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ABSTRACT
This paper presents a software architecture for composing

complete system-level simulations of mechatronic systems. The
proposed architecture will provide the designer with the infras-
tructure to rapidly create simulations of alternative designs. The
architecture promotes modularity and composability through the
use of the design entity. Moreover, the architecture supports hi-
erarchical modeling and provides the infrastructure to seamlessly
integrate mechanics models with electronics and information tech-
nology models. Finally, the architecture facilitates distributed
computing to take full advantage of the power of networked com-
puters. This paper introduces the individual concepts of our ar-
chitecture, and illustrates them in the design of a missile seeker.

INTRODUCTION

In early stages of design, modeling and simulation play
an important role in supporting the evaluation of candi-
date designs (18). During conceptual design, the designer
needs to evaluate candidate designs to find the ones that
best meet the initial requirements. To do so, the designer
typically recurs to modeling and simulation. When mod-
eling a candidate design, the designer needs to use general
behavior descriptions for all components of the design and
define the interactions between these components. The de-
signer must then decide which parts of the interaction rules
can be considered second-order effects; these effects may
initially be neglected leading to a simplified model. If the
evaluation criteria change, the model needs to be modified.

1Affiliated with The Institute for Complex Engineered Systems.
2Address all correspondence to this author.

Moreover, to make a reasonable choice of candidate designs,
the designer needs to repeat the whole process for as many
candidate designs as he/she is able to handle in a reasonable
amount of time.

The focus of this research is to develop a computational
tool for supporting the modeling process of mechatronic sys-
tems. A mechatronic system is a complex system3 which
combines electronics and information technology to form
both functional interaction and spatial integration in com-
ponents, modules, products, and systems (5). Typical ex-
amples of mechatronic systems include automatic cameras,
miniature disk drives, missile seeker heads, and consumer
products like CD players, camcorders, and VCRs.

A large amount of work has been devoted to the im-
provement of modeling and simulation environments for dy-
namic systems. Researchers have focused on improving the
modeling process such that it becomes easier for the engi-
neer to write and maintain models. Different approaches
have been proposed including the use of graph languages
(i.e., Bond Graphs), and object oriented model descrip-
tion languages. Computational tools based on bond graphs
(12) include CAMBAS (13) and the work reported in (16).
CAMBAS is an automated modeling tool that supports the
modeling task by automatically making improvements to
the model based on some input requirements. The work
reported in (16) also makes use of bond graphs to provide
a computational tool that supports evolution of models of
physical systems. In both systems, the authors provide the

3Complex systems can be characterized as highly coupled, multi-
system, multi-phenomenon entities.1 Copyright c© 1998 by ASME



means to store models in model libraries where the designer
can search for components and use them to build the model
of the physical system at hand.

Model description languages (MDL) for continu-
ous/discrete time systems have received much attention in
the last decade. These languages provide the semantic con-
structs to represent dynamic system entities in a way that
it is easy to code and maintain. Furthermore, by providing
an object oriented approach, models can be easily reused
and developed incrementally (7; 6; 3; 4).

The basic property that these different approaches
share is that they all are geared towards component-level
modeling. Using component-level MDL, one can describe
the complete system’s model in terms of component ele-
ments. The resulting model is then translated into an ex-
ecutable representation. If there are changes in the model,
a new translation is required to update the executable
representation. This modeling approach is viable when
there are only analytic representations of the processes in-
volved. However, information modules (procedural infor-
mation) also plays an important role in the behavior of a
mechatronic system. Including procedural information in
the current modeling environments is not possible: MDL
does not provide control structures and support for com-
plex data structures which are often used in information
modules. Furthermore, if the MDL indeed supports proce-
dural information (as is the case in SIDOPS+ (4)) the level
of complexity of the algorithms that can be implemented in
the MDL are often limited by the semantics of the MDL.

As an example of a system for which we need to consider
information models, consider the following design problem:

Design a tracking device to track an object over a 100m×
100m area moving at vmax = 100m/sec, amax = 7.25m/sec2.
The minimum distance to the target is 100m; the maximum
distance to the target is 500m.

