriented modeling languages such as VHDL-AMS (IEEE 

1999) and Modelica (Mattsson et al. 1998), and is explained in more detail in Section 4. 

Reconfigurable Models: At each stage of the design process, the designer performs different 

simulation experiments to verify whether the design prototype meets the functional requirements. 

In the early, conceptual stage, these experiments may include quick trade-off analyses that 

require limited accuracy, while towards the end of the detailed design stage, the designer may 

decide to perform a comprehensive, detailed simulation.  To accommodate simulations at 

different levels of detail without the need for remodeling the complete system, we develop the 

concept of reconfigurable models in Section 5.  These models can evolve with the design 

prototype throughout the design process. 

Simulation integrated with CAD:  The building blocks in our simulation and design 

environment are component objects; they describe both the form and the behavior of system 

components.  In Section 6, we describe how the CAD description of the form may be used to 

extract the lumped parameters of the behavioral models.  In addition, we have developed 

algorithms that instantiate models of mechanical interactions based on the form of the interacting 

components. 

A component library: The component objects are organized in a hierarchical component 

library.  From this library, the designer selects the components that achieve the desired 

functionality within the system.  We provide a detailed description of the component library and 

its implementation in Section 7. 

3 Related Work 

3.1 Modeling and Simulation 

There exist already many modeling paradigms and commercial simulation packages.  They 

can be characterized according to the following criteria:  graph-based versus language-based, 

multi-domain versus single-domain, and declarative versus procedural modeling. 

The best known of the graph-based modeling paradigms is Bond Graph modeling (Paynter 

1961; van Dixhoorn 1980; Rosenberg and Karnopp 1983; Karnopp et al. 1990).  It is based on 

energy-conserving junctions that connect energy storing or transforming elements with bonds; 

the bonds represent the energy flow between the modeling elements.  Bond graph modeling has 
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the advantage that it is domain independent and based on energy flow, but it is not very 

convenient for the modeling of 3D mechanics or continuous-discrete hybrid systems.  

Furthermore, beginning users find it counterintuitive that the topology of a bond graph is 

different from the topology of the corresponding physical system. 

Linear graph models do reflect the system topology directly (Trent 1955; Branin 1966).  They 

are also domain independent and can be easily extended to model 3D mechanics (Andrews et al. 

1988; Richard et al. 1995; McPhee 1996) and hybrid systems (Roe 1966; Muegge 1996).  The 

VHDL-AMS language, which we use for modeling, builds on the concepts of linear graph 

modeling, although it does not require an explicit graph representation (Christen et al. 1999; 

IEEE 1999). 

The majority of modeling paradigms is not graph-based, but language-based.  A large number 

of modeling languages are derived from the CSSL (continuous system simulation language) 

standard developed by the Technical Committee of the Society for Computer Simulation (Strauss 

et al. 1967).   These languages have in common that they are procedural.  A model is defined by 

a procedure that computes the derivatives of the state for a given state and time.  A second group 

of modeling languages is equation-based or declarative: Modelica (Elmqvist et al. 1998), Easy5 

(The Boeing Company 1999), Dymola (Dynasim AB 1999), Omola (Anderson 1994), and 

VHDL-AMS (IEEE 1999). Here, the model is defined by a set of equations that establishes 

relations between the states, their derivatives, and time.  A model compiler is responsible for 

converting these equations into a software expression that can be evaluated by the computer.   

The advantage of declarative languages is that the user does not have to define the 

mathematical causality of the equations, so that the same model can be used for any causality 

imposed by other system components.  Many of the declarative languages are also object-

oriented and support multiple energy domains.  This is the case for VHDL-AMS and Modelica, 

which have the additional advantage that they support both continuous time and discrete time 

systems simulation.  

The modeling paradigm presented in this article builds on the current state-of-the-art 

modeling languages (Modelica and VHDL-AMS).  The reconfigurable port-based models, 

introduced in Section 4 and 5, are compiled into either Modelica or VHDL-AMS models once 

the parameter values have been extracted from the CAD data and the user has specified the 

implementation bindings. 
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3.2 Simulation-based Design 

Many companies are resorting to simulation tools to improve their design process.  A well-

publicized example of virtual prototyping is the design of the Boeing 777 airplane (Upton 1998).  

