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Abstract
This paper presents a novel methodology for deriving the dynamic equations of mecha-
tronic systems from component models that are represented as linear graphs. This work is
part of a larger research effort incomposable simulation. In this framework, CAD models
of system components are augmented with simulation models describing the component’s
dynamic behavior in different energy domains. By composable simulation we mean then
the ability to automatically generate system-level simulations through composition of indi-
vidual component models. This paper focuses on the methodology to create the system-
level dynamic equations from a high-level system description within CAD software. In this
methodology, a mechatronic system is represented by a single system graph. This graph
captures the interactions between all the components within and across energy domains —
rigid-body mechanics, electrical, hydraulic, and signal domains. From the system graph,
the system-level dynamic equations can be derived independently of the underlying energy
domains. In the final step, we reduce and order the dynamic equations for efficient compu-
tation.
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1.Introduction

The work presented in this paper is part of a larger effort to develop a framework forcom-

posable simulation. By composable simulation we mean the ability to generate syst

level simulations automatically by simply organizing the system components in a C

system. A system component can be either a physical component (electrical motor,

box, etc.) or an information technology component (embedded controller or other soft

component). Each of these system components has one or more simulation models

ated with it describing its dynamics in multiple energy domains, across energy dom

and possibly at multiple levels of accuracy (with varying computational requireme

When these system components are combined into a complete system, our framewo

automatically combine a selection of the associated component models into a system

simulation. The user interaction occurs thus at the level of composition ofsystem compo-

nentsrather thansimulation componentsas in most traditional simulation environment

(Matlab, Easy5, etc.). These traditional simulation environments do not consider the

ping from system components to simulation models. This mapping is not one-to-one

system-level simulation model is not simply a concatenation of individual component m

els, but may require combining multiple system components into one simulation mod

avoid algebraic loops or index problems) or conversely may require multiple simula

components for a single physical component (describing its behavior in multiple en

domains for instance). Raising the level of user interaction to composition of system

ponents rather than composition of simulation models will result in a significant reduc

of effort in creating and modifying system-level simulations and will reduce the simula

and modeling expertise required of the user. Our framework for composable simul

will therefore enable the designers and control engineers to verify their physical de

and control software with much less effort and time than is required in current simula

environments.

In this paper, we will address an issue that typically occurs in the simulation of mechat

systems, namely, combining software components and symbolic equation manipul

Mechatronic systems span multiple energy domains (e.g. mechanical, electrical, hydr

and include information technology components (such as control algorithms or signa
1
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cessing). Mathematical models of physical subsystems are in general represented b

of symbolic differential-algebraic equations (DAEs) while information technology s

systems are usually represented as computer code. From a modeling perspective, in

tion technology components can be considered as black boxes, i.e., port-based objec

multiple inputs and outputs. Within our framework for composable simulation, the in

mation technology components will be included in the resultant set of DAEs (we call t

thesystem equations). Some of the inputs to these components may come from the e

ronment (e.g. a reference signal) while some others may come from symbolic equa

describing the mechatronic system. Similarly, the outputs of these components may b

in symbolic equations or by other information technology components. To produce co

simulation code, we must consider the information technology components while eva

ing the system equations. This is necessary to obtain the evaluation order of the com

system of equations and information technology components.

To address the composable simulation problems outlined above, we have develo

methodology based on a system graph representation. We have extended the system

to include different energy domains and information technology components throu

combination of linear graphs and block diagrams, resulting in a unified system graph

resentation. The system graph captures the topology of the energy flow in the system

is used to generate the set of differential-algebraic equations that describe the s

behavior. The block-diagram component of the system graph represents the signal f

the information-technology components. To address the problem of composable simu

at the software integration level, we have defined a software architecture that suppor

integration of software modules5.

The relationship between physical systems and linear graphs was first recognize

Trent19 and by Brannin2. Roe14 and Koenig8 apply the theory of linear graphs to the sys

tems theory and provide important results that can be directly related to the two basic

in circuit theory: Kirchhoff’s voltage and current laws. Linear graph theory has been u

in the analysis of rigid body dynamics9, 10,11,12,18and in the analysis of other engineerin

systems that include interaction between different energy domains13.
2
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Besides linear graphs, bond graphs7, 15 have also been used for system modeling. Bo

graphs are energy-based system descriptions in which energy elements are conne

energy conserving junction structures. Similar to our approach, bond graphs define a

imal set of generalized elements that can be used to model system behavior across

domains. Connections between elements are made through power bonds which rep

the power flow in the system. Although bond graphs (with appropriate extensions) ca

used to represent mechatronic systems, we have chosen linear graphs for the followin

sons. Linear graphs can be more easily adapted to model 3D rigid body mechanics. Fu

more, linear system graphs reflect the topology of the physical system directly, mak

easier for non-specialists to create system descriptions.