We can envision a design, which will be comprised of
a mass, actuators, sensors, and control and tracking algo-
rithms that implement the tracking of the object (Fig. 1).
Most of the components can be described in any of the
modeling languages mentioned above (e.g., actuators and
the mechanical system.) However this is not true for the
algorithms that are also part of the final product (e.g., con-
trol algorithms). It is impossible to capture such procedural
information in simple MDLs.

To alleviate this problem, we propose a computational
tool that facilitates the synthesis of system-level models that
include mathematical as well as information modules. Pro-
viding an automated mechanism for model synthesis, will
improve the quality of the designed artifacts because the
designer can explore many more design alternatives than

with current manual technology. Ideally one would like to
have a CAD framework that allows the designer to build
custom simulators that include information modules as well
as mathematical models.

In order to create the proposed software framework for
the composition of simulation software, two more areas of
research must be considered. These include software archi-
tectures and software reuse. Software architectures (10; 1)
provide the tools to define an architectural plan. That plan
describes how the components of a software system are put
together. A closely related concept to a software architec-
ture is that of software reuse. Based on software synthesis,
interface adaptation, and object-oriented design, software
reuse promotes (as its name implies) the reusability of soft-
ware components. A very successful attempt at providing
reusable software is implemented in the Chimera real-time
operating system (15; 14). The basic building blocks in
Chimera are port-based objects. A port-based object com-
bines object-oriented programming with port automata. By
using port-based objects, the user is able to reconfigure real-
time software through assembly of software components.

Another example of an environment for rapid prototyp-
ing of analysis tools is the Engineering Methodology Appli-
cation Tool (EMAT) framework (17). EMAT provides a
Methodology Description Language to describe the interac-
tions between different software components, and provides
an environment for process execution and scheduling.

HIGH LEVEL ARCHITECTURE

Typically, the design of an artifact starts with an idea
of what the final product will be in terms of functional
components and the relationship among them. As the de-
sign evolves, the designer builds mathematical/information
models that are then used in the analysis of the design.
Further along in the design process, more information is in-
cluded and the components are selected based on the infor-
mation available. Similarly, a simulation model for a system
will evolve along with the design. By capturing the concept
of the design and translating it into a simulation program,
critical information can be derived even before the concept
is verified in virtual prototypes.

Component models experience a morphism which takes
a model from one level of abstraction to another. Abstrac-
tion levels can be divided in three classes: conceptual, com-
ponent, and process level (Fig. 2):

Conceptual level: The system is represented as a graph of
interconnected functional components providing a high-
level overview of the system. The graph can be hierar-
chically grouped such that each node in the graph can
in turn be a sub-graph representing a high-level descrip-
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Figure 1. CONCEPTUAL DESCRIPTION OF THE TRACKING SYSTEM.

tion of a subsystem.
Component level: This level provides an abstract represen-

tation of the behavior of the component, and describes
the interface of the component, i.e., inputs and outputs
from and to the environment.

Process level: represents the algorithmic entities needed to
provide the functionality that is publicized by the com-
ponent at the component level.

As the design evolves, the system-level simulation
model experiences a number of changes (improvements) in
its basic composition. These changes can be viewed as
movements in a two dimensional space. One dimension
of this space represents hierarchical improvements of the
model; the other dimension represents localized improve-
ments in a particular sub-model.

Hierarchical refinement provides a vertical refinement
mechanism: models can be assembled from existing
software components or they can be substituted by an
expansion of a model into a collection of sub-models.
This dimension is motivated by the fact that the design
of any product is hierarchical in nature. We start with
basic building blocks. Obeying their physical and func-
tional constraints, we arrange them into more complex

components. We proceed in this way assembling sub-
components into larger components until we achieve the
desired goal.
Consider the gimbal mechanism for a missile seeker.
We may use a model that describes the dynamic be-
havior of the mechanism when some external forces are
applied. If we also want to know the internal stresses
on the gimbal mechanism, we need to refine the model.
The new model will consist of the aggregation of two
sub-models: the dynamic model and the stress model.
This operation must take care of the interaction that
may exist between the two sub-models. Likewise, the
basic functionality of the model which is exported by
the interface has to be maintained. This ensures that
the resulting model can be used in the current context.
The process of hierarchically aggregating models into
more complex models is called hierarchical refinement.

