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ABSTRACT

We present a software environment for composable simulation
of mechatronic systems. By composable simulation we mean
the ability to automatically generate simulations from individ-
ual component models through manipulation of the corre-
sponding physical components in a CAD system. This form of
virtual prototyping will reduce the design cycle significantly
by providing immediate feedback to the designer with mini-
mal intervention of simulation and modeling specialists.

INTRODUCTION

The work presented in this paper is the result of an ongoing
effort to develop a framework forcomposable simulation. By
composable simulation we mean the ability to generate sys-
tem-level simulations automatically by simply organizing the
system components in a CAD system. A system component
can be either a physical component (electrical motor, gearbox,
etc.) or an information technology component (embedded
controller or other software component). Each of these system
components has one or more simulation models associated
with it describing its dynamics in multiple energy domains,
across energy domains, and possibly at multiple levels of
accuracy (with varying computational requirements). When
these system components are combined into a complete sys-
tem, our framework will automatically combine a selection of
the associated component models into a system-level simula-
tion. The user interaction occurs thus at the level of composi-
tion of system componentsrather thansimulation components
as in most traditional simulation environments (Matlab/Sim-
ulink, Easy5, etc.). These traditional simulation environments
do not consider the mapping from system components to sim-
ulation models. This mapping is not one-to-one. The system-
level simulation model is not simply a concatenation of indi-
vidual component models, but may require combining multi-
ple system components into one simulation model (to avoid

algebraic loops or index problems) or conversely may require
multiple simulation components for a single physical compo-
nent (describing its behavior in multiple energy domains for
instance). Raising the level of user interaction to composition
of system components rather than composition of simulation
models will result in a significant reduction of effort in creat-
ing and modifying system-level simulations and will reduce
the simulation and modeling expertise required of the user.

To address the composable simulation problem outlined
above, we developed a methodology based on a system graph
representation. The system graph is a linear graph which cap-
tures the topology of the energy flow in the system. We have
extended the system graph to include signal components by
combining the linear graph with block diagrams, resulting in a
unified system graph representation. The system graph is used
to generate the set of differential-algebraic equations that
describe the system behavior including the information tech-
nology components.

RELATED WORK

The relationship between physical systems and linear graphs
was first recognized by Trent (Trent 1995) and by Brannin
(Brannin 1966). Linear graph theory has been used in different
engineering domains, including, systems theory (Roe 1966;
Koenig 1967), analysis of rigid body dynamics (McPhee et al.
1996), and on the analysis of multi-energy domain engineer-
ing systems (Muegge 1996). The system graph approach that
we are developing builds on linear graph theory.

Another graph representation is bond graphs (Karnopp et al.
1990). Bond graphs are energy-based system descriptions in
which energy elements are connected by energy conserving
junction structures. Similar to our approach, bond graphs
define a minimal set of generalized elements that can be used
to model system behavior across energy domains. Connec-
tions between elements are made through power bonds which
represent the power flow in the system. Although bond graphs
(with appropriate extensions) can be used to represent mecha-
tronic systems, we have chosen linear graphs because they can
be more easily adapted to model 3D rigid body mechanics,
and reflect the topology of the physical system directly.
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Composition of simulation models can also be accomplished
by combining fundamental building blocks described in a high
level object-oriented modeling language (Cellier 1993; Elm-
qvist and Bruck 1995). The object-oriented approach facili-
tates model reuse and simplifies maintenance. Using these
modeling languages, software executables can be generated
automatically from individual sub-models and the interactions
between them.

A different approach to composability of simulation models is
presented in (Diaz-Calderon et al. 1998). In this work a soft-
ware architecture that supports the integration of simulation
modules is defined: composition is achieved by connecting
software components through a well defined interface. The
arrangement of components defines the system to be executed
by the simulation engine.

To compose simulation models directly from 3D mechanical
systems, in (Diaz-Calderon et al. 1999a) we present a method-
ology that derives the system graph of a 3D mechanical sys-
tem directly from the geometry. This system graph is then
used to derive the dynamic equations for the 3D mechanism
(Diaz-Calderon et al. 1999b).

