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Abstract
This paper presents a novel methodology for deriving the dynamic equations of mecha-
tronic systems from component models that are represented as linear graphs. This work is
part of a larger research effort icomposable simulatiorin this framework, CAD models
of system components are augmented with simulation models describing the component’s
dynamic behavior in different energy domains. By composable simulation we mean then
the ability to automatically generate system-level simulations through composition of indi-
vidual component models. This paper focuses on the methodology to create the system-
level dynamic equations from a high-level system description within CAD software. In this
methodology, a mechatronic system is represented by a single system graph. This graph
captures the interactions between all the components within and across energy domains —
rigid-body mechanics, electrical, hydraulic, and signal domains. From the system graph,
the system-level dynamic equations can be derived independently of the underlying energy
domains. In the final step, we reduce and order the dynamic equations for efficient compu-
tation.
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1.Introduction

The work presented in this paper is part of a larger effort to develop a framewar&rior
posable simulationBy composable simulation we mean the ability to generate system-
level simulations automatically by simply organizing the system components in a CAD
system. A system component can be either a physical component (electrical motor, gear-
box, etc.) or an information technology component (embedded controller or other software
component). Each of these system components has one or more simulation models associ-
ated with it describing its dynamics in multiple energy domains, across energy domains,
and possibly at multiple levels of accuracy (with varying computational requirements).
When these system components are combined into a complete system, our framework will
automatically combine a selection of the associated component models into a system-level
simulation. The user interaction occurs thus at the level of compositispstém compo-
nentsrather thansimulation componentas in most traditional simulation environments
(Matlab, Easyb5, etc.). These traditional simulation environments do not consider the map-
ping from system components to simulation models. This mapping is not one-to-one. The
system-level simulation model is not simply a concatenation of individual component mod-
els, but may require combining multiple system components into one simulation model (to
avoid algebraic loops or index problems) or conversely may require multiple simulation
components for a single physical component (describing its behavior in multiple energy
domains for instance). Raising the level of user interaction to composition of system com-
ponents rather than composition of simulation models will result in a significant reduction
of effort in creating and modifying system-level simulations and will reduce the simulation
and modeling expertise required of the user. Our framework for composable simulation
will therefore enable the designers and control engineers to verify their physical designs
and control software with much less effort and time than is required in current simulation

environments.

In this paper, we will address an issue that typically occurs in the simulation of mechatronic
systems, namely, combining software components and symbolic equation manipulation.
Mechatronic systems span multiple energy domains (e.g. mechanical, electrical, hydraulic)

and include information technology components (such as control algorithms or signal pro-



cessing). Mathematical models of physical subsystems are in general represented by a set
of symbolic differential-algebraic equations (DAES) while information technology sub-
systems are usually represented as computer code. From a modeling perspective, informa-
tion technology components can be considered as black boxes, i.e., port-based objects with
multiple inputs and outputs. Within our framework for composable simulation, the infor-
mation technology components will be included in the resultant set of DAEs (we call these
the system equatiofpsSome of the inputs to these components may come from the envi-
ronment (e.g. a reference signal) while some others may come from symbolic equations
describing the mechatronic system. Similarly, the outputs of these components may be used
in symbolic equations or by other information technology components. To produce correct
simulation code, we must consider the information technology components while evaluat-
ing the system equations. This is necessary to obtain the evaluation order of the combined

system of equations and information technology components.