Boeing switched from a paper-based design process to a digital CAD representation, allowing 

them to perform some of the performance analysis (using CFD software) and assemblability 

analysis without the need for building physical prototypes.  This resulted in a shorter design and 

testing period.  A similar all-digital approach is also being adopted by car manufacturers 

(Bullinger et al. 1999). 

Although the success of simulation-based design has already been demonstrated 

commercially (Upton 1998; Bullinger et al. 1999), many unresolved research issues remain to be 

addressed.  Ongoing research includes model validation, automatic meshing and model creation, 

integration of simulation engines in different domains, architectures for collaboration, and 

visualization using virtual reality technology. In this article, we focus on simplifying the process 

of model creation, by integrating form and behavior into component objects. 

Our approach is based on the characterization of a design prototype by its form, function, and 

behavior (Pahl and Beitz 1996; Shooter et al. 2000).  The form is a description of the physical 

embodiment of an artifact, while function is the purpose of the artifact—the behavior that the 

designer intended to achieve.  As is illustrated in Figure 3, the actual behavior does not depend 

on the function, but only on the form. During design or synthesis, we instantiate a form to satisfy 

a given function, while, during design verification, we derive the behavior from the form and 
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Figure 3: The relation between form, function, and behavior 

in the context of virtual prototyping. 



10

verify whether this behavior matches the function.  In the context of virtual prototyping, the 

behavior is described by mathematical models and design verification is achieved by performing 

simulation experiments with these models.  

The design process is iterative and hierarchical in nature. To solve complex design problems, 

a design team typically considers the problem at different levels of abstraction, ranging from 

very high-level system decompositions to very low-level detailed specification of components 

(de Vries and Breunese 1995; Shooter et al. 2000).  During this process, the design team adds 

information and thus transforms the design representations.  For instance, a needs assessment is 

transformed into design specifications and engineering requirements; engineering requirements, 

in turn, are converted into a family of solutions that are evaluated and compared (possibly using 

simulation) to iterate on the description of the artifact in terms of form, function, and behavior 

(Pahl and Beitz 1996).  As a result, all representations evolve simultaneously from the initial 

high-level decompositions to increasingly detailed descriptions of the design artifact. 

In the early stages of the design process, when only few physical details have been defined, 

simulation models can capture the high-level, intended behavior of sub-systems, allowing one to 

use simulation to make important conceptual trade-offs.  As more details of the actual 

embodiment or form are included in design artifacts, these high-level models can be replaced 

gradually by more detailed behavioral models of the physical components.  The modularity and 

encapsulation of our port-based modeling paradigm facilitates these model substitutions. 

4 Port-Based Modeling Paradigm 

To achieve composability of behavioral models, we have developed a port-based modeling 

paradigm.  This paradigm is based on two concepts: ports and connections (Diaz-Calderon et al. 

2000a; Diaz-Calderon et al. 2000c). 

Ports correspond to the points where a component exchanges energy or signals with the 

environment. All energy is exchanged through ports.  There is one port for each separate inter-

action point, and the type of a port matches the type of the energy exchange.  For example, a DC 

motor has four ports, two electrical and two mechanical.  The electrical ports correspond to the 

electrical connectors of the motor, the mechanical ports to the stator and the rotor—one port for 

each rigid body.  
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The energy flowing through a port is characterized by an across and a through variable, also 

called effort and flow variables in Bond Graph modeling (Paynter 1961; Rosenberg and Karnopp 

1983). Examples of across variables are voltage in the electrical domain and velocity in the 

mechanical domain. They are measured across the port relative to a global reference. The 

corresponding through variables, electrical current and mechanical force, are measured through 

the port. 

The interactions between component models are represented by connections between ports. 

Each connection imposes algebraic constraints on the port variables. These constraints are the 

equivalents of the Kirchhoff voltage and current laws in electrical circuits.  One type of 

constraint requires that the across variables be equal, the other that the sum of the through 

variables be zero.  A single energy connection in our framework is equivalent to two connections 

in block-diagram modeling languages such as SimuLink (The Mathworks Inc. 1999). In block 

diagrams, all interactions occur through signals.  The user is responsible for determining which 

of these signals are dependent and which are independent, that is, the mathematical causality of 

the model. 

