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Abstract

A Composable Simulation Environment to Support the Design of Mechatronic Systems
by
Antonio Diaz-Calderon
Doctor of Philosophy in Electrica and Computer Engineering
Carnegie Méellon University

Professor Pradeep K. Khoda, Chair

Multi-disciplinary simulation is an important tool in the design of mechatronic systems.
The demand for less expensive products that can be introduced quickly to respond to mar-
ket demands requires that these products be designed with minimal prototyping, relying
on simulation instead to verify design requirements.

The use of physical prototypes for design verification isavery costly and time-consuming
process. As aresult, thereis an important trend towards design verification and analysisin
virtual, simulated environments. However, creating simulations for complex mechatronic
systems can be quite a challenging task itself. Thisissue becomes more complicated when
the design process is considered. In this case, smulation models must allow the designer
to work with high-level concepts that can be specialized at later stages in the design pro-
cess. To be able to support a simulation-based design paradigm, new simulation tools are
required. Such simulation tools should alow designers and analysts to combine models
from different disciplines into integrated system-level models, allow models of sub-sys-
tems to evolve throughout the design process (from conceptual design to detailed design),
and allow designers and analysts with expertise in different disciplines to collaborate in an
open design environment.

Multi-disciplinary and evolutionary simulation models are based on our port-based mod-
eling paradigm. In our modeling paradigm, systems are described from a systems engi-
neering point of view where subsystems interact with their environment through energy
exchange. We describe systems as self-contained entities, whose interactions with the
environment are independent of the internal behavior of the system. The port-based mod-
eling paradigm is based on two concepts: ports and connections. Ports represent localized
points on the boundary of the system where energy exchange between the system and the
environment takes place. A connection between two ports represents the energy exchange
between two subsystems.



Based on our port-based modeling paradigm, we build system simulations through com-
position of individual modeling entities; we call this approach composable simulation. In
composable simulation, CAD models of system components are augmented with simula-
tion model s describing the component's dynamic behavior in different energy domains. By
composable simulation we mean the ability to generate system-level simulations automat-
ically by smply organizing the system components in a CAD system. A system compo-
nent can be either aphysical component (electrical motor, gearbox, etc.) or an information
technology component (embedded controller or other software component). Each of these
system components has one or more simulation models associated with it describing its
dynamics in multiple energy domains, across energy domains, and possibly at multiple
levels of accuracy (with varying computational requirements). When these system compo-
nents are combined into a complete system, our framework automatically combines a
selection of the associated component models into a system-level smulation.

To support the evolutionary aspect of the design process, we introduce a new modeling
paradigm called reconfigurable models. Reconfigurable models are an extension to our
port-based models. In a reconfigurable model, the interface of the model and the imple-
mentation of its behavior are considered to be two separate, but dependent concepts. By
considering these two concepts independently, it is possible to associate different imple-
mentations to a single interface, achieving structural modification of modelsin addition to
the traditional changes in parameter values.

A reconfigurable model is based on two principles. composition and instantiation. The
composition principle denotes the mechanism by which the formal behavior of the compo-
nent is described in terms of interfaces of subcomponents and their interactions. The sec-
ond principle—the principle of instantiation—describes the mechanism by which the
interface of a model is bound to its implementation

A reconfigurable model represents the modeling space of a system component. Elements
of this space are models that vary from abstract (conceptual) to concrete (fully deter-
mined), thereby supporting the evolutionary nature of the design process. They alow the
designer to work with high-level concepts that can be specialized at later stages in the
design process.
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chapter 1 INtroduction

1.1 Motivation

Due to the fierce competition in the current global economy, it is critical for successful
companies to react quickly to changing trends in the marketplace: new technologies,
changesin customer demands, fluctuationsin the cost of basic materials and commodities,
etc. Because design is such an important component in the development of new products

[151], reduced design cycle time will provide a distinct competitive advantage.

Until recently, design verification required building aphysical prototype of the design arti-
fact—a costly and time-consuming process even when rapid prototyping equipment is
used. With the advent of inexpensive high-speed computing, it has become feasible to
verify adesign in avirtual environment, based on functional simulations of the design arti-
fact. Such virtual prototyping has the potential to provide significant reductions in the
design cycle time, under the assumption, of course, that it is less expensive and time-con-

suming to create a simulation model than a physical mock-up. However, creating high
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fidelity simulationsfor complex mechatronic systems can be quite a challenging task itself.
To maximize the benefits of virtual prototyping, it isimportant that simulations can be cre-
ated effortlessly and at any stage of the design cycle. This thesis proposes a smulation
framework based on the concepts of port-based objects and composition that simplifiesthe

creation of virtual prototypes.

The research described here focuses on mechatronic systems. Mechatronics can be defined
as “a technology which combines mechanics, electronics and information technology to
form both functional interaction and spatial integration in components, modules, products
and systems’ [19]. Examples of mechatronic systems are anti-lock braking systems, auto-

matic guided vehicles, and consumer products like CD-players.

The design approach for today's complex multi-disciplinary systems has changed dramati-
cally. Traditionally, multi-disciplinary system design has employed asequential design-by-
discipline approach [123]. For example, the design of an electromechanical system isoften
accomplished in three steps beginning with the mechanical design, followed by the power
and microelectronics, and finally the design and implementation of the control algorithm.
The main drawback of the design-by-discipline approach isthat fixing the design at various
points in the sequence imposes artificial constraints that needlesdy restrict the design
space: inter-domain coupling is neglected. A mechatronic approach (one where the inter-
domain coupling isconsiderably large), on the other hand, isbased on a concurrent, instead
of sequential, approach to discipline design, resulting in products with more synergy
between sub-systems. The mechatronic design approach results in a tight integration of
subsystems with significant functional interaction aswell as spatial integration between the

different disciplines.

Typical benefits from the mechatronic design approach appear when the domain bound-
ariesin adesign are not fixed. By exploiting inter-domain coupling and considering trade-
offs between solutions in different domains it may be possible to achieve a performance-

to-cost ratio that cannot be obtained using classical approaches(i.e., design-by-discipline).

Since the mechatronic design approach is multidisciplinary, we need a multidisciplinary

simulation paradigm to support virtual prototyping. To approach this need, in this thes's,
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we propose a modeling paradigm based on port-based objects. Simulation tools based on
this modeling paradigm should combine port-based models from different disciplinesinto
integrated system-level models.

To provide simulation support throughout the design process, modelsin this modeling par-
adigm should be evolvable and shareable. An evolvable port-based model is one that cap-
tures the behavior of a physical component at different levels of detail, and provides
mechanisms for its reconfiguration. As a result, the designer can create simulations of the
design at different stages in the design process, while changing the behavior of the models
as the design process evolves. Port-based models need to be shareable to support the mul-
tidisciplinary aspects of the design process. A shared port-based model is reused in differ-
ent contexts by different design teams. In this way, designers can collaborate in a design

environment by working in different subsystems and sharing their designs.

We believe that the framework developed in this thesis for composable simulation
addresses these requirements by integrating simulation tightly with the design environment
(i.e. CAD software) and allowing the designer to create the simulations directly with min-

imal intervention of simulation experts.

1.2 Objectives and Approach
The goals of thisthesis are the following:

1. Develop asimulation framework in which system-level ssimulation models can be com-

posed from sub-system models in different disciplines.