To address the composable simulation problems outlined above, we have developed a
methodology based on a system graph representation. We have extended the system graph
to include different energy domains and information technology components through a
combination of linear graphs and block diagrams, resulting in a unified system graph rep-
resentation. The system graph captures the topology of the energy flow in the system, and
is used to generate the set of differential-algebraic equations that describe the system
behavior. The block-diagram component of the system graph represents the signal flow in
the information-technology components. To address the problem of composable simulation
at the software integration level, we have defined a software architecture that supports the

integration of software modufes

The relationship between physical systems and linear graphs was first recognized by
Trent® and by Brannif. Roe"* and Koeni§ apply the theory of linear graphs to the sys-
tems theory and provide important results that can be directly related to the two basic laws
in circuit theory: Kirchhoff’s voltage and current laws. Linear graph theory has been used
in the analysis of rigid body dynamigs®11:12.18nd in the analysis of other engineering

systems that include interaction between different energy dofdains



Besides linear graphs, bond graph' have also been used for system modeling. Bond
graphs are energy-based system descriptions in which energy elements are connected by
energy conserving junction structures. Similar to our approach, bond graphs define a min-
imal set of generalized elements that can be used to model system behavior across energy
domains. Connections between elements are made through power bonds which represent
the power flow in the system. Although bond graphs (with appropriate extensions) can be
used to represent mechatronic systems, we have chosen linear graphs for the following rea-
sons. Linear graphs can be more easily adapted to model 3D rigid body mechanics. Further-
more, linear system graphs reflect the topology of the physical system directly, making it

easier for non-specialists to create system descriptions.

Composition of simulation models can be accomplished by combining fundamental build-
ing blocks described in a high level object-oriented modeling langlidg® The object-
oriented approach facilitates model reuse and simplifies maintenance. Using these model-
ing languages, software executables can be generated automatically from individual sub-

models and the interactions between them.

This paper is organized as follows. In Section 2 we describe the proposed modeling meth-
odology to model mechatronic systems. In Section 3 we present algorithms to synthesize
the system graph from the geometric description of the mechatronic system. We proceed in
Section 4 to present algorithms to derive the governing system equations, and we conclude

in Section 5.

2.Modeling of mechatronic systems

Linear graph theory is a branch of mathematics that studies the algebraic and topological
properties of topological structures known as graphs. In this context, a physical system can
be regarded as a collection of components and terminal Bairﬁetween any two termi-

nals, a pair of oriented measurements can be taken, nanslgsandthroughmeasure-
ments, as shown in Figure 1. The variables associated with this pair of measurements are
called terminal variables The mathematical relations between the terminal variables

define the component’s physical characteristics and are t¢atiathal equations



The graph representation of the component is a directed edge that joins two the terminal
points. This graph representation is calledminal graphof the component, and thlsystem

graphis the collection of terminal graphs connected at the appropriate nodes. In a mecha-
tronic system, the system graph may be non-connected, due to the presence of processes in

different energy domains.

Figure 1. Through and across measurements on a general two-terminal element and its terminal graph.
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Based on the type of relationship between the terminal variables, one can distinguish three
classes of elements: passive elements (that can be further divided into dissipative and non-
dissipative elements), generators, and transducers. A dissipative element is one which
cannot supply energy to the system while a non-dissipative element, does not dissipate
energy but can store it for later recovery. These elements can be divided in two categories:
delayelements which store energy by means of their through variablesa@nonulator
elements which store energy by means of their across variables. The second class of com-
ponents contains the generators or drivers. A driver forces an across or through quantity to
follow a prescribed function of time. The third class of elements, the transducers (also
referred to as couplers), transmits energy from one part of the system to another. An ideal
transducer is a transducer that can neither store nor dissipate energy, i.e., there is no energy

loss in the component.

Interactions between different energy domains, cannot be described with a two-terminal
element. It is necessary to introduce elements that have more than two terminatier—

minal elements. Within this category we find the transducer elements defined previously.
The system graph associated with an n-terminal element will be derived from measure-
ments taken between pairs of terminals. However as is shown by}Rezonly neech — 1

across measurements to completely determine the across variables between any pair of ter-

minals. This number corresponds to the number of branches in a tree selected in the graph:



the terminal graph of an-terminal element is the trék of n—1 edges connecting the
vertices corresponding to theterminals of the system component. To illustrate this case
consider the electric transformer (a 3-terminal system component) shown in Figure 2. Two
across measurements will completely determine the device giving a terminal graph with

two edges.