Combining across and through variables in a single connection allows us to model 

components and ports as declarative equations rather than procedural assignments.  Many recent 

simulation languages are declarative, including Modelica (Elmqvist and Mattsson 1997), VHDL-

AMS (IEEE 1999), and Dymola (Dynasim AB 1999); SimuLink (The Mathworks Inc. 1999), on 

the other hand, is procedural.  When solving a set of declarative differential equations, the solver 

must first determine the mathematical causality of the equations.   

As a reflection of the underlying physics, the declarative representations of both energy 

connections and energy ports are undirected.  An electrical resistor, modeled by RIV = , does not 

have an input and an output (no predetermined mathematical causality), and the energy through 

its ports can flow in either direction (no sign restrictions on the flow variable).  Since the model 

is declarative, the solver may instantiate this single equation as either RIV =  or RVI /= , 

depending on how the resistor is used in the circuit.  Even when considering the heat dissipated 

by the resistor, 2RIQ = , the user does not have to worry about the direction of the heat transfer or 

its causality as defined by the second law of thermodynamics.  The solver will recognize that Q  

is always positive and that the only valid mathematical causality assignment is to compute the 

dissipated heat from the voltage and current; the opposite causality would impose simultaneous 
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constraints on the voltage and current through the resistor, resulting in overconstrained equations 

for the electrical system. 

All the ports combined form the interface of the model.  This interface defines how the 

component can interact with the other components in the system, but does not contain any 

information about the internal behavior of the component.  Instead, the interface encapsulates the 

implementation of the model, which defines the internal behavior of the component 

As illustrated in Figure 4, a port-based model can be hierarchically defined when it consists of 

a composition of sub-models, resulting in a compound component.  When the sub-models are 

also compound, multiple levels of hierarchy occur.  The bottom of the hierarchy consists of 

primitive models that are defined only by their constitutive equations; these relate the across and 

through variables of a component model.  For example, the constitutive equation for a resistor 

relates the voltage difference between the two ports with the current through the ports according 

to Ohm’s law, RIV = .  In general, the model equations may include a combination of both 

algebraic and ordinary differential equations. 

In addition to ports and connections that model energy flow, we also consider signal ports and 

signal connections. No energy flows through signal ports, and the connections between them are 

directed.  This reflects the physics of a low-impedance electrical output driving a high-

impedance input; the signal can only flow from the output to the input, an operation that requires 

almost no power (Sedra and Smith 1997).  Examples of systems with signals are computer 

networks, data buses, or embedded controllers; they can be modeled as block diagrams similar to 

SimuLink models (The Mathworks Inc. 1999).  Signal components are defined by procedures 

rather than constitutive equations.  Procedures differ from constitutive equations in that their 

mathematical causality is fixed (inputs are independent, and outputs are dependent variables).  

Most mechatronic systems contain both energy-based and signal components and are thus hybrid 

systems (Shetty and Kolk 1997). 

5 Reconfigurable Models 

Most object-oriented modeling languages have a concept similar to ports (sometimes called 

terminals, or connectors) (Anderson 1994; Sahlin 1996; Elmqvist et al. 1998; IEEE 1999), and it 

is possible to use these languages to describe the composable and hierarchical port-based models 

introduced in the previous section. However, these languages do not guarantee a clear separation 
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between the interface of the model and the implementation of its behavior, often merging both 

concepts into a single modeling object.  To create models that can evolve with the design, we 

need the capability to bind different implementations to the same interface, allowing the designer 

to select a more detailed behavior for a component, without having to remodel its interactions 

with the rest of the system. 
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Figure 4: Port-based simulation models may be hierarchically defined. 
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In traditional object-oriented modeling languages, the behavior of a model can only be 

modified by changing the values of the parameters.  In our approach, the structure of the model 

can be modified also, resulting in reconfigurable models.  In a reconfigurable model, the 

interface of the model and the implementation of its behavior are defined separately.  As is 

illustrated in Figure 5, each implementation has a corresponding interface, but a single interface 

may have multiple implementations associated with it. 

In the definition of reconfigurable models, we consider two principles: composition and 

instantiation. 

Through the principle of composition, a model implementation can be defined as a set of sub-

component interfaces and the interactions between them, as in implementation A in Figure 5.  At 

this point, the sub-components do not yet have any behavior; they are represented only by their 

interface.  This allows us to define the interactions between sub-components independently of 

their internal behavior.  One can think of an interface as the equivalent of an abstract class in 

object oriented programming; it defines the methods through which one can interact with the 

object, but it does not provide an implementation.  