Composition of simulation models can be accomplished by combining fundamental b

ing blocks described in a high level object-oriented modeling language3, 4, 6. The object-

oriented approach facilitates model reuse and simplifies maintenance. Using these m

ing languages, software executables can be generated automatically from individua

models and the interactions between them.

This paper is organized as follows. In Section 2 we describe the proposed modeling

odology to model mechatronic systems. In Section 3 we present algorithms to synth

the system graph from the geometric description of the mechatronic system. We proc

Section 4 to present algorithms to derive the governing system equations, and we con

in Section 5.

2.Modeling of mechatronic systems

Linear graph theory is a branch of mathematics that studies the algebraic and topol

properties of topological structures known as graphs. In this context, a physical syste

be regarded as a collection of components and terminal points19. Between any two termi-

nals, a pair of oriented measurements can be taken, namelyacrossandthroughmeasure-

ments, as shown in Figure 1. The variables associated with this pair of measuremen

called terminal variables. The mathematical relations between the terminal variab

define the component’s physical characteristics and are calledterminal equations.
3
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The graph representation of the component is a directed edge that joins two the ter

points. This graph representation is calledterminal graphof the component, and thesystem

graph is the collection of terminal graphs connected at the appropriate nodes. In a m

tronic system, the system graph may be non-connected, due to the presence of proce

different energy domains.

Figure 1.Through and across measurements on a general two-terminal element and its terminal grap

Based on the type of relationship between the terminal variables, one can distinguish

classes of elements: passive elements (that can be further divided into dissipative an

dissipative elements), generators, and transducers. A dissipative element is one

cannot supply energy to the system while a non-dissipative element, does not dis

energy but can store it for later recovery. These elements can be divided in two categ

delayelements which store energy by means of their through variables, andaccumulator

elements which store energy by means of their across variables. The second class o

ponents contains the generators or drivers. A driver forces an across or through quan

follow a prescribed function of time. The third class of elements, the transducers

referred to as couplers), transmits energy from one part of the system to another. An

transducer is a transducer that can neither store nor dissipate energy, i.e., there is no

loss in the component.

Interactions between different energy domains, cannot be described with a two-ter

element. It is necessary to introduce elements that have more than two terminals —n-ter-

minal elements. Within this category we find the transducer elements defined previo

The system graph associated with an n-terminal element will be derived from mea

ments taken between pairs of terminals. However as is shown by Roe14, we only need

across measurements to completely determine the across variables between any pai

minals. This number corresponds to the number of branches in a tree selected in the

yComponent
A B

+
x

+

Across meter

Through meter

a

b

x,y

n 1–
4
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the terminal graph of ann-terminal element is the treeT of edges connecting then

vertices corresponding to then terminals of the system component. To illustrate this ca

consider the electric transformer (a 3-terminal system component) shown in Figure 2

across measurements will completely determine the device giving a terminal graph

two edges.

Figure 2.n-terminal component.

As is the case with two-terminal elements, the edges in a terminal graph of ann-terminal

element will be associated with measurements taken between terminal pairs in the ph

system.

In summary, there exists an isomorphism between a linear graph and a physical syste

vided that one can define pairs of across and through variables. For a system compo

m subsystems, thesystem graphis the union of all terminal graphs for all the componen

of the system.

Table 1 shows all the various variables associated with the different energy domains

sidered.

Table 1.Through and across variables for various energy domains

Type of
system

Through Variable Across variable
Name Symbol Name Symbol

General

Electrical Current Voltage

Hydraulic
Fluid
flow

Pressure

Mechanical
Force,
Torque

,
Displacement

,

n 1–

A B

C

a b

c

x t( ) y t( )
i t( ) v t( )

g t( ) p t( )

f t( )
τ t( )

r t( )
θ t( )
5
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All derivatives of across or through variables are across or through variables as wel

example, velocity and acceleration are also across variables.

Let x be a vector of across variables andy a vector of through variables

associated with a system graph ofe edges. The terminal variables are chos

such that the power of a component is characterized by their product.