Figure 2. n-terminal component.
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As is the case with two-terminal elements, the edges in a terminal graphrefeaiminal
element will be associated with measurements taken between terminal pairs in the physical

system.

In summary, there exists an isomorphism between a linear graph and a physical system pro-
vided that one can define pairs of across and through variables. For a system composed of
m subsystems, thgystem graplis the union of all terminal graphs for all the components

of the system.

Table 1 shows all the various variables associated with the different energy domains con-
sidered.

Table 1. Through and across variables for various energy domains

Type of Through Variable Across variable
system Name | Symbol Name Symbol
General x(t) y(t)
Electrical Current| i(t) \oltage v(t)
. Fluid

Hydraulic How g(t) Pressure p(t)
t )

Mechanical Force, F(0), Displacement (1)
Torque T(t) e(t)




All derivatives of across or through variables are across or through variables as well. For

example, velocity and acceleration are also across variables.

Let x be a vector of across variables, x,, ..., X,  and vector of through variables
Y1 Yo --. Yo @ssociated with a system graphexddges. The terminal variables are chosen

such that the power of a component is characterized by their product.

2.1 Representation of topology

The topology of the system graph witlvertices ana edges can be represented by an inci-
dence matrixA . The incidence matrix isvac e matrix in which each element can have
the value +1, -1, or O if the edgeis negatively, positively, or not incident onto nodge
respectively. In general, for a graph wilconnected components, the incidence matrix is
a direct sum: a matriM is said to be a direct sum &fl;, M, ..M, ifforarM, M no
nonzero element dfl,  lies in a row or columnifassociated with any of the other sub-
matrices. TheM, matrices can be regarded as the incidence matrices of eacp obtiae

nected components.

As an example consider the mechatronic system shown in Figure 3 for which the system
graph is shown in Figure 4. The mechatronic system consists of two energy domains

(mechanical and electrical) and a number of components within each energy domain.

Figure 3. Positioning system.
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Figure 4. System graph for the positioning system.
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The incidence matrix for the system graph for the mechatronic system is
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This matrix is a direct sum of the incidence matrices for the mechanical and the electrical

energy domains. It can be shown that for each connected comgomey v, — 1 rows of

the submatrixA, are linearly independent. When one node is identified as the datum node

within each energy domain and the corresponding row is deleted Agm

matrix is called theeducedincidence matri:
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011-10000000
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2.2 Constraint equations

The terminal equations are insufficient to describe the mechatronic system completely. An
additionale equations are required to define a well posed probl2eequations in2e
unknowns. These additional equations are derived from the connectivity of the components
given by the topology of the system graph. We now regard the system graph as two sub-
graphs; aspanning tre€l (or spannig forestf the graph is non-connected) anctatree
(coforest) Without loss of generality, assume that the system graph is conngeted))

We can identifyv—1 pairs of terminal variabl€s;, y;)  with theanchesof the span-

ning tree ande— v+ 1 terminal variablgx., y-)  with tiebordsof the cotree. If the
system graph is divided in two non-connected subgraphs by a cut including exactly one
branch of T and some chords, the cut is unique. It is clear that for a Tredth v—1
branches, there will be as many unique cuts. The sum of the vertex equations for all nodes
within the cut-sét contains only through variables corresponding to the cut-set elements.