Same-level refinement provides a horizontal refinement
mechanism: refinement is achieved by replacing mod-
els with other models that have the same functionality
but that provide more accurate results. Consider for
instance the analysis of a control system. The designer
can choose from a collection of control algorithms and
test them with the complete system until he finds one

3 Copyright c© 1998 by ASME
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Figure 2. MODEL ABSTRACTION LEVELS.

that matches the requirements. Exchanging control al-
gorithms at the process level allows the designer to re-
fine the design through same-level refinement.

The mechanism by which models are given the free-
dom to move around in the model space is composability.
Composable simulation is the ability to assemble software
modules into a structure that is semantically correct with
respect to the original design. The proposed architecture
provides the ability to combine currently available simu-
lation software modules into an executable configuration.
The configuration must resemble the physical design in the
sense that it captures all the interactions among different el-
ements. As a final product, we obtain a software simulation
tailored to the problem at hand.

To support composability, we propose a software ar-
chitecture based on the three abstraction levels described
above and shown in Fig. 2. The highest level in the archi-
tecture (conceptual level) defines the system using a con-
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Process
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Figure 3. OVERVIEW OF THE CAD FRAMEWORK ARCHITECTURE

ceptual graph. A conceptual graph is a directed graph in
which nodes represent components of the system and edges
represent their interactions. Leaving edges represent out-
put ports of the subsystem, incoming edges represent in-
put ports. At the component level, the conceptual graph
is mapped into a simulation software architecture. The re-
sulting architecture is the main representation of the seman-
tics of the system: a network of interfaces and interactions
among components. The third level in the architecture is
the process level in which the software architecture is in-
stantiated and executed. Instantiating an architecture re-
quires finding processes that match the features listed in the
interface of each component. Execution of the architecture
may require calls to external libraries such as Matlab, ACIS
or Dymola (Fig. 3.) This level of the architecture deals
with the communication and synchronization of processes
included in the architecture and ensures data consistency.

CONFIGURATIONS AND DESIGN ENTITIES

In our framework for the analysis of the design of
mechatronic systems, the primary abstraction is the design
entity. It represents a portion of a design that has well-
defined interaction points and performs a well-defined func-
tion. The structural arrangement of design entities defines
the configuration of the system. A configuration describes
how design entities are combined to form a complete de-
sign. The user interacts with the environment through a
graphical user interface (GUI) (Fig. 4); at the same time,
the configuration representing the design is constructed in
the background (Fig. 5.) A system is a network of config-
urations which in turn are composed of a network of sub-
configurations and design entities. In Fig. 5, system W hap-
pens to be a linear sequence of configurations; however, the
topology of the configuration may be any acyclic directed
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Dymola
ADAMS
MATLAB

Design
entity
library

GUI
Assembly

Toolkit

Figure 4. INTELLIGENT CAD FRAMEWORK: FRONT END.

graph and it is only restricted by the causality of the com-
ponent’s connection ports.

To achieve composability, the design entities must ex-
hibit two fundamental properties: reconfigurability and as-
semblability. Reconfigurability is the property by which a
design entity can adapt itself to changing requirements. As-
semblability is the property that allows a design entity to be
embedded in a configuration. A very elegant approach that
complies with these two properties is based on the theory
of software systems architecture (9; 10; 11; 2; 1).

In the next section, we will review some elementary
concepts in software architectures, which we will then use
to define the architecture of our simulation framework.

Software architectures

A software architecture is a specification of a class of
systems. It consists of a set of specifications called inter-
faces, a set of connection rules that define valid communi-
cation channels between the interfaces, and a set of formal
constraints that define legal or illegal patterns of commu-
nication (10). Each element in the architecture is divided
into two major parts:

Interface — a description of the component’s features in-
cluding its input/output relationship with the environ-
ment.

Implementation — a procedural description of the compo-
nent’s interface.

The implementation of a component is hidden from the
rest of the world. This separation promotes re-usability and
assemblability of architectural components. The set of con-
nection rules defines the topology of the connection graph of
the architecture. The connection graph is a graph in which
the nodes represent the interfaces to the elements in the
configuration, and the edges represent the communication
channels defined by the communication rules. The inter-
faces specify the components of the system, and the con-
nections and constraints define how the components may

Figure 5. INTELLIGENT CAD FRAMEWORK: BACKGROUND PROCESS.

interact.