An abstract model becomes concrete by instantiating an implementation. Only 

System E
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equations

implementation C

implementation B
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Figure 5: A reconfigurable model consisting of an interface and three implementations. 
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implementations that match the interface can be instantiated.  Moreover, the semantics of the 

implementation must match the semantics of the interface.  For example, the interface of an 

electrical resistor has the same ports as the interface of a capacitor.  However, because the 

semantics of the two components are different, only resistor implementations can be instantiated 

for a resistor interface. 

 Like general port-based models, reconfigurable models can be hierarchical.  Because 

compound implementations are a composition of abstract interfaces, they themselves are also 

abstract.  The instantiation of a compound model, therefore, requires the recursive instantiation 

of all the interfaces of its subcomponents.  The number of possible configurations of a compound 

model can grow very large when considering all possible combinations of implementation 

bindings.  We call this set the model space of the component.  The advantage of reconfigurable 

models is that all the elements of the model space can be instantiated without having to redefine 

the interactions with other system components because the interface remains the same. 

The instantiation principle also allows the definition of families of components.  In this case, 

the implementations for an interface do not represent different behavioral models for a single 

component, but instead represent models for a family of components that all share the same 

interface.  For example, a family of DC motors may all share an interface consisting of two 

mechanical and two electrical ports.  When designing a system, the designer can include this 

interface in the system model without having to select a particular DC motor.   It may be possible 

to select the most appropriate DC motor, by performing a series of simulation experiments each 

with a different motor from the family; each new experiment only requires that a new 

implementation be bound to the DC motor interface. 

As is illustrated in Figure 6, the set of implementations for an interface can be represented as 

an AND-OR tree (Diaz-Calderon et al. 2000c).  The structure of the AND-OR tree and the 

principles of composition and instantiation are closely related. AND arcs point from an 

implementation to the interfaces from which it is composed.  Similarly, OR arcs point from an 

interface to the implementations from which it can be instantiated.  For example, the AND-OR 

tree in Figure 6 depicts a DC-motor model. The top-level interface has three different 

implementations associated with it, represented by three OR arcs.  The electro-mechanical model 

implementation has three AND arcs, meaning that it is a compound model consisting of three 

interfaces: electrical, conversion, and mechanical.  When instantiating a particular model in the 
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model space, we must bind implementations to interfaces.  Working our way down from the top 

to the bottom of the AND-OR tree, we must first assign an implementation to the top-level 

interface and then recursively to each of the interfaces that constitute the selected 

implementations. 

In general, a component object can contain multiple behavioral models, describing the 

component at different levels of detail.  Sometimes it is possible to capture this set of behavioral 

models in a single reconfigurable model, as described above.  This requires, however, that all 

behavioral models have the same interface, a condition that may not always be satisfied.  For 

instance, if we decided to model the thermal losses in the DC-motor in Figure 6, the interface 

would have to be expanded to include a thermal port.  Our current research is addressing the 

issues that arise when including behavioral models with different interfaces. 

6 Relation between Behavior and Form 

Composable simulation and design are based on the concept of component objects that 

combine form and behavior.  By composing component objects into systems, a designer 

simultaneously designs and models new artifacts.  The previous two sections introduced a 
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17

modular modeling paradigm that supports such composition.  In this section, we focus on 

maintaining consistency between these behavioral models and the corresponding form 

descriptions as represented by the CAD specification model. 

In model compositions, we distinguish between two different types of behavioral models: 

models representing physical components, and models representing interactions between 

components.  Examples of physical components are motors, screws, shafts, or controllers.  Their 

component objects contain a description of both form and behavior.  Interaction models, on the 

other hand, only occur when two component objects are connected to each other.  They do not 

have associated form, but their model parameters can be extracted from the form of the two 

interacting components. Examples of interaction models are lower pairs that result from 

mechanical contact, contact resistance in an electrical switch, or magnetic forces between two 

magnets. 