The set of all cut-set equations can be written in the form:

U A [yT] =0 3)

Yc

whereU+ is a unit matrix of dimensiorfv—1) and the cut-set mat[izjT Ac} can be

derived by applying row operations on the reduced incidence ndatrix

Each chord in the system graph is uniquely associated with a loop in the system. For a given
loop, its orientation will be determined by the orientation of the defining chord. A new
matrix, namely the circuit matriB that captures the connectivity relations between circuits
and edges can be defined. The circuit equations associated with each circuit can be written

in the form:

B, U H = 0 (4)

C

a. A cut-setis a set of edges that divide the graph into exactly two components.
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WhereUc is a square unit matrix with dimensions equal to the number of chords in the
system graph. From thprinciple of orthogonality which states that the vector space
spanned by the rows of the incidence matirand the vector space spanned by the rows
of the circuit matrixB are orthogonal complemeﬁté.e., ABT = 0andBAT = 0 ), we

can obtain an expression By
Br = -AL (5)

2.3 Low-power component modeling

In order to include information technology components as well as other types of low-power
devices in the system graph, it is necessary to extend the system graph representation for
the inclusion of signals. Aignalrepresents the value of some system variable as a function

of time. To introduce signals in the system graph we define the concejatriaible ele-
mentsA variable elementis an element that can have one or more input signals that modify
its response. The simplest variable element is the signal-controlled across or through driver.
In this case, either the across or through variable associated with the terminal graph will be
completely defined by the signai(t) = f(s(t)) @(t) = h(s(f)) whetandy repre-

sent across and through variables, respectively. Similarly, a variable passive elementis also
signal-controlled, but here, the input signal is modulating one of the element parameters
(Figure 5). Output signals are obtained from the system graph as “measurements” of

system variables (Figure 6).

Figure 5. Terminal graph of variable elements.
b
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In the context of mechatronics, it is important to have a system representation that is capa-
ble of handling signal elements. Mechatronic systems include information technology
components for which there is no energy flow and that therefore cannot be represented by

a terminal graph. As an example consider an embedded controller. The control algorithms



are provided as algorithmic components that must interact with the rest of the system but

do not generate or transfer power.

Figure 6. Reading values from a terminal graph.
b

r=l---
I

REEES

XLy
a

To illustrate this consider a portion of a positioning system composed of an angular posi-
tion sensor, a regulator, and a current source (Figure 7). The regulator obtains the signal
input from the position sensor to provide an output signal used to modulate the current

source.

Figure 7. A positioning system The system graph shows the interaction between the signal block and the
terminal graph.
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3.Synthesis of the System Graph for Mechatronic
Systems

The system graph for a mechatronic system is constructed with the hekysfean editor

that is tightly integrated with a CAD system. As is shown in Figure 8, the system editor is
based on the conceptwfodeling layergach of which represents a different energy domain

of the system. The modeling layer for the mechanical energy domain is implemented in a
CAD system. When a component is brought into the system editor, its constituting models
are included in their respective modeling layers. It is then the task of the user to identify the
interactions between components. Interactions are classified as: 1) mechanical interactions,
2) terminal connections, and 3) edge associations. Mechanical interactions such as rigid

connections, prismatic joints or revolute joints arise from the interconnection of two rigid

10



bodies. The method for deriving the system-graph representation of the mechanical system
is presented in Section 3.1. Terminal connections on the other hand, represent the interac-
tion of components within the other energy domains. A terminal connection between two
terminals indicates that both terminals are mapped to a single node in the system graph.
Edge associations arise from the energy exchange between different energy domains. They
occur when system variables in the terminal equations of a component are associated with
other edges in the terminal graph. For example consider the terminal equation of the elec-

trical edge of a DC motor:

V() = Kpd(t) + R+ Li(t) (6)

Variableé(t) is a system variable that is associated with an edge (in the mechanical system
graph) that is not part of the electrical domain. These types of variables are eatige-
noussince they are assumed to be known within that portion of the model. The definition

of exogenous variables within a terminal equation establishes an association between edges

in the system graph.

Figure 8. Modeling layers of a mechatronic system.
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3.1 Synthesis of the system graph for 3D Mechanics.