2. Formalize a multi-domain modeling paradigm for mechatronic systems: a representa-
tion of the models that allows the system model to evolve with the design process,

increasing in detail as the design process progresses.

3. Develop the infrastructure to integrate simulation models with the design environment
so that consistency between the artifacts and their corresponding models is automati-

cally maintained at all times.



4. Evaluate these technological concepts by developing a prototype computer aided engi-

neering design environment.

In this thesis we approach the design of mechatronic systems as follows:

* Weregard artifacts from a systems point of view, i.e., as a structure of interrelated ele-

ments that are embedded in an environment.

* We concentrate on aspects that relate to the energetic behavior of the systems. It is

through energy exchange that functional interactions between subsystems take place.

* We study systemsthat realize their functionality using mainly electronic and mechani-
cal parts, and information technology components (such as controllers). However, the
methodology presented in this thesisis by no means limited to these three energy

domains.

To attain our goals we have developed a multi-domain modeling paradigm based on the
composition of port-based objects. These objects represent system models that have well-
defined interaction points (i.e., ports). Ports represent points on the system where energy
flow is present. Consequently, a port-based object that has ports in different energy

domains models multi-domain systems.

Defining interactions between port-based objects creates system-level representations.
These interactions are defined by connecting ports of different objects having the same
energy domain. Once a complete system-level representation is given, it is trandated into
alow-level system representation based on alinear graph [143], from which aset of differ-
ential algebraic equationsis derived.

In addition to amodeling paradigm, other issues need to be addressed to compl ete the goals
of thisthesis, including:

Composability of port-based smulation models. We regard artifacts from a systems
point of view. This means that in our framework for composable simulation, system com-
ponents (including information technology components) have well-defined interaction

points (i.e., ports) and well-defined behavior (i.e., differential equations). When these com-



ponents are combined into acomplete system, their behaviors should also be combined into
a system-level behavior that includes the behavior derived from the interaction between
system components. This approach is different from the approach taken in traditional sim-
ulation environments such as SimuLink (Matlab) in that we support composition of system-
level components as opposed to composition of simulation models. Composition of system
components does not map directly into composition of the simulation models; the system-
level simulation model is not smply a concatenation of individual component models.
Sometimes, additional simulation components need to be introduced in order to describe
the interacti ons between components (e.g. friction between gears). These additional models
vary with the physical layout of the components and the type of interactions between them.

Other times, multiple physical models are combined into one simulation component.

The port-based modeling paradigm captures the multi-domain characteristics of mecha-
tronic systems. That is, it captures their functional interactions and spatial integration into

acomplete system-level simulation model.

M odel reconfiguration. Reconfigurability of simulation models providesthe flexibility to
allow different representations for the same modeling concept. That is, amodeling concept
can be represented in the form of an analytical expression relating inputs and outputs, a
software method, or as a structural arrangement of submodels (Figure 1-1). We extended

the port-based modeling paradigm to support reconfigurable models.

L ow-level system representation. The underlying mechanism to represent mathematical
models of port-based objectsis based on linear graphs [143]. We call these graphs system
graphs. A system graph isalinear graph that representsthe energy flow through the system.
It is based on two types of measurements. across and through measurements. The across
and through variables for each energy domain are chosen such that the power of the corre-
sponding component is equal to their product. The mathematical relations between these
variables are called terminal equations; they define the component's physical characteris-

tics.



Reconfiguration Hierarchical Refinement

Figure 1-1. Hierarchical encapsulation and reconfigurability of models.

Model refinement. Ideally, at any time during the design cycle, a simulation would be
available that requires minimal computational resources, but till is sufficiently rich to
verify whether certain design criteria are met. This requires that ssimulation models be
refined as one progresses through the design task. At the conceptual design stage, high-
level functional models can be used to evaluate some initial design trade-offs. As physical
components are selected to implement the required function, the high-level smulation
model can berefined by replacing functional models with component models. At the same
time, model refinement is achieved by increasing the level of detail of individual compo-
nent models and their interactions (Figure 1-1). For example, one could start with asimple
kinematic simulation of a mechanism, then add dynamics, and include control algorithms.
One can refine the model further by considering interactions in different energy domains,
such as electromagnetic and thermal domains. Finally, amodel can berefined by increasing
the number of degrees of freedom; this can be accomplished by modeling mechanical com-
ponents as flexible rather than rigid, or including parasitic capacitance in an electrica
model. Each level of refinement requires significant changes to the overall ssmulation

model. Particularly cumbersome are the refinements that result in a modified simulation

topology.



We approach the problem of model refinement through reconfigurable models. Reconfig-
urable models provide the mechanismsto perform parameter configuration aswell as struc-
tural configuration of models. The structural configuration mechanism is useful when the

refinement involves changes in the basic topology of the system model.

Model description. The concept of composable simulation becomes even more useful as
component models become more readily available (e.g., manufacturers may one day
include simulation models with the components they sell), and when they can be reused,
shared, and exchanged between users. To facilitate such exchange, we capture the complete
component model in XML (extensible markup language), a web-compatible, computer-

interpretable format.

1.3 Related research

In this section, we will consider the most relevant branches of research that have contrib-
uted to the work presented in this thesis. These include software architectures, software
engineering, port-based objects, and mathematical modeling. Additional referenceswill be

given in subsequent chapters.

1.3.1 Software architectures and object-oriented design

Software architecture is a specification of aclass of systems. It consists of a set of specifi-
cations called interfaces[6, 74], aset of connection rules|[7, 8] that define valid communi-
cation channels between the interfaces, and a set of formal constraints that define legal or
illegal patterns of communication. Each element in the architecture is divided into two

major parts:

I nterface: a description of the component’ sfeatures including itsinput/output relationship

with the environment.
Implementation: aprocedural description of the component’sinterface.
This separation promotes re-usability and assemblability of architectural components. The

set of connection rules definesthe topol ogy of the connection graph of the architecture. The

connection graph is a graph in which the nodes represent the interfaces to the elements in



the configuration, and the edges represent the communication channel s defined by the com-
munication rules. Theinterfaces specify the components of the system, and the connections

and constraints define how the components may interact.

A significant amount of work aimed at formalizing the properties and interactions between
elementsin the architecture has been performed inthisarea[2, 6, 7, 8, 72, 73, 74, 75, 122].
In our context, the concepts defined in this area of research are relevant to the definition of
our modeling paradigm: the power of reconfigurable models is achieved through the

expression of the model by itsinterface and related implementations.

A technique to encapsulate the interface and implementation of a software architecture is
object-oriented design. The use of objectsis a popular method for designing reusabl e soft-

ware. An object is defined as a software entity which encapsulates data and behavior.

Object-oriented design defines the interrel ation and interaction between objects. The inter-
relation of objects is defined (through inheritance) using the concepts of class, superclass
and subclass [1, 115]. A classisintended to describe the structure of al the objects gener-
ated from the class. Like any class, a subclass describes the structure of a set of objects.
However, it does so incrementally by describing extensions and changesto its direct super-
class. Data from a superclass is implicitly replicated in a subclass, and new data may be
added. Methods from a superclass may be either replicated in a subclass, by default, or
explicitly overridden by similarly named and typed methods.