6.1 Form and Behavior of Component Families 

A component object contains a specification of the form of the component as well as CAD 

models and reconfigurable models describing its behavior.  The reconfigurable models may 

describe the component at different levels of abstraction or with respect to different energy 

domains, and provides, in this way, different views of the component.  Similarly, multiple CAD 

models may provide different views, at multiple levels of detail, of the geometry of the 

component. 

When a component object is defined as a composition of sub-components, both the form 

specification and the models are derived automatically by applying the compositional concepts 

described in the previous sections.  When a component is not compound but primitive, however, 

a fair amount of work is required to define a CAD specification of the form, additional CAD 

models for visualization, behavioral models, and the relationships between them. 

To facilitate the specification of primitive component objects, one can group them into 

families.  A family of component objects is parameterized by one or more instantiation 

parameters that, when assigned particular values, completely specify the form of the component.  

All other parameters describing the geometry or behavior of the component can then be derived 

from these instantiation parameters. 
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For instance, as is illustrated in Figure 7, given the value for a single instantiation parameter 

(the model-type of a DC-motor), a lookup table provides all the parameters specifying the form 

of the configuration ports as well as the parameters of all behavioral and CAD models.  This 

CAD geometry may simply be a high-level abstraction, capturing only the external geometry 

through which the motor can interact with other components. 

In a second example, we can automatically generate behavioral models for component 

families specified by parametric CAD models.  In a parametric CAD model, the designer 

establishes relationships between certain geometric dimensions or parameters.  As a result, the 

form is completely defined by a limited set of characteristic parameters or features, the 

instantiation parameters.  The parameters in the behavioral models can, in turn, be derived from 

the CAD parameters.  As is illustrated in Figure 7, the flow resistance of a hydraulic pipe 

depends on its length, diameter, and bending radii.  Although these dimensions may not be 

defined explicitly in the CAD model, they can be extracted through parametric relations captured 

as procedures (Shah and Mantyla 1995; Bettig et al. 2000). 

Finally, in the most general case, behavioral models can be automatically derived for 
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Figure 7: The relation between form and behavior parameters. 
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components specified by generic CAD models. This requires combining information about 

geometry and materials with knowledge of the physical phenomena occurring in the component.  

Creating such models automatically is too difficult in the general case, but can be achieved for 

certain classes of behavioral models.  For example, as is shown in Figure 7, a rigid body model 

for a component with homogeneous material properties is completely defined by the mass and 

inertial parameters of the component.  Most CAD software packages provide procedures that 

compute the inertial parameters from the density and the geometry of a part, as defined in a 

general CAD model.  As a result, the behavior models of homogeneous rigid bodies can be 

derived automatically for any material and arbitrary geometry. 

6.2 Form and Behavior of Component Interactions 

In addition to the behavioral models of component objects, system models include models 

describing the interactions between component objects.  For each pair of interacting component 

objects, there is an interaction model that relates the port variables of the two objects to each 

other. 

Every interaction requires an interaction model.  However, for the electrical domain, the 

interaction model is usually very simple.  An electrical connection between two components is 

often modeled sufficiently accurately by constraining the voltage at the two connecting ports to 

be equal and the current through them to add to zero (Kirchhoff’s voltage and current laws).  

Because this interaction model is so common, we allow it to be omitted as shorthand in our 

modeling paradigm, as is shown in Figure 8. 

In the mechanical domain, the equivalent default model is a rigid connection between 

components (the positions of the reference frames are equal and the forces and torques add to 

zero).  Besides rigid connections, other common mechanical interaction models are the lower 

pair kinematic constraints.  We have developed algorithms to extract the type and parameters of 

a lower pair from the geometry of the interacting components (Sinha et al. 1998; Sinha et al. 

2000).  Previously, kinematic analysis was limited to geometry with only planar faces  

(Mattikalli et al. 1994).  When approximating curved faces, which are common in engineering 

devices, with polygonal facets, these analyses may fail to recognize certain degrees of freedom. 