The dynamic equations of the 3D mechanics of the system are derived using a sub-module
(Dynaflex) which is specifically designed for the analysis of three dimensional constrained
mechanical systen]1§ Dynaflex is a graph-theoretic approach in which the connectivity of

the bodies in the mechanism and the forces acting on them are represented by a linear graph
(mechanical system graph). The difference between the system graph for non-mechanical
energy domains and the graph for the mechanical domain lies in the different dimension of
the spaces defining the terminal variables. Variables in the mechanical domain are elements

of 0° whereas variables in the system graph are elements of  (i.e., scalars.)

The system graph of the mechanical system captures the topology of the mechanism. How-
ever, to have a complete model, geometric and inertial information must be added to the
topology. This information is derived from the Intelligent Assembly Modeling and Simu-
lation (IAMS) tool kit'®. Based on the geometry of the mechanism the IAMS tool kit will
automatically determine the instantaneous kinematic relationships between components in
the mechanism. IAMS further provides information about the origin of the inertial frame,
center of mass of each body, location of articulation points in each body, type of joint, and

points of application of internal forces.

Similar to the basic modeling elements we defined in Section 2, Dynaflex provides a set of
modeling elements for mechanical systems, inclu%ﬁngody elements, arm elements
(position vectors), motion and force drivers, spring-damper-actuator elements, and joint

elements.

The process for obtaining the graph representation suitable for Dynaflex consists of three
steps. First arxtendedsystem graph is generated. This step maps the geometry of the

mechanism directly into a linear graph representing its topology. The second step identifies
composite bodies consisting of rigidly connected subcomponents. In a final step, composite
bodies are replaced by single bodies reducing the system graph to a minimal graph with the

same topological properties.
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The generation of the system graph involves a direct translation of the kinematic informa-
tion into the linear graph representation. In general, the result of the first stage is an
extended system graph that includes all kinematic information including fixed joints and
redundant joints. However, to avoid structural singularities and indexing problems, and to
improve the efficiency of the symbolic computations in Dynaflex, we simplify this initial

system graph by lumping all rigidly connected bodies into a single composite body.

Composite bodies are identified by performing a depth-first traversal on the extended
system graph. The algorithm explores all paths created by rigid connections and collects all

bodies along the path into a single composite body. The algorithm can be stated as follows:

Algorithm A. (Composite body identification)he algorithm takes as an input the sys-
tem graph and generates as output the set of composite bodies. The algorithm uses the fol-
lowing sets to keep track of all nodes in the graph: the set CLOSED, contains all nodes

already visited. The set LUMPS contains all the composite bodies in the system. OPEN is
a set containing all the nodes to-be-visited. contains the bodies to be combined into the

current composite, and SYSTEM is the set of CG nodes of the system graph.
Al. SetCLOSED- U ,LUMPS -~ [J
A2. While SYSTEM¢ O do
A3. Setcg ~ firs(SYSTEMW,E ~ {cg} ,
A4. OPEN ~ sucessofs ¢§ CLOSED,
SYSTEM— SYSTEMcg}
CLOSED.- CLOSEmM{ dyg
A5. While OPEN# [ do
A6. cg ~ firstf(OPEN,
A7. & —~&U0{cqg},

OPEN ~ (OPEN\{cg}) O (sucessors cgs CLOSED

13



SYSTEM— SYSTEMcg}

CLOSED. CLOSEmM{ cyg
A8. Continue A5.
A9. Set LUMPS . LUMPSI{¢}
A10. Continue A2.

All. The algorithm terminates. We have checked all bodies in the system and have

defined the composite bodies that must be created.

Algorithm A uses the predicamiccessors , which given a node in the system graph, it

returns the adjacent nodes if the path to the successors is through a rigid connection.

The last stage in the synthesis of the system graph is to perform the reduction process that
will combine the identified bodies into single composite bodies and remove redundant
joints. Redundant joints are detected by loops where the bodies in the loop appear more
than once. If two joints are found to be redundant, that can be interpreted in two ways. First,
the joint axes may be colinear. This would result in an overconstrained mechanism for
which one of the two joints can be discarded for analysis purposes. The second interpreta-
tion is when the joint axes are not colinear making some angle between them. This con-
figuration results in an overconstrained body for which we cannot discard any of the joints
for analysis purposes. In this event, the algorithm reports the problem to the user stating

that the system is fully constrained.