Inheritanceisthe sharing of dataand methods between a class and its subclasses. However,
itisnot alwaysthe case that inheritance equates to subclassing [1]. This observation isused
in our work of reconfigurable models and forms the basis for the organization of compo-

nents presented in Chapter 6.

1.3.2 Port-based objects

A port-based object is a modeling abstraction that combines the object-based design with
port-automaton design [ 132, 133, 134]. Stewart [ 133] defines obj ect-based design asatech-
nology that only definesthe encapsulation of data and accessto that data. A port-automaton



[133] is a concurrent process where an output response is computed as a function of an

input response.

A port-based object is defined as an object that includes ports for communication with its
environment [133]. As with any standard object, a port-based object has a state and the
object is characterized by its own behavior. The internal details of the object are hidden
from other objects in the environment; only the ports of the object are visible to other
objects. Inthis model, each port-based object has zero or moreinput portsand zero or more
output ports. Input and output ports are used for communication between objects in the
environment. Communication between objects is established by connecting an output port

of an object to an input port of another object.

The port-based modeling paradigm captures signal flow in the system. However, mecha-
tronic systemsinclude, in addition to signal flow, energy flow; i.e., energy-based systems.
Therefore we extended the port-based modeling paradigm to model the energy flow of the
system.

1.3.3 Mathematical modeling

1.3.3.1 Qualitative and quantitative modeling

In the mathematical modeling of physical systems, two different approaches exist: qualita-
tive modeling and quantitative modeling [21]. Qualitative modeling [14, 48, 54, 55, 56, 65,
66, 102, 137, 152] isan artificial intelligence-based approach in which domain knowledge
provides the necessary information for generative or selective modeling. In contrast, quan-
titative modeling is based on differential algebraic equations that must be analytically or

numerically solved to determine the behavior of the system.

Qualitative simulation and quantitative simulation are both abstractions of actual behavior
(Figure 1-2). In quantitative ssimulation, differential equations describe a physical system
in terms of a set of state variables and constraints on those state variables. The solution to
the equations may be a function representing the behavior of the system over time. Quali-
tative simulation describes a physical system in terms of qualitative constraints between

qualitative states. Kuipers [65] defines the qualitative state of a function f at t as a pair
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system behavior
Differential numerical or analytic solution .
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Figure 1-2. Abstractions of actual behavior [65].

(qval, qdir) where gval is either a point Ij , which is called landmark value, if f(t) = Ij;
or aninterva (Ij, Ij L) 1Ff) O (Ij, Ij + 1), and qdir isalabel that indicates the direction of
the derivative of f at t. The qualitative behavior of the function f in the closed interval [a,b]
is the sequence of qualitative states of f.

Qualitative simulation has been applied to the problem of automatic model synthesis[3, 4,
15, 49, 50, 58, 77, 88, 89]. In this context, simulations are composed based on the knowl-
edge of the state of the system which is maintained on Truth Maintenance Systems|[28, 29,
30]. These systems maintain a knowledge-base of the current state of the world. Their goa

iSto maintain a consistent set of assumptions and facts that are relevant to the problem.

1.3.3.2 Graph-based and equation-based modeling

Within quantitative modeling, we can identify two broad modeling paradigms, namely,
graph-based and equation-based. Equation-based approaches are generally based in amod-
eling language that describes the structure of the system. Based on the type of equations
that describe the system, we can classify the systems being modeled as discrete or contin-
uous. Modeling languages that provide constructs to describe both types of systems are
called hybrid modeling languages [13, 21].

Within the graph-based approach there are two ways to specify a continuous time system,

the conservative law model and the signal-flow model. The conservative law model defines

10



asystem by specifying relations between two complementary variables, and by specifying
algebraic constraints between them, which correspond to the Kirchhoffian network laws. In
contrast, the signal-flow model (or non-conservative) signals represent system variables
that flow aong lines connecting elements. Elements represent mappings (linear or non-lin-
ear) between a specified set of input signals and a specified set of output signals. Thistype
of modeling is aso called block diagram modeling.

There are two main approaches to describe a conservative law model, linear graphs and
bond graphs. The relationship between physical systems and linear graphs was first recog-
nized by Trent [143] and by Brannin [17]. Roe [109], Koenig [63] and Seshu [121] apply
the theory of linear graphs to the systems theory and provide important results that can be
directly related to the two basic lawsin circuit theory: Kirchhoff’ svoltage and current laws.
Linear graph theory has been used in the analysis of rigid body dynamics [10, 69, 80, 81,
82, 83, 94,106, 107, 108, 124] and in the analysis of other engineering systems that include

interaction between different energy domains [40, 86].

Besides linear graphs, bond graphs [16, 36, 61, 76, 97, 112, 113] have also been used for
system modeling. Bond graphs are energy-based system descriptionsin which energy ele-
ments are connected by energy-conserving junction structures. Similar to our approach,
bond graphs define aminimal set of generalized elementsthat can be used to model system
behavior across energy domains. Connections between elements are made through power

bonds which represent the power flow in the system.

Bond graphs have been used in design of mechatronic systems. In this context the bond
graph is used to define a language to describe designs [52, 53, 104, 129]. The bond graph
helps to define design rules that can be applied by an expert system. Theserules create and
modify the design by manipulating the topology of the graph.

Although bond graphs (with appropriate extensions[67, 110, 144]) can be used to represent
mechatronic systems, we have chosen linear graphs because they can be more easily
adapted to model 3D rigid body mechanics. Furthermore, linear system graphs reflect the
topology of the physical system directly, making it easier for non-specialists to create

system descriptions.
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1.3.3.3 Commercial smulation packages

In the commercial world, there are a number of simulation packages specifically designed
for particular application areas. In the area of CAE there exist several packages for rigid
body dynamics[120] including ADAMS[84, 91, 92, 93], DADS[70, 90], and MesaVerde
[155, 156, 157]. Within the same area of CAE, although not in the commercial world, we
can aso include the work by Baraff in the simulation of rigid bodies [11, 12]. The main
characteristic of these systems is that the equations of motion are generated numerically
from the geometric description of the mechanism. Some (i.e., ADAMS and DADS) can be
integrated with CAD packages such that the geometry of the mechanismisdirectly derived
from the CAD mode!.

A second group of commercial simulation packages provides support for general systems
modeling and simulation. We can identify three main approaches: (1) block-diagrams, (2)
object-oriented modeling and (3) bond graphs. Systems using the first approach include
EASY5 [139] and Matlab/Simulink [140]. Both systems are based on an interactive envi-
ronment for modeling where the user defines the system as a network of interconnected
blocks. EASY 5, however, takes the modeling approach a step further in which the system
ismodeled by defining the interactions between componentsinstead of between simulation
blocks as with the bl ock-diagram approach. The main characteristic that distinguishesthese
systems from the rest is that they use procedural rather than equation-based modeling. In
procedural modeling, the model isrepresented by a collection of functions that, given a set
of inputs, compute the respective outputs. In other words, thisis a causal modeling para-
digm. Equation-based modeling, on the other hand, represents the models by non-causal
equations.