MODELING OF MECHATRONIC SYSTEMS

Linear graph theory is a branch of mathematics that studies
the algebraic and topological properties of topological struc-
tures known as graphs. In this context, a physical system can
be regarded as a collection of components and terminal points
(Trent 1955). Between any two terminals, a pair of oriented
measurements can be taken, namelyacrossandthroughmea-
surements, as shown in Figure 1. The variables associated
with this pair of measurements are calledterminal variables.
The mathematical relations between the terminal variables
define the component’s physical characteristics and are called
terminal equations.

The graph representation of the component is a directed edge
that joins two the terminal points. This graph representation is
calledterminal graphof the component, and thesystem graph
is the collection of terminal graphs connected at the appropri-
ate nodes. In a mechatronic system, the system graph may be
non-connected, due to the presence of processes in different
energy domains.

Based on the type of relationship between the terminal vari-
ables, one can distinguish three classes of elements: passive
elements (that can be further divided into dissipative and non-
dissipative elements), generators, and transducers. A dissipa-
tive element is one which cannot supply energy to the system
while a non-dissipative element, does not dissipate energy but
can store it for later recovery. These elements can be divided
in two categories:delay elements which store energy by
means of their through variables, andaccumulatorelements
which store energy by means of their across variables. The
second class of components contains the generators or drivers.
A driver forces an across or through quantity to follow a pre-
scribed function of time. The third class of elements, the trans-
ducers (also referred to as couplers), transmits energy from
one part of the system to another. An ideal transducer is a
transducer that can neither store nor dissipate energy, i.e.,
there is no energy loss in the component.

Interactions between different energy domains, cannot be
described with a two-terminal element. It is necessary to intro-
duce elements that have more than two terminals —n-termi-
nal elements. Within this category we find the transducer
elements defined previously. The system graph associated
with an n-terminal element will be derived from measure-
ments taken between pairs of terminals. However as is shown
by (Roe 1966), we only need across measurements to
completely determine the across variables between any pair of
terminals. This number corresponds to the number of
branches in a tree selected in the graph: the terminal graph of
ann-terminal element is the treeT of edges connecting
the n vertices corresponding to then terminals of the system
component. To illustrate this case consider the electric trans-
former (a 3-terminal system component) shown in Figure 2.
Two across measurements will completely determine the
device giving a terminal graph with two edges.

In summary, there exists an isomorphism between a linear
graph and a physical system provided that one can define pairs
of across and through variables. For a system composed ofm
subsystems, thesystem graphis the union of all terminal
graphs for all the components of the system.

Table 1 shows the terminal variables associated with different
energy domains. The derivatives of across or through variables
are across or through variables as well. For example, velocity
and acceleration are across variables while the derivatives of
force and torque are also through variables.

Two-terminal
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+
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y
+
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Figure 1: Through and across measurements on a general
two-terminal element and its terminal graph.
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Figure 2: n-terminal component.
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The algebraic properties of a linear graph determine two sets
of constraint equations: the fundamental circuit
equations and the cut-set equations of a system graphG
with e edges,v vertices andp connected components (1),
whereA andB are the incidence and circuit matrices respec-
tively.

(1)

Together these equations form a system ofe linearly indepen-
dent equations in unknowns. To find a unique solution to
this system, we add thee independent equations that are
derived from the relationships between the across and through
variables for the components in the system graph. In general,
for an n-terminal component, there will ben terminal equa-
tions.

Components in a mechatronic system are represented by one
or more edges in the system graph connecting well defined
interface points. The subset of edges of the system graph that
represent a system component is calledterminal graph.The
model of a system component includes both the terminal
equations and the associated terminal graph. The terminal
graph provides the topological structure of the system compo-
nent while the terminal equations provide the mathematical
model of the basic operation of the system component.