As an example of how these steps are followed consider the design of a missile seeker

shown in Figure 9.

14



Figure 9. Missile seeker.
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This design contains 9 bodies: housing, gimbal ring, camera, pitch connector (2) yaw con-

nector (2), shaft (2). A kinematic description of the system reveals that there are a number
of bodies that may be combined to form composites (Table 2).

Table 2.Kinematic description for the seeker system

Type of Joint

Reference body

Secondary body

FIXED housing pitch connector (a)
FIXED housing pitch connector (b)
REVOLUTE* pitch connector (a) gimbal ring
REVOLUTE pitch connector (b) gimbal ring
FIXED gimbal ring yaw connector (a)
REVOLUTE* yaw connector (a) shaft (a)
FIXED gimbal ring yaw connector (b)
REVOUTE yaw connector (b) shaft (b)
FIXED shaft (a) camera
FIXED shaft (b) camera

15



From the kinematic description shown in Table 2, the first stage of our derivation generates

an extended system graph shown in Figure 10. Secondly, Algorithm A identifies the com-
posites listed in Table 3.

Table 3. Composite bodies found by Algorithm A

BODY_1 shaft (b) camera shaft (a)
BODY_2 housing pitch connector (b) pitch connector (a)
BODY_3 gimbal ring yaw connector (b) yaw connector (a)

Finally, the reduction stage yields the following kinematic relations:

Table 4.Kinematic description for the composite bodies in the seeker

Type of Joint Reference body Secondary body
REVOLUTE BODY_2 BODY_3
REVOLUTE* BODY_2 BODY_3
REVOLUTE BODY_3 BODY_1
REVOLUTE* BODY_3 BODY_1

Figure 10.Extended system graph. Only joint and body elements are shown for clarity.
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Notice that there are two revolute joints per pair of composite bodies. Kinematic analysis
reveals that the rotation axes of each pair of joints coincide. For the Dynaflex analysis, one

of the two points is removed to avoid concluding overconstrained kinematics; only the
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joints marked with an asterisk are considered. At the end of the reduction process, we

obtain the reduced system graph shown in Figure 11.

Figure 11.Reduced system graph.

To conclude the Dynaflex description, dynamic elements are introduced consisting of gen-
eralized forces provided by motors, external forces applied to the bodies, and forces acting
between two bodies. For this example, only two force elements are introduced: e9 and €13,
which are the result of the motors built into the corresponding joints. Furthermore, we
introduce gravity forces acting on the bodies at their center of mass (el, €3, e5) representing
the weight of BODY_2, BODY_3, and BODY_1, respectively.

4.Synthesis of system equations

Once a mechatronic system has been described as a system graph, the dynamic equations
can be derived from the graph without the need to consider the underlying physics in each
of the energy domains. As mentioned in Section 2, the system equations can be derived by
simultaneously considering tie¢erminal equations and tleendependent topological con-
straints (cut-set and circuit equations). The remaining questions that we will address in this
section are: which topological constraints need to be considered, and which of the two

system variables (across or through) should be the independent variable in eaattefthe
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minal equations? Both of these questions are answered in the normal tree selection algo-

rithm presented in this section.