2.1 Representation of topology

The topology of the system graph withv vertices andeedges can be represented by an inc

dence matrix . The incidence matrix is a matrix in which each element can h

the value +1, -1, or 0 if the edgee is negatively, positively, or not incident onto nodev,

respectively. In general, for a graph withp connected components, the incidence matrix

a direct sum: a matrixM is said to be a direct sum of if for any inM no

nonzero element of lies in a row or column ofM associated with any of the other sub

matrices. The matrices can be regarded as the incidence matrices of each of thep con-

nected components.

As an example consider the mechatronic system shown in Figure 3 for which the sy

graph is shown in Figure 4. The mechatronic system consists of two energy dom

(mechanical and electrical) and a number of components within each energy domai

Figure 3.Positioning system.

x1 x2 … xe, , ,

y1 y2 …ye, ,

A v e×
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Figure 4.System graph for the positioning system.

The incidence matrix for the system graph for the mechatronic system is

(1)

This matrix is a direct sum of the incidence matrices for the mechanical and the elec

energy domains. It can be shown that for each connected componentk, only rows of

the submatrix are linearly independent. When one node is identified as the datum

within each energy domain and the corresponding row is deleted from , the resu

matrix is called thereduced incidence matrixA:

(2)

1245

6

78

9

3

e1

e2e3 e4

e5
e6

e8

e7e9
e10e11

e0

v(t)
vREF

Controller

A

1 0 0 0 1– 0 0 0 0 0 0 0

0 0 1– 0 1 0 0 0 0 0 0 0

0 1 1 1– 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

1– 1– 0 0 0 1– 1– 1– 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1– 1– 1– 1–

A1 0

0 A2

= =

vk 1–

Ak

Ak

A

1 0 0 0 1– 0 0 0 0 0 0 0

0 0 1– 0 1 0 0 0 0 0 0 0

0 1 1 1– 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

=

7
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2.2 Constraint equations

The terminal equations are insufficient to describe the mechatronic system complete

additionale equations are required to define a well posed problem:2e equations in2e

unknowns. These additional equations are derived from the connectivity of the compo

given by the topology of the system graph. We now regard the system graph as two

graphs; aspanning treeT (or spannig forestif the graph is non-connected) and acotree

(coforest.) Without loss of generality, assume that the system graph is connected

We can identify pairs of terminal variables with thebranchesof the span-

ning tree and terminal variables with thechordsof the cotree. If the

system graph is divided in two non-connected subgraphs by a cut including exactly

branch ofT and some chords, the cut is unique. It is clear that for a treeT with

branches, there will be as many unique cuts. The sum of the vertex equations for all

within the cut-seta contains only through variables corresponding to the cut-set eleme

The set of all cut-set equations can be written in the form:

(3)

whereUT is a unit matrix of dimension and the cut-set matrix can

derived by applying row operations on the reduced incidence matrixA.

Each chord in the system graph is uniquely associated with a loop in the system. For a

loop, its orientation will be determined by the orientation of the defining chord. A n

matrix, namely the circuit matrixB that captures the connectivity relations between circu

and edges can be defined. The circuit equations associated with each circuit can be w

in the form:

(4)

a.  A cut-set is a set of edges that divide the graph into exactly two components.

p 1=( )

v 1– xT yT,( )

e v– 1+ xC yC,( )

v 1–

UT AC

yT

yC

0=

v 1–( ) UT AC

BT UC

xT

xC

0=
8
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WhereUC is a square unit matrix with dimensions equal to the number of chords in

system graph. From theprinciple of orthogonality, which states that the vector spac

spanned by the rows of the incidence matrixA and the vector space spanned by the ro

of the circuit matrixB are orthogonal complements8 (i.e., ), we

can obtain an expression forBT:

(5)

2.3 Low-power component modeling

In order to include information technology components as well as other types of low-po

devices in the system graph, it is necessary to extend the system graph representa

the inclusion of signals. Asignalrepresents the value of some system variable as a func

of time. To introduce signals in the system graph we define the concept ofvariable ele-

ments. A variable element is an element that can have one or more input signals that m

its response. The simplest variable element is the signal-controlled across or through d

In this case, either the across or through variable associated with the terminal graph w

completely defined by the signal: or wherex andy repre-

sent across and through variables, respectively. Similarly, a variable passive element

signal-controlled, but here, the input signal is modulating one of the element param

(Figure 5). Output signals are obtained from the system graph as “measuremen

system variables (Figure 6).