In order to include software components as well as other types
of low-power devices in the system graph modeling approach,
it is necessary to extend our view of the modeling elements
presented so far to include the use of signals. Asignal repre-
sents the flow of some system variable value at a very low
power level. In (Diaz-Calderon et al. 1999c), we present an
extension to the linear graph representation to accept the mod-
eling of low power components.

FRAMEWORK FOR COMPOSABLE SIMU-
LATION

The framework for composable simulation is based on the sys-
tem graph representation of mechatronic systems. The system
graph for a mechatronic system is constructed with the help of
a system editorthat is tightly integrated with a CAD system.
The approach to building a system in the system editor is

based onschematic-diagrams.In this approach, the modeling
is performed at the component level and the interaction
between components is defined by connections betweenter-
minals. The system editor is based on the concept ofmodeling
layerseach of which represents a different energy domain of
the system. The modeling layer for the mechanical energy
domain is implemented in a CAD system. When a component
is brought into the system editor, its constituting models are
included in their respective modeling layers. It is then the task
of the user to identify the interactions between components.
Interactions are classified as: 1) terminal connections, 2) edge
associations, and 3) mechanical interactions. Terminal con-
nections and edge associations arise from the interconnection
of elements in non-mechanical modeling layers. On the other
hand, mechanical interactions such as rigid connections, pris-
matic joints or revolute joints arise from the interconnection of
two rigid bodies.

Terminal connections represent the interaction between com-
ponents within the non-mechanical energy domains. Interac-
tions are non-causal which means that the terminals involved
in the connection do not have predefined direction. A terminal
connection between two terminals indicates that both termi-
nals are mapped to a single node in the system graph.

The process of generating the system graph, is a two step pro-
cess. First, the terminal graphs of the individual components
are instantiated to create a disconnected graph withnc compo-
nents, wherenc is the number of terminal graphs in the sys-
tem. Second, the information provided by the terminal
connections is used to reduce the graph to a nonconnected
graph with components, wherenE is the number of
energy domains involved in the design (Diaz-Calderon et al.
1999b).

Edge associations arise from the energy exchange between
different energy domains. They occur when system variables
in the terminal equations of a component are associated with
other edges in the terminal graph.

Mechanical interactions are handled differently due to the dif-
ference in dimensionality of the terminal variables involved.
The generation of the system graph involves a direct transla-
tion of the kinematic information into the linear graph repre-
sentation (Diaz-Calderon et al. 1999a). In general, the result
of the first stage is an extended system graph that includes all
kinematic information including fixed joints and redundant
joints. However, to avoid structural singularities and indexing
problems, we simplify this initial system graph by lumping all
rigidly connected bodies into a single composite body. Com-
posite bodies are identified by performing a depth-first tra-
versal on the extended system graph. The algorithm explores
all paths created by rigid connections and collects all bodies
along the path into a single composite body (Diaz-Calderon et
al. 1999b).

Table 1: Through and across variables for various energy
domains

Type of
system

Through Variable Across variable
Name Symbol Name Symbol

General

Electrical Current Voltage

Hydraulic Fluid flow Pressure

Mechanical
Force,
Torque

, Displace-
ment

,

x t( ) y t( )
i t( ) v t( )
g t( ) p t( )

f t( )
τ t( )

r t( )

θ t( )

e v– p+
v p–

xC t( ) BTx
T

t( ) and yT t( ) ACyC t( )–=–=

2e

nE nc<
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The terminal equations plus any independent set ofe con-
straint equations unambiguously define the dynamics of the
system. However, before these equations can be numerically
solved they must be expressed in state space form in which the
derivatives of a statex are expressed as explicit functions of
the states and time:

(2)

Expressing the equations of the system in this form implies
using the smallest possible number of equations (equal to the
order of the system) and expressing the high order derivatives
as a function of low order derivatives of state variables, in
each equation.