Interfaces An interface defines a class of objects (10).
It defines the kind of events an implementation can observe
or generate, the information exchanged with other modules,
and constraints on its external behavior. The instances of
an interface are the implementations that match the inter-
face. An interface may declare types and actions; these
are the exported constituents of the interface. There may
be many different implementations that have the same in-
terface. For instance, different control algorithms for the
missile seeker may share the same input/output specifica-
tions.

Implementations An implementation defines the com-
putational processes that perform the actions publicized by
the interface. Implementations are algorithmic representa-
tions usually coded in some high-level programming lan-
guage.

Connectors Connectors (or connection rules) define di-
rect communications between interfaces. They specify valid
communication channels between interfaces.

5 Copyright c© 1998 by ASME
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Formal constraints Formal constraints define legal or
illegal patterns of communication between elements of two
interfaces, e.g. bounds on the values that are exchanged
through a communication channel.

We will now use the software architecture concepts de-
scribed above to define the basic object in our CAD frame-
work: the design entity.

The design entity

A design entity consists of two separate parts: an in-
terface through which it interacts with other design enti-
ties, and an implementation that either encapsulates an ex-
ecutable prototype of the design entity, or hierarchically
defines it as a configuration4 of other design entities. In-
terfaces communicate through ports (Fig. 6.) An interface
defines:

1. Input/Output ports.
2. Energy domains associated to each I/O port.
3. The events a design entity can generate or to which it

can respond.
4. The functions it provides to other design entities or re-

quires from other design entities.
5. Constraints on its external behavior.

For instance, the interface definition for a DC mo-
tor/generator design entity might look like:

Ports : J1, J2

Domain : J1(electric), J2(rotational)

Functions : J1.requires(current) -

> J2.provides(torque) ||

J2.requires(torque) -

> J1.provides(current)

Constraints : J1.max < Im, J2.max < Torquem

A design entity is the generalization of a port-based ob-
ject. A design entity’s interface may be satisfied by more
than one implementation. For example, the interface def-
inition for the mechanical system of a missile seeker may
specify as input ports the torques applied to the system,
and as output ports the angular accelerations of the system
produced by the given torques (Fig. 7.) There are two alter-
natives to choose from to select the implementation for this

4A configuration is a software architecture in which the elements of the
architecture are design entities.
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Figure 7. INVERSE DYNAMICS DESIGN ENTITY.

interface: one using the Newton-Euler iterations, the other
using the Lagrange-Euler method. Both implementations
conform with the interface but provide different mechanisms
to compute the desired results. This feature can be used to
reconfigure the simulation dynamically to test more accu-
rate models, to produce finer simulation results, or simply
to test different implementation approaches.

We are going to define a task as the thread of execution
of a design entity implementation. Tasks are periodic ele-
ments that perform the functionality described by the inter-
face. Also, we define the implementation repository, as an
object-oriented database of design entity implementations
that are available to instantiate a configuration. For exam-
ple, implementations included in the mechatronics reposi-
tory are actuators, sensors, integrators, etc. A connection
between two interfaces is established by connecting an out-
put port of one interface to a corresponding input port. A
configuration is legal only if every input port is connected
to one output port and all the constraints are satisfied. An
output port may be connected to multiple input ports, but
an input port (of an instance of a design entity) may only
be connected to a single output port. This rule is based on
the fact that connections represent the flow of information
from an output port to an input port. From an output port
information can flow to multiple input ports; however, mul-
tiple output ports feeding a single input port would cause
contentions (an adder could be added to combine multiple
outputs into a single output.)

An instance of a configuration of a system is created
when all the interfaces in the configuration are assigned
conforming implementations (10). An implementation con-
forms to an interface if it contains all features specified by
the interface and exhibits the same behavior as that pub-
licized by the interface. In (10) the authors define three
conformance criteria that we adopt to define semantically
correct systems:

Interface conformance — each implementation in the sys-
tem must conform to its interface. This means that the
implementation has to match the interface definition
semantically; otherwise, the implementation cannot be
used in the given context.

Decomposition — each particular instance of a configura-
tion is decomposed in a number of implementations;
these implementations must conform to the interfaces
of the configuration. This means that for each interface

6 Copyright c© 1998 by ASME



there must be at least one conform implementation in
the database.