The terminal equations plus any independent setafnstraint equations unambiguously
define the dynamics of the system. However, before these equations can be numerically
solved they must be expressed in state space form in which the derivatives ofasstate

expressed as explicit functions of the states and time:

x = f(x 1) (7)
Expressing the equations of the system in this form implies using the smallest possible
number of equations (equal to the order of the system) and expressing the high order deriv-

atives as a function of low order derivatives of state variables, in each equation

This can be accomplished in the following way. Let us divide the system variables into two
groups: primary variables and secondary variables — one of each for every edge. Assume
now that in the terminal equation of an edge, the highest order derivative of the primary

variablep is expressed as a function of the secondary varisble,

p" = 1(s) (8)
On the other hand, assume that in the constraint equations the secondary variables are

expressed as a function of the primary variables:

s=9op ©)
Then, by substituting the constraint equations (9) into the terminal equations (8), we get a

minimal set of dynamic equations of the form:

p™ = f(g(p)) (10)

which is exactly the desired state-space representation.

The final step in the derivation of our approach is the selection of the primary and second-
ary variables. According to equations (3) and (4) the dependent variables in the constraint
equations are the through variables in the branches of the tree and the across variables in

the chords of the cotree:

18



Yt = -AcYe

11
From equations (9) and (11), we can identify primary variables with the setqf across
variables associated with the branches of a forest and the set of- p through variables

associated with the chords of a coforest. Similarly, the dependent variables in equation (11)

are identified asexondary variablesf the system graph.

Based on the selection of primary and secondary variables, we can obtain dynamic equa-
tions of the form (10) by selecting a tree on the system graph such that the following two
conditions are satisfied: 1) the highest order derivatives of as many primary variables as
possible appear in the terminal equations as functions of secondary variables and low order
derivatives of primary variables, and 2) the terminal equations contain as few derivatives
of secondary variables as possible. The tree that satisfies these two conditions is called a

normal treeof the system graph.

The normal tree of a system graghis found by defining a real functiom: e - O* on

the edges o6 that computes the weight of the edges as follows:

Let K, andk, represent the highest derivative order of all accumulator elements and all
delay elements respectively, adile — o* be a real function defined on the edges that
computes the highest derivative order of the element associated witke.adget, classify

the edges ofs as follows: let all across drivers and generalized across drivers belong to the

classc? , accumulator elements to the classes

cX = {ea|O(ea)=Ka—i} =0 ..,K;-1, (12)
dissipator elements to clas® = {e6|O(e5) =0} ,and delay elements to the classes
ct = {eT|O(e[):KT—i} I =0, ...,k —1. (13)

Finally, all through drivers and generalized through drivers will belong to cfass . The

weight functionsv defined on the edges Gfare chosen for each class such that

A o a a o 1 T T ®
WA <SWE <WE <. SWE ) SWOSWE<W... <Wg _q <W (14)
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(o]

wherew” is the weight function associated to cla%sw, :

is the weight function associ-
ated to class” Wi6 is the weight function associated to 0:121555,\4T ,  Isthe weight function

associated with class amﬁb is the weight function associated talass

In other words, the weight functiomranks the edges @ based on their respective classes.

Any weight function that satisfies the ranking in equation (14) is admissible.

The next step in our approach is to findrenimum cost spanning trBéhat minimizes the

total cost (weight) of the weights assigned to the branches of the tree. Ahd shals

that it is always possible to find such a tree based on the following properblethe set

of vertices ofG andU be a proper subset & If e,;, = (u, V) is an edge of lowest cost
suchthaw O U and/ 0V -U ,then there is a minimum cost spanning tree that includes
€min- 1he proof of this property is outside the scope of this article but can be found in Aho

et. all

Once a normal tree has been selected, we can witd-set and circuit equations, ard
terminal equations. The constraint equations together with the terminal equations constitute
the set of equations for the complete solution of the mechatronic system excluding the
mechanical energy domain. To completely specify the mechatronic system, these equations
are combined with the dynamic equations for the 3D mechanism derived by Dynaflex. This
new set of equations will be in general a set of differential algebraic equations (DAE) which

constitute the set of equations for the complete system.