Recently, a large number of modeling languages has emerged that provide reuse through
object orientation [9, 19, 41, 47, 60, 100, 118]. These languages are all derived from the
original smulation language called “the continuous system simulation language (CSSL)
[135]”. The object-oriented approach facilitates model reuse and simplifies maintenance.
Using these modeling languages, software executables can be generated automatically
from individual sub-models and the interactions between them. Although our port-based

modeling paradigm bears some resemblance to the object-oriented modeling languages
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described so far, it presents an important characteristic that sets it apart from these lan-
guages: the modularization of the object into interface and implementation allows our port-
based modelsto span the model space (i.e., the space of alternative models) for a particular
model. Consequently, we can select models at different levels of detail and augment the

configuration mechanisms to admit changes in system topology.

Object oriented multi-domain modeling languages use the second approach, and we can
include Dymola[21, 22, 23, 24, 41, 43, 45, 95], Omola[9], Sidops+ [19], ASCEND [100,
101], NMF [87, 117, 118, 119], Modelica [46, 47, 57, 78], and VHDL-AMS [25, 60].
Dymolais an object-oriented language and a program for modeling large systems. Reuse
of modeling knowledge is supported by use of libraries containing model classes and
through inheritance. Dymola also supports the new object-oriented modeling language
Modelica. All modeling languages represent the model dynamicsin non-causal form which
provides greater modeling flexibility by not forcing the modeler to use predefined input/
output relationships when defining model dynamics.

Finally, systems using the third approach—bond graph modeling—include ENPORT
[114], CAMP-G [20], and 20-sim [26]. These systems provide component libraries of bond
graph components, and graphical user interfaces optimized to the creation of bond graph

models.

1.3.3.4 Modd refinement and model abstr action

Some preliminary results also exist in the areas of model refinement and model abstraction.
For instance, there exist two different approaches to the generation of bond graph models.
A first approach uses the system's bandwidth as a measure for the level of refinement [51,
71,111, 129, 148, 149, 153, 154]. Starting from asimple model, additional degrees-of-free-
dom are introduced, increasing the frequency contents of the model, until the required
bandwidth has been achieved; this corresponds to model refinement. Model abstraction, on
the other hand, is used in energy-based methods. These methods analyze the power [111]
and energy [71, 129, 148, 149, 153, 154] profiles of all the bondsin the model. If the energy

or power level of abond drops below acertain threshold, it isassumed that the contribution
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of that bond can be neglected. By selectively removing bonds in this fashion, complex

models can be abstracted to their basic dynamic characteristics.

1.3.3.5 Automated support for mathematical modeling

The last area of research directly related to the work presented in this thesisis the work in
the area of automated support for the design of mechatronic systems. Thisareaincludesthe
work presentedin [18, 19, 141, 142, 145, 146, 147]. In these works, the authors present how
modeling paradigms affect the support for simulation during conceptual design. All the
approaches use bond graphs as an intermediate model representation. Coming from differ-
ent directions, the work presented in this thesis and the work presented in [145, 146] share
severa characteristics from the point of view of reconfigurable models. In [146] the author
defines a similar partitioning of the models into interface and implementation and el abo-
rates on those conceptsto create aframework to support hierarchical refinement and recon-
figuration. However, our work on reconfigurable models and the work presented in [146]
differ in the following aspects. The work presented in [146] uses a bond graph formalism
to represent the dynamics of the systems. This limits its applicability to physical systems
that can be represented by a set of scalar values. Aswe mentioned before, bond graphs, with
appropriate extensions, can be used to model systems that have vector-valued state vari-
ables; however, these extensions are cumbersome and not provided in their software envi-
ronment that synthesizes the dynamic equations. On the other hand, we use alinear graph

formalism, which may include vector-valued states, to represent the dynamics of a system.

Another difference between our work and the work in [146] is that although their approach
modularizesthe model into type and specification (interface and implementation), the spec-
ification of the model includes its type. Thiskind of modularization forces us to define the
instance of a model to be its specification. Consequently, if multiple instances of a model
need to be included in amodel library, such asfor instance when they may differ in param-
eter values or in structure, new types must be defined for each choice of specification, and
each separate instance must be stored in alibrary of models. In contrast, we do not require
theinterface to be part of the implementation. This modul arization allowed usto define the
concept of binding of an implementation to an interface such that an interface describes a

family of component models. In this way, only one interface needs to be stored in the
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library and multiple implementations can be bound to the interface. Instances of a recon-
figurable model are given by the binding of an implementation to an interface, which

reduces the type redundancy presented in [146].

Finally, parameter handling is not well defined in[146]. For each new set of parameter def-
initions, we are required to define a new type, and the propagation of the parameters to
inner submodelsis not explicit. Our reconfigurable models provide an explicit mechanism
for parameter propagation and do not require the definition of a new interface for each set

of parameters.

1.3.4 Heterogeneous modeling

Heterogeneous modeling incorporates different modeling paradigms—such as discrete
event, continuous time, finite state machines, and others—into a single simulation model.
In thisrespect, Ptolemy 11, a software environment for heterogeneous concurrent modeling
developed at the University of Californiaat Berkeley, provides the machinery to represent
and combine different modeling paradigms|[68]. Ptolemy Il provides several modeling par-
adigms, including continuous time, discrete events, finite state machines, and others. The
fundamental assumption taken in Ptolemy 11 is that all these modeling paradigms can be
expressed using the block-and-arrow diagram. Under this premise, models are represented

by directed graphs where the nodes are entities and the arcs are relations.

Of all modeling paradigms provided in Ptolemy |1, the three modeling paradigms men-
tioned are the most relevant to our work. The others are targeted to modeling system behav-
ior at different levels of abstraction. For example, the communicating sequential processes
(CSP) modeling paradigm can model problems involving resource management, and the
process networks modeling paradigm is targeted to modeling signal processing systems
whereinfinite streams of datasamplesareincrementally transformed by acollection of pro-

cesses executing in parallel.

The continuous time modeling paradigm is based on the signal-flow model. Thus, models
of physical systems capture signal flow between smulation components (such as Sim-

ulink). Thisisin contrast to the approach to modeling physical systemsin thisthesis, which
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is based on the observation that any two subsystems interact through energy exchange. Our
port-based modeling paradigm, which is based on the conservative laws to represent

energy-based systems, includes an extension to interact with signal-flow models.

The ssimulation engine in the continuous time modeling paradigm in Ptolemy Il has many
commonalities with the simulation engine developed in the early stages of this research.
The reason is that the continuous time model and the modeling paradigm used in the soft-
ware-based simulation environment (Chapter 2) are described by the signal-flow model.
Since the signal-flow model considers every element as a function that maps its inputs to
itsoutputs, the simul ation engine provides ways of obtaining an evaluation order of the ele-
mentsin asignal path. The scheduler used in Ptolemy Il to achieve that ordering is similar
to the scheduler developed for our simulation environment for software components (see
Chapter 2).

In addition to specify the system as asignal-flow model, the continuous time modeling par-
adigm is designed to interoperate with other Ptolemy modeling paradigms. These are the
discrete event modeling paradigm, to achieve mixed signal modeling, and the finite state
machine modeling paradigm. The latter is used to describe models that are valid on well
defined operating regions.

The port-based modeling paradigm also supports the mixed signal modeling paradigm.
However, we rely on the target language (to which our port-based reconfigurable models
aretrandated) for the syntactical constructs to define the eventsin amodel (Chapter 6). In
addition, our port-based models provide modeling constructs to define operating regions
for which different models are valid. We call this meta knowledge and introduce the con-
cept in Chapter 6.