In our work (Sinha et al. 1998; Sinha et al. 2000), we have extended these results to curved 

contacts, as is shown in Figure 9.  When two rigid parts share a surface-to-surface contact, every 
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contact point is subject to a non-penetration condition. This condition requires that the 

instantaneous velocity between the two bodies does not have a component in the direction 

opposite to the surface normal at the contact point. We write this condition as a linear inequality 

of the form: 

0)( ≥•×+ nrv
rrrr ω , (1)

where v
r

 and ωr  are the relative translational and angular velocities between the two bodies, r
r

 is 

the position of the point, and n
r

 is the normal to the contact surface. Imposing Equation (1) at 

every point on the contact surface is equivalent to imposing the constraint at the vertices of the 

convex hull (Sinha et al. 1998). For instance, the non-penetration conditions for the two bodies in 

Figure 9 result in eight equations, one for each of the eight corners of the two contact surfaces. In 

general, the analysis results in a linear relationship of the form: 

0≥







ωr
r
v

J assembly , (2)

where each row of Jassembly represents a non-penetration constraint, as in Equation (1).  From the 

properties of the Jassembly matrix, we can determine the kinematic constraints between two 

interacting component objects.  For example, the basis vectors of the nullspace of Jassembly define 

the contact-preserving degrees of freedom, as is illustrated in Figure 9. 
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Our method can infer behavior from devices with curved geometry, while at the same time 

resolving global, multi-part interactions. We have developed procedures that derive the Jassembly 

matrix directly from the CAD models, and from it determine the type and parameters of the 

interaction models (Sinha et al. 1998; Sinha et al. 2000). 

7 Component Libraries 

While the previous sections described the properties and characteristics of individual 

component objects, this section focuses on the organization of multiple component objects into 

libraries.  By searching through the components in these libraries, the designer can locate the 

appropriate component (or system of components) for a particular desired function. In our 

current research, we are developing methodologies for assisting the designer in this search 

process.  Such an intelligent synthesis assistant may search the component library based on 

queries regarding the component’s behavior and form.  When extending this idea even further, a 

component object could contain design rules or expert knowledge that allow it to adapt its form 

to meet the design specifications.  Such “intelligent” components are introduced in (Susca et al. 

2000). 
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Figure 9: Extracting the type and parameters for lower pair interaction models. 
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As is illustrated in Figure 10, we have organized the component objects in a hierarchical 

taxonomy instead of a flat organization.  When moving from the top to the bottom of the 

hierarchy, the component objects become more concrete.  At the top, the objects are abstract and 

represent families of components, such as the family of electrical two-ports or mechanical rigid 

bodies; at the bottom, the leaf nodes of the hierarchy represent completely specified physical 

components.   A component can be completely specified for instance by identifying its 

manufacturer and part number—this allows a manufacturer to implement the design without 

ambiguity.  However, the corresponding behavioral model(s) remain approximations of the 

actual physical behavior. 

We call a component abstract when its implementation is not completely defined: It may not 

include any implementation, or its implementation may contain one or more unspecified 

parameter values. 

A single component may appear in multiple locations in the taxonomy, depending on the 

viewpoint for its classification.  For example, a DC-motor is an energy conversion component, 

but can also be considered as a structural element that implements a rotary joint.  Conversely, 

each object in the library includes multiple behavioral views in the form of a reconfigurable 

model.  Figure 10 shows the browser that allows the designer to navigate through the model 

space of a component, as defined by the AND-OR tree of model implementations. 

 

Figure 10: The component library browser with visualization 

of the corresponding reconfigurable models. 
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When including a component into a larger system, the designer has to complete two steps: 

component selection and model selection.  In the first step, the designer decides which 

component to use for the implementation of a particular function of the device.  Initially, this 

may be an abstract object that represents a family of components and will later be replaced by a 

specific instance.  For example, initially, the designer decides to use a DC-motor component, 

which represents the family of all DC-motors, and replaces it later by the specific component 

object for motor XYZ by company ABC Inc. In the second step, the designer selects the 

component implementation that is best suited for a particular simulation experiment.  For 

example, the high-level “Loss Free Power Conversion” model of Figure 6 in the early stages of 

design and the more detailed model, including armature losses and friction, towards the end. 

Both the hierarchy of the library and the individual entries are defined in XML format 

(extensible markup language) (W3C 1999).  XML is a neutral and extensible format that can be 

easily parsed, searched, and shared over the Web.  Our XML representation for component 

objects includes pointers to geometric models (ACIS or Pro/E), an interface definition of the 

behavioral model, and pointers to the corresponding implementations. 