Figure 5.Terminal graph of variable elements.

In the context of mechatronics, it is important to have a system representation that is

ble of handling signal elements. Mechatronic systems include information techno

components for which there is no energy flow and that therefore cannot be represen

a terminal graph. As an example consider an embedded controller. The control algor

AB T 0 andBA T 0= =

BT A– C
T=

x t( ) f s t( )( )= y t( ) h s t( )( )=

a

b

x,y f(t)
9
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are provided as algorithmic components that must interact with the rest of the syste

do not generate or transfer power.

Figure 6.Reading values from a terminal graph.

To illustrate this consider a portion of a positioning system composed of an angular

tion sensor, a regulator, and a current source (Figure 7). The regulator obtains the

input from the position sensor to provide an output signal used to modulate the cu

source.

Figure 7.A positioning system The system graph shows the interaction between the signal block and
terminal graph.

3.Synthesis of the System Graph for Mechatronic
Systems

The system graph for a mechatronic system is constructed with the help of asystem editor

that is tightly integrated with a CAD system. As is shown in Figure 8, the system edit

based on the concept ofmodeling layerseach of which represents a different energy doma

of the system. The modeling layer for the mechanical energy domain is implemented

CAD system. When a component is brought into the system editor, its constituting mo

are included in their respective modeling layers. It is then the task of the user to identif

interactions between components. Interactions are classified as: 1) mechanical intera

2) terminal connections, and 3) edge associations. Mechanical interactions such a

connections, prismatic joints or revolute joints arise from the interconnection of two r

a

b

x      y

regulator
i(t)

a

b

c

d

θ t( )
10
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bodies. The method for deriving the system-graph representation of the mechanical s

is presented in Section 3.1. Terminal connections on the other hand, represent the in

tion of components within the other energy domains. A terminal connection between

terminals indicates that both terminals are mapped to a single node in the system

Edge associations arise from the energy exchange between different energy domains

occur when system variables in the terminal equations of a component are associate

other edges in the terminal graph. For example consider the terminal equation of the

trical edge of a DC motor:

(6)

Variable is a system variable that is associated with an edge (in the mechanical s

graph) that is not part of the electrical domain. These types of variables are calledexoge-

noussince they are assumed to be known within that portion of the model. The defin

of exogenous variables within a terminal equation establishes an association between

in the system graph.

Figure 8.Modeling layers of a mechatronic system.

v t( ) Kmθ̇ t( ) R L
td
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i t( )+ +=

θ̇ t( )
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3.1 Synthesis of the system graph for 3D Mechanics.

The dynamic equations of the 3D mechanics of the system are derived using a sub-m

(Dynaflex) which is specifically designed for the analysis of three dimensional constra

mechanical systems18. Dynaflex is a graph-theoretic approach in which the connectivity

the bodies in the mechanism and the forces acting on them are represented by a linea

(mechanical system graph). The difference between the system graph for non-mech

energy domains and the graph for the mechanical domain lies in the different dimens

the spaces defining the terminal variables. Variables in the mechanical domain are ele

of  whereas variables in the system graph are elements of  (i.e., scalars.)

The system graph of the mechanical system captures the topology of the mechanism

ever, to have a complete model, geometric and inertial information must be added

topology. This information is derived from the Intelligent Assembly Modeling and Sim

lation (IAMS) tool kit16. Based on the geometry of the mechanism the IAMS tool kit w

automatically determine the instantaneous kinematic relationships between compone

the mechanism. IAMS further provides information about the origin of the inertial fra

center of mass of each body, location of articulation points in each body, type of joint

points of application of internal forces.

Similar to the basic modeling elements we defined in Section 2, Dynaflex provides a s

modeling elements for mechanical systems, including18: body elements, arm element

(position vectors), motion and force drivers, spring-damper-actuator elements, and

elements.

The process for obtaining the graph representation suitable for Dynaflex consists of

steps. First anextendedsystem graph is generated. This step maps the geometry o

mechanism directly into a linear graph representing its topology. The second step iden

composite bodies consisting of rigidly connected subcomponents. In a final step, comp

bodies are replaced by single bodies reducing the system graph to a minimal graph w

same topological properties.