1.3.5 Sructural knowledge representation

Structural knowledge representation deals with the problem of defining appropriate repre-
sentations to describe the structure of models. In Chapter 6, we define a reconfigurable
model, which is amodeling paradigm that allows changes in structure as well as parameter

configuration. To describe the structural knowledge embedded in a reconfigurable model
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we defined arepresentation based on an AND-OR tree. A similar tree-based representation,
called systementity structure (SES) [159], isastructural knowledge representation scheme
that systematically organizes a family of possible structures of a system. Such a family

characterizes decomposition, coupling, and taxonomic relationships among entities.

The difference between our AND-OR tree representation and the SES is that the SES cap-
tures system architecture alternatives, while the component structure describes modeling
aternatives for a single component in the system. To capture system architecture alterna-
tives, the SES defines a set of labels that specify both coupling information and selection

constraints imposed on the elements of the system.

1.4 Contributions

Due to the nature of the work developed in this dissertation, we have categorized the con-
tributions into two major areas: intellectual and implementational contributions. Intellec-
tual contributions include new ideas, and new agorithms, while implementational
contributions include new framework and representational structures. Theintellectual con-
tributions of this work include composable simulation, port-based multi-domain modeling
of mechatronic systems, and reconfigurable models. The main implementational contribu-

tion is the multidisciplinary modeling and simulation environment.

1.4.1 Intellectual contributions

1.4.1.1 Composable smulation

In thisthess, we developed the idea of composable simulation. By composable simulation
we mean the ability to generate system-level simulations automatically by ssmply organiz-
ing the system componentsin a CAD system.

A system component can be either a physical component (electrical motor, gearbox, etc.)
or an information technology component (embedded controller or other software compo-
nent). Each of these system components has one or more simulation model s associated with
it describing its dynamicsin multiple energy domains, across energy domains, and possibly

at multiple levels of accuracy (with varying computational requirements). When these
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system components are combined into a complete system, our framework automatically

combines a selection of the associated component models into a system-level ssimulation.

The user interaction occurs thus at the level of composition of system components rather
than simulation components as in most traditional simulation environments (Matlab/Sim-
ulink, Easy5, etc.). These traditional simulation environments do not consider the mapping
from system components to simulation models. This mapping is not one-to-one. The
system-level simulation model isnot ssimply aconcatenation of individual component mod-
el's, but may require combining multiple system componentsinto one simulation model (to
avoid algebraic loops or index problems [98, 99]). Or, conversely, it may require multiple
simulation componentsfor asingle physical component (describing its behavior in multiple
energy domains, for instance). Raising the level of user interaction to composition of
system components rather than composition of simulation models will result in a signifi-
cant reduction of effort in creating and modifying system-level smulations and will reduce

the simulation and modeling expertise required of the user.

Our framework for composable simulation will therefore enable designers and control
engineers to verify their physical designs and control software with much less effort and
time than isrequired in current simulation environments, as described in the following sec-

tions.

Our concept of composable simulation is implemented using port-based modeling and

reconfigurable models.

1.4.1.2 Port-based multi-domain modeling of mechatronic systems

We developed a novel modeling paradigm based on port-based objects [133]. The port-
based object approach allows usto model system components by describing their behavior
and their interaction with the environment. Interaction paths capture energy flow (for
energy-based systems) or signal flow (for non-energy based systems). In this way, we can
describe a system as a graph where nodes represent high-level system components and

edges represent their interactions.
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Port-based objects can be compound or primitive. Compound port-based objects define the
behavior of asystem asastructural arrangement of subsystems (also modeled as port-based
objects), while primitive port-based objects are defined by the congtitutive equations
describing the behavior of the object.

The port-based modeling paradigm is the basisfor our multidisciplinary modeling and sm-
ulation environment, as well as for our concept of reconfigurable models. A port-based
object istransformed into a hybrid mathematical representation based on linear graphs and
block diagrams. This underlying representation provides the tools required to synthesize
the set of differential algebraic equations that describe the behavior of the system
(Section 1.4.2.1). A reconfigurable model (Section 1.4.1.3) is an extension of the port-
based objectsin that the interface is separated from the implementation of the behavior of

the component.

1.4.1.3 Reconfigurable models

We formalized the concept of areconfigurable system model. Reconfigurable models are
a powerful abstraction that allows the designer to change the ssimulation models dynami-
caly. The modeling paradigm of reconfigurable models is based on the separation of the
propertiesthat are necessary to classify the subsystem and those that are not. Necessary and
non-necessary properties are collected into two groups, called interface and implementa-

tion respectively.

Using the concept of subtyping, we organize the component interfaces into a semantic net-
work. Animportant virtue of this network isthat by traversing it (upward or downward) we
define two operations: refinement and generalization. Reconfigurability is achieved when
an implementation is bound to an interface. Therefore, this network completely definesthe
basic operations that are required to support reconfigurable models, namely, speciaization,

generalization, and reconfiguration.

We developed a component model structure to describe the modeling space of a reconfig-
urable component model. The structureis based on an AND-OR tree[105]: modeling alter-
natives are captured in the OR arcs, while individual alternative models are captured by
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means of the AND arcs. Based on this structure we devel oped models of concrete compo-
nents. These models are characterized by an induced tree on the AND-OR tree. The collec-
tion of reconfigurable models represented by this component structure are stored in a

library of components.

1.4.2 Implementational contributions

1.4.2.1 Multidisciplinary modeling and simulation environment

We developed a novel multidisciplinary modeling paradigm that combines energy-based
and non-energy based systems into a single modeling representation. The formalism used
to represent a multidomain system is based on linear graphs [143]. We extended this for-
malism and created a hybrid representation for mechatronic systems. In this representation,
energy-based systems are model ed using thelinear graph formalism, and non-energy-based
systems are modeled using block diagrams. We have combined the two formalismsinto a
hybrid representation that allows the description of both types of systems. New elements

were defined to seamlessly interface the two formalisms.

We developed algorithms to automaticaly synthesize the linear graphs for al energy
domainsinvolved, including the mechanical energy domain (geometry). In thisrespect, the
algorithms that synthesize the linear graph for the mechanical energy domain take care to
simplify the graph in order to minimize the possibility of obtaining both high-index alge-
braic differential equationsand fully constrained mechanisms by removing redundant kine-

matic joints (i.e., joints that have been identified to have coincident joint axes).

We formalized the causality problem as that of finding a minimum cost spanning tree on
the linear graph. This provided a convenient way for finding causal directions for all the
equations in the system. To incorporate the equations derived from the non-conservative
system, we defined an extension of the classic Block Lower Triangular algorithm to find a

feasible order of evaluation of the DAES.
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1.5 Research road map

Two problems are addressed in this research: composable simulation and simulation sup-
port for the design process. Although we addressed each problem independently, in the end
the two approaches merge at a common point, asisillustrated in Figure 1-3. Initialy, we
implemented a purely software-based composition environment. Due to the nature of the
underlying equations, this approach rapidly reached its limits. Nevertheless, the lessons
learned from this attempt are valuable. The most valuable lesson learned was the under-
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Figure 1-4. High-level description of a mechatronic system.

standing of the interactions between components and, specifically, how these components
may interact in ahybrid simulation environment, one which includes amixture of equation-

based models and software components.