The definition of an implementation is also stored in XML format.  The equations tags in 

primitive implementations are based on the VHDL-AMS standard (IEEE 1999).  The component 

descriptions may also contain meta-knowledge capturing the semantics of the model: What are 

the assumptions? When is the model valid? Or, what is the meaning of the model?  We anticipate 

using this meta-knowledge extensively when searching for components based on their function.  

Examples and a more detailed description of the XML model definition format is provided in 

(Diaz-Calderon et al. 2000b). 

8 Software Architecture and Implementation 

The implementation architecture of our simulation-based design environment is similar to the 

Open Assembly Design Environment (OpenADE) developed at NIST (Keirouz et al. 2000).  As 

is shown in Figure 11, the core of our system is a central design database in which the 

representations for the current design are stored: function, behavior, product structure, and CAD 

data.  Furthermore, the database contains the relationships between these representations; for 

instance, if a system component implements a particular function, the database will contain a 
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“has_function” relation pointing from the object to its functional model, and an 

“implemented_by” relation from the model to the object. 

During the design process, the information in the central database is continually transformed 

by autonomous software agents or by the designer—through graphical user interfaces, shown in 

Figure 12. 

The main interaction between the designer and the database occurs through the 3D CAD GUI 

and the behavior model GUI.  The 3D CAD GUI is implemented using the Java3D toolkit.  It 

allows the user to view and manipulate the geometry associated with the system components, 

and to define mechanical interactions between components. It does not allow the geometry of 

individual components to be modified; we plan to provide that functionality in the future by 

integrating our framework with Pro/Engineer.  The current Java-based 3D GUI will still remain 

useful for system-level interactions that do not require the design of new components.  

The behavioral modeler provides a 2D view of the system.  Each of the system components 

appears in this view as a port-based model. 

In addition to the user interfaces, software agents interact with the design repository.  These 

agents can act as design assistants, working in the background.  The tasks performed by such 

agents include the following: 

• the translation of CAD data to VRML format for rendering, 

• the extraction and verification of mechanical component interactions, 
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Figure 11: Java-Based GUI components and services interact 

through a shared design database. 
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• the compilation of behavioral models in XML format to VHDL-AMS simulation 

models. 

The framework is implemented in a distributed fashion using Java and C++.  The 

coordination between the distributed software components is event-based (Spell 2000).  When a 

user or a software agent modifies a portion of the design representation, the design database 

broadcasts an event to all the subscribing agents and GUIs.  If necessary, these components will 

then update their local cache to reflect the changes in the design database.  This allows us to 

maintain consistency between the internal design data and its presentation to the user. 

Because of its distributed implementation, our framework can also serve as a tool for 

collaboration.  Multiple users can interact with the same design simultaneously, and design 

modifications introduced by one user can be propagated immediately to all other users. 

3D CAD modeling

Component library

Behavior Modeling

Component editor

3D CAD modeling

Component library

Behavior Modeling

Component editor

Figure 12: The CAD GUI and Behavioral Model GUI 
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9 Example Scenario 

To illustrate the use of our composable simulation framework, we examine the design of a 

missile seeker (Cutkosky et al. 1996).  It is not our goal here to present a detailed design case 

study, but to focus on the use of modeling and simulation during the design process. 

The seeker is a device with two rotational degrees of freedom that allow it to scan a 2-

dimensional area with its camera.  Besides the articulated mechanism that realizes the desired 

degrees of freedom, the seeker consists of actuators, sensors, and embedded controllers for 

accurate positioning. 

9.1 Kinematic Design 

As mentioned in Section 3.2, one can think of design as the process of decomposing the 

function of an artifact, and transforming it into form, such that the form’s behavior matches the 

function (Figure 3).  By performing a functional decomposition of the missile seeker, the 

designer has decided to achieve the two desired degrees of freedom with a serial chain of two 

rotational joints.  He specifies this kinematic function with a ball and stick model and a 

corresponding simulation model, as shown in Figure 13.  This model reflects the intended 

behavior or function, but no specific physical components have yet been assigned to implement 

this intended behavior.  Nevertheless, the designer can still use our simulator to verify whether 

these intended kinematics satisfy the design requirements. 