ℜ3 ℜ
12
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The generation of the system graph involves a direct translation of the kinematic info

tion into the linear graph representation. In general, the result of the first stage

extended system graph that includes all kinematic information including fixed joints

redundant joints. However, to avoid structural singularities and indexing problems, a

improve the efficiency of the symbolic computations in Dynaflex, we simplify this init

system graph by lumping all rigidly connected bodies into a single composite body.

Composite bodies are identified by performing a depth-first traversal on the exte

system graph. The algorithm explores all paths created by rigid connections and colle

bodies along the path into a single composite body. The algorithm can be stated as fo

Algorithm A. (Composite body identification). The algorithm takes as an input the sys-

tem graph and generates as output the set of composite bodies. The algorithm uses

lowing sets to keep track of all nodes in the graph: the set CLOSED, contains all no

already visited. The set LUMPS contains all the composite bodies in the system. OPE

a set containing all the nodes to-be-visited.  contains the bodies to be combined in

current composite, and SYSTEM is the set of CG nodes of the system graph.

A1. Set ,

A2. While  do

A3. Set , ,

A4. ,

A5. While  do

A6. ,

A7. ,

ξ

CLOSED ∅← LUMPS ∅←

SYSTEM ∅≠

cg first SYSTEM( )← ξ cg{ }←

OPEN sucessors cg( ) \ CLOSED←

SYSTEM SYSTEM\ cg{ }←

CLOSED CLOSED cg{ }∪←

OPEN ∅≠

cg first OPEN( )←

ξ ξ cg{ }∪←

OPEN OPEN\ cg{ }( ) sucessors cg( ) \ CLOSED( )∪←
13
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A8. Continue A5.

A9. Set

A10. Continue A2.

A11. The algorithm terminates. We have checked all bodies in the system and have

defined the composite bodies that must be created.

Algorithm A uses the predicatesuccessors , which given a node in the system graph,

returns the adjacent nodes if the path to the successors is through a rigid connectio

The last stage in the synthesis of the system graph is to perform the reduction proce

will combine the identified bodies into single composite bodies and remove redun

joints. Redundant joints are detected by loops where the bodies in the loop appear

than once. If two joints are found to be redundant, that can be interpreted in two ways.

the joint axes may be colinear. This would result in an overconstrained mechanism

which one of the two joints can be discarded for analysis purposes. The second inter

tion is when the joint axes are not colinear making some angle between them. This

figuration results in an overconstrained body for which we cannot discard any of the j

for analysis purposes. In this event, the algorithm reports the problem to the user s

that the system is fully constrained.

As an example of how these steps are followed consider the design of a missile s

shown in Figure 9.

SYSTEM SYSTEM\ cg{ }←

CLOSED CLOSED cg{ }∪←

LUMPS LUMPS ξ{ }∪←

α

14
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Figure 9.Missile seeker.

This design contains 9 bodies: housing, gimbal ring, camera, pitch connector (2) yaw

nector (2), shaft (2). A kinematic description of the system reveals that there are a nu

of bodies that may be combined to form composites (Table 2).

Table 2.Kinematic description for the seeker system

Type of Joint Reference body Secondary body

FIXED housing pitch connector (a)

FIXED housing pitch connector (b)

REVOLUTE* pitch connector (a) gimbal ring

REVOLUTE pitch connector (b) gimbal ring

FIXED gimbal ring yaw connector (a)

REVOLUTE* yaw connector (a) shaft (a)

FIXED gimbal ring yaw connector (b)

REVOUTE yaw connector (b) shaft (b)

FIXED shaft (a) camera

FIXED shaft (b) camera

Housing

Gimbal ring

Camera

Pitch connector (a)

Pitch connector (b)

Yaw connector (a)

Yaw connector (b)

Shaft (a)

Shaft (b)

α

β
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From the kinematic description shown in Table 2, the first stage of our derivation gene

an extended system graph shown in Figure 10. Secondly, Algorithm A identifies the c

posites listed in Table 3.

Finally, the reduction stage yields the following kinematic relations:

Figure 10.Extended system graph. Only joint and body elements are shown for clarity.