Based on the limitations we encountered with the previous approach, we focused on equa-
tion-based modeling. In this modeling paradigm, the models are given as equations rather
than as procedures as is the case with a software component. A new modeling paradigm,
namely port-based modeling, was developed. This modeling paradigm does not define a
fixed causality for the equations involved but leaves the task of determining it to the ssimu-
lation environment once the complete topology of the system is known. We adopted the
method of the system graph to represent the underlying topology of the system based on
energy flow. This system graph is derived from a high-level component graph composed
of port-based object models asillustrated in Figure 1-4. Inthisgraph, the high-level system
topology is defined in terms of high-level system components and interactions. This graph
is used to synthesize the graph of the system.
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Once the system graph was readily available, we used it to derive the differential-algebraic
equations that describe the behavior of the system, including references to software com-

ponents.

To address the issue of providing simulation support to design tasks, we focused our atten-
tion on extending the port-based modeling paradigm to provide model selection capabilities
as well as to provide the ability to dynamically reconfigure the model by means of recon-
figurable models. Reconfigurable models are trandated into the linear graph representa-
tion. At this point, the two pathsleading from the two general problems shownin Figure 1-
3 aremerged. In this case, once areconfigurable model istrandated into alinear graph, the
methods derived in this thesis are applied to synthesize the set of differential-algebraic
equations that define the behavior of the system. This approach to modeling allows the

designer to test different candidate designs.

Weiillustrate the use of our framework with a design scenario presented in Chapter 7.
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chapter 2 COmposition of
Simulation
Software

2.1 Introduction

In this chapter, we describe asimulation framework aimed at providing simulation support
for non-energy-based systems. In this framework, simulations can be composed by defin-
ing interactions between component models that represent signal flow between models.
The framework proposes a new modeling approach based on the theory of software archi-
tectures [6, 74] and on port-based objects [133], in which a component is viewed as an
entity with an interface and an implementation. The interface defines the interaction points
of the component with its environment, while the implementation defines the behavior of
the component. This approach to modeling forms the basic ideas for our port-based mod-

eling paradigm and the reconfigurable models presented later in this thesis.

One of the goals of composable simulation is to support the rapid assembly of smulation
programs. In this respect, we devel oped a software framework based on a description of a

software component called subsystem interface (sbs). The subsystem interface provides a
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low-level uniform definition of asimulation software module; that is, it provides the appli-
cation programming interface (API) required to embed software components in the simu-
lation environment. Software modules are described in the environment by a model
description language that captures the hierarchical definition of amodule in terms of ports

and composition of other submodules.

From the experimental results, we observed two problems. The first is the occurrence of
algebraic loops. In this case, we have opted for their detection; however, no effort is made
to try to solve them. Algebraic loops in two or more software components imply tight cou-
pling between the underlying equations. To solvethiskind of system, wewould need to use
anonlinear solver or an iterative algorithm to break the algebraic loop (i.e., tearing) [42,
44]. Non-linear solvers require knowledge of the derivatives of the software component,
which in general are not available. These methods are very costly and they do not always

convergeto a solution.

The second problem we observed was related to the granularity of the software compo-
nents. Wefound that the granularity of the software components directly affectsthe perfor-
mance of computing a solution for the system. This problem is closely related to the
previous one because we can improve the efficiency of the computation of a solution by
including the equations of the software components that create the algebraic loop into a
single component. In this way, we are reducing the granularity of the components, and
hence we can implement an efficient nonlinear solver that solves the set of simultaneous
equations. This can be doneif the equations of software components involved in the alge-

braic loop are combined, reducing them to a single software component.

2.2 System architecture

In this architecture, the representation of a component model consists of two parts. the
interface and the implementation. The interface represents a portion of a design that has
well-defined interaction points and performs a well-defined function. The implementation
of the model represents the behavior of the component and is described by a software mod-

ule. The module can be described as the structural arrangement of interfaces or asasingle
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procedural module. The structural arrangement of submodul es defines the configuration of

the component.

To support composability of simulation software modules, we propose a software architec-
ture based on three abstraction levels[31]: conceptual level, component level, and process
level. The highest level of abstraction in the architecture (conceptual level) defines the
system using a conceptual graph. A conceptual graph is a directed graph in which nodes
represent components of the system and edges represent their interactions. Edges leaving
from a node represent output ports of the subsystem; incoming edges to a node represent

input ports.

The second level of abstraction of the architecture is the component level. This level pro-
vides an abstract representation of the behavior of the component, which isdescribed by an
interface that includes the input and output ports of the component. At this level, the con-
ceptua graph is mapped into a simulation software architecture. The resulting architecture
isthe main representation of the semantics of the system; i.e., a network of interfaces and
interactions among components. The third level of abstraction in the architecture, the pro-
cesslevel, providesthe algorithmic representation of the behavior of the component. At this
level, the software architecture is instantiated and executed. Instantiating an architecture
requiresfinding processes that match the featureslisted in the interface of each component.
Execution of the architecture may require calls to external libraries such as Matlab, ACIS
or Odepack/Linpack. The process level dealswith the communication and synchronization
of processes included in the architecture and ensures data consistency. Based on these
abstraction levels, component models can be hierarchically composed. Hierarchical com-
position allows the composition of component models into a compound model; this com-

pound model captures the structural arrangement of the models.

To illustrate these concepts, consider the system shown in Figure 2-1. A control system is
defined by a conceptual graph. The model of this system is hierachically built. This is
shown by expanding actuator component, which is composed by three subcomponents:
amplifier, motor, and coupling. The description of these subsystems are given at the con-

ceptua level. The component level defines the interfaces of each of the components that
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Figure 2-1. Model abstraction levels

compose the design. In this case, the interface of the DC motor is shown in the component
level. Every interface in the component level needs to be instantiated. This process is

achieved by associating an implementation of the behavior of the component to the inter-
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face. The behavior of the component is described in the process level, which gives an algo-

rithmic interpretation of the desired behavior.

2.2.1 Component model

A component is the generalization of a port-based object [132, 133, 134] and it consists of
two separate parts. an interface through which it interacts with other design entities, as
illustrated in Figure 2-2, and an implementation that either encapsul ates an executable pro-
totype of the behavior of the component, or hierarchically defines it as a configuration of
other components.

The interface defines the information that completely characterizes the software compo-
nent, such as input/output ports and their corresponding energy domains; the functions the
interface providesto other design entities or the functionsit requires from other design enti-

ties, and constraints on behavior of the component.

For instance, the interface definition for a DC motor/generator component might look like
this.

Ports »J1, J2
Donmai n : Jl(electric), J2(rotational)
Functi ons : Jl.requires(current) -> J2.provides(torque) ||

J2.requires(torque) -> J1.provides(current)
Constraints : Jl.max < Im J2. max < Torquem

The interface of a component may be satisfied by more than one implementation. For
example, theinterface definition for the mechanical system of amissile seeker may specify
as input ports the torques applied to the system, and as output ports the angular accelera-
tions of the system produced by the given torques (Figure 2-3). There are two alternatives
to choose from in selecting the implementation for this interface: one using the Newton-

Euler iterations, the other using the Lagrange-Euler method. Both implementations con-
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form to the interface but provide different mechanismsto compute the desired results. This
feature can be used in many ways; for example, to dynamically reconfigure the simulation,

to produce finer simulation results, or to test different implementation approaches.