We now revisit the missile seeker example introduced in the previous section. The system
graph is generated as prescribed in Section 3 and the result is shown in Figure 12. We can
now proceed to select the normal forest (which is indicated by bold lines in Figure 12) and
once the forest is selected the system equations are derived. As shown in the appendix,
there are two second order differential equations that correspond to the mechanical system,
two first order differential equations corresponding to the electric domain of the motors and
four algebraic equations that correspond to the coupling equations and the controllers used

in the design. These equations can be transformed to a set of six first order differential equa-

b. A spanning tree fdb is a tree that connects all verticesain
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tions and the algebraic equations can be substituted in the resultant set. This equations are

then integrated over time to show the behavior of the system.

Figure 12.System graph for the missile seeker.
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As an example, Figure 13 shows the angular position of the ginoiggl () and the camera
assembly 3(t) ) when step functions of 0.14 rad and -0.14 rad are applied to the respective

controllers.
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Figure 13.System response as a function of time.
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5.Conclusions

In this paper, we have presented a framework for composable simulation in which compo-
nent models are automatically combined to create system-level simulation models. Our
approach is based on linear graph theory. Component models are represented as terminal
graphs with the corresponding terminal equations. These subgraphs are combined into a
system graph which is a domain independent representation of the system dynamics. To
derive the dynamic equations from the system graph, a minimum cost spanning tree algo-
rithm is used, resulting ina set of equations in state-space form. We illustrated the frame-

work with an example of a missile seeker.
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8.Appendix

B(®) = (=0.18419821 1¢)cos(a ()R sin(a(t)) (15)
—0.42128079 10)B(t)a(t) cos(a(t))
+0.31596059 1F)B(t)a(t)sin(a(t)) + 0.1579808 10)a(t)*sin(a(t))
+0.1579808 10)B(t)°sin(a(t)) — 0.63153676 10)sin(a(t)’pM)’
—0.00032463 my(t) + 0.00032463 my(t) — 0.2106404 1P)B(1)°
cos(a(t)) —0.0004866%05(a(t)) T mB(t) —0.00064886in(a(t)) T mB(t)
+0.31576837 10)B(t)°—0.2106404 10°)a(t)>cos(at)))
/(-0.63153674 10
sin(a(t)) cos(a(t)) + 0.1238991¢ 10) —0.1841982¢ 17)sin(a(t))?)

d(t) = (0.36839648 1T)B(M) sin(a(t)) — 0.42128070 18)RM)a (L) (16)
cos(a(t)) +0.31596059 10)B(t)a(t)sin(a(t)) + 0.63153678 17)B(t)
a(t) + 0.1841982¢ 17)sin(a(t))a(t)*cos(a(t)) — 0.12630736 108)
sin(a(t))*B)a(t) + 0.1579808 10°)a(t) sin(a(t))
+0.237036 10°)B(t)” sin(a(t)) — 0.12630736 10)sin(a(t))2B(t)’
—0.00032463 my(t) + 0.0048707F my(t)
+0.0004866B0s(a(t)) T m,(t) —0.63153674 10)sin(a(t))’a(t)’
+0.31576837 10)a(t)®—0.316048 10°)@(t) cos(a(t))
—0.000973%05(a(t)) T my(t) —0.00129773in(ar(t)) T my(t)
+0.36839648 10)sin(a(t))BH)a(t) cos(a(t)) + 0.6315367¢ 10)B(t)°
—0.2106404 10°)a(t)>cos(a(t)) + 0.00064888in(a(t)) T my(t))
/(-0.63153674 10)
sin(a(t)) cos(a(t)) + 0.1238991¢ 10) —0.18419821 10)sin(a(t))?)
—E,(t) + 0.000813(t) + 0.2i ,(t)

d.
—1.(t) = 17
gt <" 200 109 (17)
d 0 - —EB(t)+o.ooooas(6t)+o.2iB(t) 18
dt 200( 10°)

Tmy(t) = 0.0813 (t) (19)
Tmy(t) = 0.0324(t) (20)
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E,(t) = PID(u(t), a(t) (21)

Eg(t) = PID(ug(t), B(t)) (22)
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