9.2 Instantiation of the geometry 

Next, the designer instantiates physical components to realize the kinematic structure.  The 

revolute joints of the ball-and-stick model are replaced with DC-motors selected from the 

component library.  Because the designer still needs to determine the dimensions of the motors, 

he instantiates them with a default parameter set.  The corresponding behavioral model 

represents a complete family of DC-motors, from which he can later select a particular instance. 
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Figure 13: Kinematic model for the 2-DOF seeker. 
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To connect the motors physically, the designer creates the geometry of a gimbal ring in a 

CAD package linked to our design environment.  This causes the corresponding rigid body 

model to be instantiated in the system-level behavioral model.  From the CAD model, the 

geometric compiler automatically extracts the mass and inertial parameters, and applies them to 

the rigid body model.  The designer also defines the configuration ports on the gimbal that 

correspond to the mounting locations of the motors and potentiometers.  The resulting design 

configuration and simulation model is shown in Figure 14. 

9.3 Motor Selection 

For the next phase of the design, the mechanical engineer who has generated the kinematic 

structure of the seeker collaborates with a control engineer.  From the component library, the 

control engineer instantiates simple PD controllers that control the position of the two degrees of 

freedom.  Together with the mechanical engineer, he iterates on the selection of an appropriate 

DC motor.  Our simulation framework provides the tools to verify the performance of this 

multidisciplinary system.  The geometrical changes introduced by the mechanical engineer are 

reflected immediately in the corresponding behavioral models, so that the control engineer can 
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Figure 14: Form and behavior of an incomplete design prototype. 
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test the choice of controller with the most up-to-date dynamics models.  The behavioral models 

in the different energy domains are combined into a system-level VHDL-AMS model that is 

evaluated using a commercial solver, as is shown in Figure 15. 

9.4 Final Design Verification 

For the final design verification, the designers decide to increase the level of detail of the 

model.  The mechanical designer reconfigures the motor models to include nonlinear friction, 

while the control engineer replaces the analog implementation of the motor controller with a 

digital version that includes a PWM amplifier.  The resulting system model requires significantly 

 

Figure 15: The VHDL-AMS simulation environment, ADVanceMS, by Mentor Graphics.  

This intermediate analysis shows an increasing position error in the control of the yaw 

motor for a 2 Hz sinusoidal input signal.  The ADVanceMS environment lists the content 

and directory structure of the VHDL-AMS models, and provides access to all the variables 

that are defined in the models. 
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more time to evaluate, but increases the design team’s confidence that the final design will 

perform as desired. 

10 Summary and Discussion 

To support simulation-based design, we have developed a simulation and design environment 

in which design and modeling are tightly integrated.  This integration is based on component 

objects that combine descriptions of both form and behavior of system components.  By 

composing component objects into systems, the design team simultaneously designs and models 

new artifacts. 

To enable this composition we have developed a modular port-based modeling paradigm that 

also facilitates the reconfiguration of models.  The integration between form and behavior is 

further enhanced by defining relationships between CAD and behavioral parameters for 

component families.  To extract the parameters of interaction models from the form of 

interacting components, we have developed procedures that automatically determine the type and 

parameters of lower pair mechanical interactions. 

The research presented in this article is only an initial step towards an integrated framework 

for simulation-based design.  Our current implementation is limited to component models with 

lumped interactions and fixed interfaces.  We have successfully applied it to applications in the 

mechatronics area and have developed a system-level simulation for modular train systems in 

collaboration with DaimlerChrysler Rail Systems (AdtranzNA).  However, to carefully evaluate 

its expected benefits in terms of component reuse and a faster, less expensive design cycle will 

require significant further research. 

Additional research is also needed to expand the functionality of the framework.  With respect 

to systems modeling, the aspect of automatically instantiating interaction models, given a 

component configuration, requires further investigation.  We are currently developing 

taxonomies of ports and interaction models to address this need.  The selection of an adequate 

level of detail for simulation models also requires further expansion of the capabilities of our 

framework.  We currently provide the capability to include models at different levels of detail in 

reconfigurable models, but have not yet addressed the issue of aiding the user in selecting the 

most appropriate model for a particular simulation experiment—the model that has adequate 

accuracy and requires minimum computational resources.   Finally, to allow very detailed 
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analyses, finite-element models need to be included in our framework.  Future research should 

focus on the interfacing between finite element models and lumped models so that we can 

includes models of distributed physical phenomena such as mechanical flexure, or complex 

electromagnetic and thermal behavior in system-level models. 
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