Notice that there are two revolute joints per pair of composite bodies. Kinematic ana

reveals that the rotation axes of each pair of joints coincide. For the Dynaflex analysis

of the two points is removed to avoid concluding overconstrained kinematics; only

Table 3. Composite bodies found by Algorithm A

BODY_1 shaft (b) camera shaft (a)

BODY_2 housing pitch connector (b) pitch connector (a)

BODY_3 gimbal ring yaw connector (b) yaw connector (a)

Table 4.Kinematic description for the composite bodies in the seeker

Type of Joint Reference body Secondary body

REVOLUTE BODY_2 BODY_3

REVOLUTE* BODY_2 BODY_3

REVOLUTE BODY_3 BODY_1

REVOLUTE* BODY_3 BODY_1
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W: WELD joint
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joints marked with an asterisk are considered. At the end of the reduction proces

obtain the reduced system graph shown in Figure 11.

Figure 11.Reduced system graph.

To conclude the Dynaflex description, dynamic elements are introduced consisting of

eralized forces provided by motors, external forces applied to the bodies, and forces

between two bodies. For this example, only two force elements are introduced: e9 an

which are the result of the motors built into the corresponding joints. Furthermore

introduce gravity forces acting on the bodies at their center of mass (e1, e3, e5) repres

the weight of BODY_2, BODY_3, and BODY_1, respectively.

4.Synthesis of system equations

Once a mechatronic system has been described as a system graph, the dynamic eq

can be derived from the graph without the need to consider the underlying physics in

of the energy domains. As mentioned in Section 2, the system equations can be deriv

simultaneously considering thee terminal equations and thee independent topological con-

straints (cut-set and circuit equations). The remaining questions that we will address i

section are: which topological constraints need to be considered, and which of the

system variables (across or through) should be the independent variable in each of the ter-

e1
e2 e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

n0

n1

n2

n3

n4

n5 n6

n7

e0

e14

e13
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minal equations? Both of these questions are answered in the normal tree selection

rithm presented in this section.

The terminal equations plus any independent set ofe constraint equations unambiguousl

define the dynamics of the system. However, before these equations can be nume

solved they must be expressed in state space form in which the derivatives of a statex are

expressed as explicit functions of the states and time:

(7)

Expressing the equations of the system in this form implies using the smallest pos

number of equations (equal to the order of the system) and expressing the high order

atives as a function of low order derivatives of state variables, in each equation

This can be accomplished in the following way. Let us divide the system variables into

groups: primary variables and secondary variables — one of each for every edge. As

now that in the terminal equation of an edge, the highest order derivative of the prim

variablep is expressed as a function of the secondary variable,s:

(8)

On the other hand, assume that in the constraint equations the secondary variab

expressed as a function of the primary variables:

(9)

Then, by substituting the constraint equations (9) into the terminal equations (8), we

minimal set of dynamic equations of the form:

(10)

which is exactly the desired state-space representation.

The final step in the derivation of our approach is the selection of the primary and sec

ary variables. According to equations (3) and (4) the dependent variables in the cons

equations are the through variables in the branches of the tree and the across varia

the chords of the cotree:

ẋ f x t,( )=

p
n( )

f s( )=

s g p( )=

p
n( )

f g p( )( )=
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From equations (9) and (11), we can identify primary variables with the set of ac

variables associated with the branches of a forest and the set of through var

associated with the chords of a coforest. Similarly, the dependent variables in equatio

are identified as secondary variablesof the system graph.

Based on the selection of primary and secondary variables, we can obtain dynamic

tions of the form (10) by selecting a tree on the system graph such that the following

conditions are satisfied: 1) the highest order derivatives of as many primary variabl

possible appear in the terminal equations as functions of secondary variables and low

derivatives of primary variables, and 2) the terminal equations contain as few deriva

of secondary variables as possible. The tree that satisfies these two conditions is c

normal tree of the system graph.

The normal tree of a system graphG is found by defining a real function on

the edges ofG that computes the weight of the edges as follows:

Let and represent the highest derivative order of all accumulator elements an

delay elements respectively, and be a real function defined on the edges

computes the highest derivative order of the element associated with edgee. Next, classify

the edges ofG as follows: let all across drivers and generalized across drivers belong t

class , accumulator elements to the classes

, (12)

dissipator elements to class , and delay elements to the classe

. (13)

Finally, all through drivers and generalized through drivers will belong to class . T

weight functionsw defined on the edges ofG are chosen for each class such that

(14)

yT ACyC–=

xC BTxT–=

v p–

e v– p+

w: e ℜ+→

κα κτ

O:e ℜ+→

c∆

ci
α eα O eα( ) κα i–={ }= i 0 … κα 1–, ,=

cδ eδ O eδ( ) 0={ }=

ci
τ eτ O eτ( ) κτ i–={ }= i 0 … κτ 1–, ,=

cΦ

w∆ w0
α w1

α … wκα 1–
α wδ w0

τ w1
τ… wκτ 1–

τ wΦ< < < < < < < < <
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where is the weight function associated to class , is the weight function as

ated to class , is the weight function associated to class , is the weight fun

associated with class , and  is the weight function associated to class .