This can be accomplished in the following way. Let us divide
the system variables into two groups: primary variables and
secondary variables—one of each for every edge. Assume
now that in the terminal equation of an edge, the highest order
derivative of the primary variablep is expressed as a function
of the secondary variable,s:

(3)

On the other hand, assume that in the constraint equations the
secondary variables are expressed as a function of the primary
variables:

(4)

Then, by substituting the constraint equations (4) into the ter-
minal equations (3), we get a minimal set of dynamic equa-
tions of the form:

(5)

which is exactly the desired state-space representation.

The final step in the derivation of our approach is the selection
of the primary and secondary variables. According to equation
(1) the dependent variables in the constraint equations are the
through variables in the branches of the tree and the across
variables in the chords of the cotree:

(6)

From equations (4) and (6), we can identify primary variables
with the set of across variables associated with the
branches of a forest and the set of through vari-
ables associated with the chords of a coforest. Similarly, the
dependent variables in equation (6) are identified as secondary
variablesof the system graph.

Based on the selection of primary and secondary variables, we
can obtain dynamic equations of the form (5) by selecting a
tree on the system graph such that the following two condi-
tions are satisfied: 1) the highest order derivatives of as many
primary variables as possible appear in the terminal equations
as functions of secondary variables and low order derivatives
of primary variables, and 2) the terminal equations contain as
few derivatives of secondary variables as possible. The tree
that satisfies these two conditions is called anormal treeof the
system graph. An algorithm to automatically derive the nor-
mal tree of a system graph is presented in (Diaz-Calderon et
al. 1999b).

Once the state space form of the dynamic equations is found,
the system of equations is augmented with the equations
derived from the signal domain which may include references
to software components. This new system of equations com-
pletely describes the mechatronic system. The equations are
then sorted into Block Triangular Form (BLT) to obtain a
computational order of evaluation of the equations and soft-
ware components (Diaz-Calderon et al. 1999c).

EXAMPLE

To illustrate the concepts presented in this paper we have
selected the design of a missile seeker shown in Figure 3.

The topological information of this design is specified in the
System Editoras shown in Figure 4 where nodes represent
components and edges between components represent physi-
cal connections established between components. The compo-
nents in the system are port-based objects (Diaz-Calderon et
al. 1998) that have a well defined interface that prescribes
their interaction with the environment. In addition to the inter-
face, each component includes its mathematical model from
which the terminal graphs are instantiated.

ẋ f x t,( )=

p
n( )

f s( )=

s g p( )=

p
n( )

f g p( )( )=

yT ACyC–=

xC BTxT–=

v p–
e v– p+
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β
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Figure 3: Missile seeker
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Synthesis of the System Graph.

Terminal connections derived from the system description are
used to reduce the electrical system graph to a connected
graph with .

The generation of the mechanical system graph involves a
direct translation of the kinematic information into the linear
graph representation. The result of this stage is a mechanical
system graph that includes all kinematic information includ-
ing fixed joints and redundant joints. However, to avoid struc-
tural singularities and indexing problems, we simplify this
initial mechanical system graph by lumping all rigidly con-
nected bodies into a single composite body.

Composite bodies are identified by performing a depth-first
traversal on the extended system graph starting from the node
representing the center of mass of a body (Diaz-Calderon et
al. 1999b). Once composite bodies have been identified, the
mechanical system graph is topologically modified such that
composite bodies are combined into single bodies and redun-
dant joints are removed. In this context, redundant joints are
joints that duplicate already existing kinematic constraints; for
instance, co-linear revolute joints.

Redundant joints need to be removed from the representation
to prevent us from interpreting the result as an overconstrained
system. Possibly overconstrained systems can be recognized
in the system graph as kinematic loops. Our work on geomet-
ric and kinematic analysis (Sinha et al. 1998) allows us to
determine whether a kinematic loop contains a redundant joint
or whether it results in an overconstrained system.

Combining bodies joined by fixed joints requires the system to
extract and combine inertial parameters. This step involves

access to the CAD models to automatically derive these prop-
erties. This implies that changes in the geometry will be auto-
matically propagated to changes in the simulation model.