A configurationisrecursively defined to be composed of either sub-configurations or com-
ponents or both. This definition supports the hierarchical nature of a mechatronic system.
A configuration, like acomponent, consistsof two parts. interface and implementation. The
interface of a configuration will export only those features visible at the sub-system level.
The implementation of the configuration will be defined by the network of sub-configura-
tions and design entities described in the definition of the configuration. Sincethe structural
arrangement of components defines a configuration, a configuration is legal only if every
input port is connected to one output port and all the communication constraints are satis-
fied. An output port may be connected to multiple input ports, but an input port may only
be connected to a single output port.

An instance of a configuration of a system is created when all the interfaces in the config-
uration are assigned conforming implementations [ 73]. An implementation conformsto an
interfaceif it containsall features specified by theinterface. In [73], the authors define three

conformance criteria that we adopt to define semantically correct systems:

I nter face confor mance: Each implementation in the system must conform to its interface.
This means that the implementation has to match the interface definition semanti-

cally; otherwise, the implementation cannot be used in the given context.

Decomposition: Each particular instance of a configuration is decomposed in a number of
implementations; these implementations must conform to the interfaces of the con-
figuration. Thismeansthat for each interface there must be at least one conformim-

plementation.
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Communication integrity: The system’s components interact only as specified by the

configuration.

Components in the implementation of a configuration have a well-defined scope. This
means that messages sent locally in a configuration cannot reach components outside the
boundaries of that configuration; only those features indicated in the interface are exported

and therefore can be used by other configurations.

Since an interface may have more than one conforming implementation, it is valid to
replace the complete network attached to the implementation of aconfiguration with a dif-
ferent network or with a single component. The new implementation may capture the
behavior of the component at any level of detail, aslong as it maintains the basic function-

ality specified by itsinterface.

2.3 Scheduling the execution of component models

Component models are executed when their implementation is loaded into the system.
However, implementations cannot run at just any time; rather, they must follow a pre-

defined pattern of execution. This resultsin a scheduling problem. To devise a solution to
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this problem, we propose a conceptual organization of the component that reflects transfor-

mation from an abstract concept to an actual executable asillustrated in Figure 2-4.

In this model, the implementation of a component provides two operators, the derivative
operator and the output operator asillustrated in Figure 2-5. The derivative operator com-
putes the derivatives of the state variables, while the output operator computes the output
variables of the component. Once an implementation is loaded into the system, a process
which represents the executable image of theimplementation is created. Since each process
has two operators, we associate the execution of each operator within a process to a task,
or athread of execution of an implementation’s operator (represented by the curly linein
Figure 2-4).

By explicitly specifying the derivative and output operators, the scheduling problem is
reduced to finding the schedule for the output tasks without considering the derivative
tasks. Oncethe output tasks have been evaluated, the input variables to each component are
ready and the derivative tasks can be evaluated in any order.

To obtain acorrect schedule of the tasks spawned by an implementation, we first classify
the component according to its output operator, and then present a scheduling algorithm

based on a constraint graph that captures the interconnections between components.

2.3.1 Classification of component models

The implementation of acomponent isan abstract representation of its behavior. In general,
the models are described by a set of differential algebraic equations that represent the

dynamics of the system. These equations contain the following information:
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e A set of continuous variables denoted x.
* A set of equations depending on X.

* A set of assignments where variablesin x are assigned to continuous functions:

X: X = gi(w).

In traditional simulation environments or even in object-oriented simul ation environments,
the model descriptions are transformed into a single block of equations. However, before
the equations can be solved, they undergo a series of transformations that put them in suit-
ableform to be used in numerical algorithms. The goal hereisto find an ordering of the set
of equationsfor which asolution can befound. Thisordering produces a correct model with

the following elements:

dynamic state variables x and their first derivatives x

aset of algebraic state variables z

aset of auxiliary variablesv

a set of dynamic equations sorted in computational order.

In general, we can write the equati ons that result from the above transformations asfollows:

Xi = fid(x, X, Z,V,U)
v, = gi(X, X, Z,V) Equation 2-1

y; = fo(x, X, z, v, u)

where u isthe vector of inputs to the component model and y is the vector of outputs of the

component.

In Equation 2-1 some equations are explicit assignments to state derivatives, while other
are assignments to algebraic variables. Based on the form of the output equations y; we
classify acomponent mode! as follows: if the output variables y; are explicit functions of
the input vector u, we cal it a direct feed-through component. On the other hand, if the
output variables y; are not an explicit function of the input vector u, we call it an integral

component. If at least one output variable is an explicit function of the inputs, the compo-
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nent would belong to the direct feed-through class. This classification influences the com-
putation order established for aconfiguration since that is dependent on the execution order

of theinternal components, which isin turn dependent on their classification.

2.3.2 Task scheduling

Tasks of aconfiguration are organized in a constraint graph. A constraint graph is a bipar-
tite graph in which the nodes are divided into two sets: one representing port variables and
the other representing the tasks to be scheduled. Edges in the constraint graph connect
nodes of opposite sets, and there are no edges connecting nodes within the same set. Edges
in the constraint graph are directed according to the precedence rel ationships derived from

the connections given in the configuration.

For a configuration with n design entities, the bipartite graph will include 2n task nodes;
i.e., one node for each task spawned by the implementation. Once the constraint graph is

defined, the schedule is found by topological sorting [62] the nodes in the graph.

Toillustrate these concepts, consider the description of amissile seeker shown in Figure 2-

6. This configuration consists of the following software components:
1. agimbal mechanism,

2. coupling elements for pitch and yaw

3. actuators (DC motors) for pitch and yaw, and

4. PID controllers

The connections in the configuration have a defined directionality. That is, the connection
of output port-0 of module C1 with input port-0 of module G definesaflow of information
fromClto G.
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Figure 2-6. Configuration of the missile seeker

Each module in the configuration is classified asfollows:

Table 2-1. Classification of modulesin the missile seeker

Module Class
Gimbal (G) integral
Couplers (C1, C2) feed-through
DC motors (DC1, DC2) integral

PID controllers (PID1, PID2) feed-through

Given theinformation provided by the configuration and following the classification of the
software modules given in Table 2-1, the constraint graph is constructed as illustrated in
Figure 2-7. A specia characteristic of this graph is that every task has a port variable as a
successor and as its predecessor. This means that if avariable is the predecessor of atask,
the task’ s outputs are explicit functions of itsinputs. Successor port variables are the result

of the output operation of the component.

The order in which the output and derivative operations are executed is given by a partial

ordering on the constraint graph. This partial order, as we already pointed out, is obtained
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Figure 2-7. Constraint graph of the missile seeker

by topological sorting of the constraint graph. The result is shown in Figure 2-8. Since the
gimbal and DC motor modules are classified as integral, their outputs do not depend on
their inputs. Thus we can schedule the output operations to be executed immediately since
al the information they need is aready available. The execution of the output operators
produces the port variables a;, a;, a;, a;. These variables are inputs to the PID controllers
and to the couplers. Since we have classified them as feed-through modules, their output
operators make explicit use of their inputs. In addition, from the constraint graph, we see
that the derivative operators also use the same variables. Since al the information required
by these modulesis available at their inputs, they are assigned the next place in the sched-
ule. The execution of these modules generates the port variables Eay Vi Vs The inputs to
the derivative operators of the gimbal and DC motors are ready; therefore, the algorithm

schedules them next, resulting in a correct execution schedule.