In other words, the weight functionw ranks the edges ofG based on their respective classe

Any weight function that satisfies the ranking in equation (14) is admissible.

The next step in our approach is to find aminimum cost spanning treeb that minimizes the

total cost (weight) of the weights assigned to the branches of the tree. Aho et. al.1 shows

that it is always possible to find such a tree based on the following property: letV be the set

of vertices ofG andU be a proper subset ofV. If is an edge of lowest cost

such that and , then there is a minimum cost spanning tree that incl

. The proof of this property is outside the scope of this article but can be found in

et. al.1

Once a normal tree has been selected, we can writee cut-set and circuit equations, ande

terminal equations. The constraint equations together with the terminal equations con

the set of equations for the complete solution of the mechatronic system excludin

mechanical energy domain. To completely specify the mechatronic system, these equ

are combined with the dynamic equations for the 3D mechanism derived by Dynaflex.

new set of equations will be in general a set of differential algebraic equations (DAE) w

constitute the set of equations for the complete system.

We now revisit the missile seeker example introduced in the previous section. The sy

graph is generated as prescribed in Section 3 and the result is shown in Figure 12. W

now proceed to select the normal forest (which is indicated by bold lines in Figure 12)

once the forest is selected the system equations are derived. As shown in the app

there are two second order differential equations that correspond to the mechanical s

two first order differential equations corresponding to the electric domain of the motors

four algebraic equations that correspond to the coupling equations and the controller

in the design. These equations can be transformed to a set of six first order differential

b.  A spanning tree forG is a tree that connects all vertices inG.

w
∆

c
∆

wi
α

c
α

wi
δ

c
δ

wi
τ

c
τ

wi
Φ

c
Φ

emin u v,( )=

u U∈ v V U–∈

emin
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tions and the algebraic equations can be substituted in the resultant set. This equatio

then integrated over time to show the behavior of the system.

Figure 12.System graph for the missile seeker.

As an example, Figure 13 shows the angular position of the gimbal ( ) and the ca

assembly ( ) when step functions of 0.14 rad and -0.14 rad are applied to the resp

controllers.
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Figure 13.System response as a function of time.

5.Conclusions

In this paper, we have presented a framework for composable simulation in which co

nent models are automatically combined to create system-level simulation models

approach is based on linear graph theory. Component models are represented as t

graphs with the corresponding terminal equations. These subgraphs are combined

system graph which is a domain independent representation of the system dynami

derive the dynamic equations from the system graph, a minimum cost spanning tree

rithm is used, resulting ina set of equations in state-space form. We illustrated the fr

work with an example of a missile seeker.
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8.Appendix
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α t( )( )sin–
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	1. Introduction
	The work presented in this paper is part of a larger effort to develop a framework for composable...
	In this paper, we will address an issue that typically occurs in the simulation of mechatronic sy...
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	2.2 Constraint equations
	The terminal equations are insufficient to describe the mechatronic system completely. An additio...
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	2.3 Low-power component modeling
	In order to include information technology components as well as other types of low-power devices...
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	3. Synthesis of the System Graph for Mechatronic Systems
	The system graph for a mechatronic system is constructed with the help of a system editor that is...
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	Variable is a system variable that is associated with an edge (in the mechanical system graph) th...
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	4. Synthesis of system equations
	Once a mechatronic system has been described as a system graph, the dynamic equations can be deri...
	The terminal equations plus any independent set of e constraint equations unambiguously define th...
	(7)

	Expressing the equations of the system in this form implies using the smallest possible number of...
	This can be accomplished in the following way. Let us divide the system variables into two groups...
	(8)

	On the other hand, assume that in the constraint equations the secondary variables are expressed ...
	(9)

	Then, by substituting the constraint equations (9) into the terminal equations (8), we get a mini...
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	The final step in the derivation of our approach is the selection of the primary and secondary va...
	(11)

	From equations (9) and (11), we can identify primary variables with the set of across variables a...
	Based on the selection of primary and secondary variables, we can obtain dynamic equations of the...
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