Geometric analysis on the seeker shows it contains 9 bodies
(not counting the screws for the sake of clarity): housing, gim-
bal ring, camera, pitch connector (2) yaw connector (2), shaft
(2). The kinematic analysis of the system reveals the kine-
matic constraints among the bodies (Table 2). Based on these
constraints, the bodies that can be combined to form compos-
ites are identified.

The application of the process outlined above yields a
mechanical system graph with only three bodies.

Finally, collecting the system graphs for the electrical and
mechanical subsystems into a single graph yields a non-con-
nected system graph (Figure 5).

Figure 4: System editor: missile seeker input graph

nE nc< 1=

Table 2: Kinematic description for the seeker system

Type of joint Reference body Secondary body
FIXED housing pitch connector (a)
FIXED housing pitch connector (b)

REVOLUTE* pitch connector (a) gimbal ring
REVOLUTE pitch connector (b) gimbal ring

FIXED gimbal ring yaw connector (a)
REVOLUTE* yaw connector (a) shaft (a)

FIXED gimbal ring yaw connector (b)
REVOUTE yaw connector (b) shaft (b)

FIXED shaft (a) camera
FIXED shaft (b) camera
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Synthesis of Dynamic Equations.

The next step in our derivation is to write the system of equa-
tions from the system graph. To write a system of differential
equations in state space form, we proceed to find the normal
forest (i.e., a normal tree in each connected component of the
system graph). This is accomplished by assigning penalty
weights to the edges of the system graph and then computing
the minimum cost spanning tree (Aho et al. 1987) on each
connected component (Diaz-Calderon et al. 1999b). For the
electrical system graph the weights are assigned based on the
form of the terminal equation associated with the edges which
are shown in Table 3.

The form of the equation associated with an edge specifies its
class which can be delay, accumulator, driver or transducer.

Once the normal forest is found (shown by bold lines in Fig-
ure 5), we proceed with the derivation of the dynamic equa-
tions. We use Dynaflex (Shi 1998) to derive the equations of
motion of the mechanism while our system takes care of the
non-mechanical energy domain. In this process, the equations

are first written in causal form derived from the normal forest
as indicated in Equation (7). The last equation in (7) repre-
sents the equations of motion generated by Dynaflex whereM
is the inertia matrix of the system,V is the vector of centrifu-
gal and coriolis terms,G is the vector of gravity terms, andF
is the vector of external forces such as friction forces or other
non-rigid body effects.

(7)

The dynamic equations are augmented using the coupling
equations defined by the associations indicated in the system
editor to complete the definition of the system of ODEs. This
system is then transformed into six first order differential
equations to which the equations derived from the signal
domain are appended. This last step yields the dynamic equa-
tions that describe the behavior of the seeker including the
controllers from the signal domain.

The system of ODEs is then sorted into BLT form and inte-
grated in time to obtain the response of the system. In
Figure 5, the input reference signal to the system is repre-
sented byu(t) while the sensor is represented by the edge
labeled . The mechanical system receives input torques
that are generated by the transducer represented byTm(t).

SUMMARY

The composable simulation approach to modeling and simula-
tion of mechatronic systems such as the one presented in this
paper offer new and promising possibilities in the design
arena. Despite the advances in modeling and simulation
included in many simulation environments, the task of creat-
ing a simulation model for a mechatronic system still requires
significant expertise. As a solution to this problem, we have
presented a framework for composable simulation in which
CAD component models are automatically combined to create
system-level simulation models and in which the inertial and
kinematic properties of the design are automatically derived
from the CAD model.
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Table 3: Terminal equations for the electrical components in the
seeker

Component Edge Terminal equation

Pitch motor 18

Yaw motor 15

Controlled
voltage driver

17

Controlled
voltage driver

16

e1 e2 e3
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Tm (t)β

u (t)β
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u (t)α

Tm (t)α

Figure 5: System graph of the seeker design
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