Communication integrity — the system’s components in-
teract only as specified by the configuration.

A configuration is recursively defined to be composed
of sub-configurations or interfaces of design entities. This
definition supports the hierarchical nature of a mechatronic
system. As for a design entity, a configuration is also sep-
arated in two parts one being its interface, the other being
its implementation. The interface of a configuration will ex-
port only those features visible at the sub-system level. The
implementation of the configuration will be defined by the
network of sub-configurations and design entities described
in the definition of the configuration. Design entities in
the implementation of a configuration have a well defined
scope. This means that messages sent locally in a con-
figuration cannot be heard outside the boundaries of that
configuration; only those features indicated in the interface
are exported and therefore can be used by other configu-
rations. Since an interface may have more than one con-
forming implementation, it is valid to replace the complete
network attached to the implementation of a configuration
by a different network or with a single design entity. The
new implementation may be either more or less complex
than the original as long as it maintains the basic function-
ality specified by its interface.

The mappings from modeling abstractions to design entities

The model presented page 2 defines three levels of mod-
eling: conceptual, component, and process level. Each level
has a clear mapping to a component of a design entity. At
the conceptual level, design entities are structured hierar-
chically into configurations. Connections defined in the con-
figuration specify the flow of information between its mem-
bers. The data flow is used to schedule the execution order
of the implementations in the configuration.

The component level is represented by the interface of
the design entity, and the process level is represented by
the implementation that conforms with the interface of the
design entity.

In the next section, we will describe a prototype system
that illustrates the concepts developed in this section.

PROTOTYPE SYSTEM

Some of the concepts presented in this paper have been
tested in a prototype system that supports only one family
of devices: a missile seeker (Fig. 8). The current version of
the system implements the conceptual level and the process
level. The component level is being implemented as part of
the next generation of our system. A snapshot of a session

Yaw motor

Pitch motor

Sensors

Camera

Figure 8. THE MISSILE SEEKER.

is shown in Fig. 9. A general purpose graph editor (8) has
been modified to allow the user to define the conceptual
graph as a network of interfaces. The implementations for
all interfaces are manually assigned by the user after which
the configuration is automatically instantiated. This means
that all the tasks are spawned and the communication be-
tween them is established automatically. The user is free
to change the implementation associated with an interface
(same-level refinement); just re-instantiating the configura-
tion, will generate the updated simulation software.

The configuration for the missile seeker is defined by
four different interfaces: PID controller, DC motor, cou-
pling, and mechanical system. Assemblability is achieved
when the instantiation of components like the PID con-
troller is realized. The interface describing the PID con-
troller is instantiated twice. The interface specifies how the
PID controller is used in the system and what the valid
connections are. Since each instance of the interface is con-
nected through different communication channels, the im-
plementation of the PID controller, although the same in
this case, receives different input values from the neighbor-
ing components. The same is true for the DC motor and
the coupling device.

Enabling technologies like object-oriented design and
distributed object systems are providing us with the tools
to completely support the three abstraction levels.

SUMMARY

In this paper, we described the architecture of a compu-
tational tool to rapidly create simulations for mechatronic
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Figure 9. SCREEN DUMP OF THE PROTOTYPE SYSTEM.

systems. To create these simulations the designer combines
software modules into a complete system-level simulator.
The novel features include 1) the creation of simulation
software by combining software modules, 2) the inclusion
of information agents (e.g., vision and control algorithms)
in the simulation process, and 3) the ability to reconfig-
ure the simulation dynamically to achieve different levels of
granularity.

The architecture is based on a three-level abstraction:
conceptual level, component level and process level. Each
abstraction level represents a different aspect of the model,
and the three collectively support composability of software
modules. The fundamental abstraction used in the archi-
tecture is the design entity. Composability of design enti-
ties is a powerful mechanism that provides hierarchical and
same-level refinement of simulation models. Furthermore,
it allows one to build the simulation of a complex system
that integrates mechanics with electronics and information
technology modules.

Testing of the prototype system confirmed the validity
of our approach. In the future, we will develop a distributed
implementation of the simulation on a network of comput-

ers, allowing us to take advantage of the computing power
of networked computers.
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