The schedule generated by the algorithm has an interesting property. We note that thelevels
in the tree in Figure 2-8 are grouped by node classes; i.e., even-numbered levels include
tasks only while odd-numbered levels include port variables only. This property can be

exploited to implement aparallel execution of all tasksin even-numbered levels. For exam-
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Figure 2-8. Topological order of the software components for the seeker

ple, al tasksinlevel 0 (DC1_O, DC2_O, G_O) can be executed in parallel. Once the tasks
in thislevel are completed, tasks at level 2 can be executed in parallel and so on. Another
execution schemathat can be obtained by exploiting this property isthat instead of waiting
for al tasks to finish in an even numbered level, as soon as one task finishes we may start
executing tasks at higher levels provided all the port variables are defined. These methods
of execution can greatly improve the speed of asimulation by taking advantage of the com-

puting power of networked computers.

2.4 Simulation kernel

The smulation kernel controls the smulation by executing the schedule computed for a
given configuration. It implements the solver of ordinary differential equations that keeps
track of the ssimulation time and integrates the system of equations given implicitly in the
software components. Two different approaches were taken to implement the simulation
kernel.

The first approach, based on CORBA, was a distributed simulation kernel. The ability to
run simulations in a distributed environment allows one to take advantage of the computa-

tional power of networked computers. However, to reduce communications overhead, care
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should be taken to avoid unnecessary fragmentation of the simulation. Only large smula-

tion components warrant execution on a separate workstation.

Drawing from the experience obtained in the devel opment of the CORBA -based simulation
kernel, and to virtually eliminate the problem of communications overhead, we developed
a second simulation kernel. This kernel utilizes the multithreading capabilities of the host
operating system to run the simulation components in separate threads. If in addition the
simulation kernel is run in amulti-processor computer, each thread can be run in a separate

processor, which minimizes the computation time of the overall smulation.

Several issues must be resolved to efficiently execute the composition of simulation com-
ponents in the framework; namely, development of inter-process communication mecha
nisms, and integration of numerical integration algorithmsin the ssimulation kernel. We will

address these issues in the following sections.

2.4.1 Kernel object model

Thefirst step in defining the simulation kernel is to define the underlying abstractions that
will capture the description of configurations in the framework. For this purpose, we
present an object model that describes the object-oriented architecture of the smulation
kernel.

The object model [115, 116], shown in Figure 2-9, defines the module as the fundamental
abstraction. A module can be a primitive module or a compound module (configuration).
Primitive modules cannot be decomposed into submodules, and for that reason they form
the basic building blocks of the system. Compound modules (configurations) are aggrega-

tions of primitive modules and/or other compound models.

Configurations and primitive objects have two objects in common: the ovar object and the
interface object. The ovar object implements the inter-process communication mechanism
between objects in the system. The interface object contains the port definitions as well as
properties relevant for the software component such as the direct feed-through and number

of internal states.
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In the object model, the interface object is shared between a configuration and a primitive
because when a configuration isused in alarger configuration it is considered as if it were
asingle software component. The simulation kernel takes care of the scheduling of all inter-
nal software components so that when the output operator of the moduleis executed in the
parent configuration, all internal operators are executed before the outputs of this operator
are presented to the environment. That is, the parent configuration will expect to see the
component’s outputs after its execution elapses. The number of internal states is used to

determine the number of elementsin the ovar object.

Two more objects compose a configuration object: plan and body objects. The plan object

represents the evaluation schedule of the componentsin the configuration. It represents the
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Figur e 2-9. Object model.
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topological sort of the components in the configuration based on the direct feed-through
field and the directionality of the ports. The body object alows the hierarchical definition
of a configuration by means of the submodel object, and defines the topology of the con-
figuration by means of the connection object. In Figure 2-9 a submodel object isan aggre-
gation of modules. This allows a configuration to be hierarchically defined in terms of
primitives and their configurations. Finally, the connection object is an aggregation of

exactly two ports.

2.4.2 I nter-process communication

Inter-process communication is achieved through the ovar object. This object implements
shared memory schema where modules are assigned different memory segments from
whichthey can accesstheir data. The shared memory segment isdivided up into virtual seg-
ments each having a well-defined lexical scope. The lexical scope of a memory segment
spans the module in which it is defined. In other words, a module cannot write out values

outside its lexical scope.

Conceptually thisisshownin Figure 2-10. The ovar object contains two segments, namely,
the input segment and the output segment. The output segment is shared among all modules
in the configuration. Thisresultsin asingle memory segment used in the topmost configu-
ration, which is the one that implements the shared memory. The input segment in each
ovar object defines a mapping between inputs and output ports of different components.
This can be seen from the observation that for each input to amodule there will be acorre-
sponding output of another module. Storing the indices of the output array in the input seg-
ment (for those outputs connected to the inputs) completely defines the inputs to the

module.

To illustrate this, consider the configuration shown in Figure 2-11. In this configuration,
modules B and C are the outputs of the top level configuration which has no inputs while
modules A and D have no inputs.To access the second input to module C, we access its
input segment to find that it contains the index 8 in the entry number 2. Thisindex points
to the global shared output memory segment which in the address 8 contains the input to
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Figure 2-10. Inter-process communication architecture.

module C coming from module D. In this communication model, the hierarchical structure
of the configuration is flattened. This, however, does not prevent us from hierarchically
defining the configuration. It is only the communication model which isrequired to be flat

to improve performance.

The final issue to address is data consistency. Recall that the schedule first computes the
outputsof all non-algebraic modules. Thisproducesapartial set of updated output variables
at the current time. Since the schedul e guarantees that no algebraic module will be executed
before its inputs are ready, it is not possible to compute an output from an outdated input.
Therefore, we can conclude that the schedule guarantees that the modules will work with

consistent information throughout the simulation run.
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2.4.3 Task execution model

Beforethe kernel can executeatask, it hasto be properly initialized. In order to accomplish

this, every task has an associated state which indicates its status in the smulation process.

2.4.3.1 Tasks states

We associate each task with a context. The context of a task specifies its current state,
which can be one of the following: running, ready, suspended, dormant (Figure 2-12). A
running task is the onethat is actually executing. A task can enter the running state from a
ready state upon receiving acycle signal. The task will run until it finishesits computation,
after which it returns to the ready state. Tasks in the ready state are those which are ready

to run but not running. A task entersthe ready stateif it was executing and its cycle ended.
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Figure 2-12. Task states.

If it was in the suspended state, then it can enter the ready state if an event that initializes
it occurs. Tasks that are created but not scheduled to run are put in the suspended state.
Finally, the dormant state describes a task that exists but is unavailable to the simulation
kernel.

Asindicated in Figure 2-12, atask can change states as aresult of any of the signals create,
cycle, delete, and resume. When a task receives a signdl, it reacts by executing one of its

services, which are part of the low-level implementation of the task (Figure 2-13).

The signals create and delete are special in that they are handled by the host operating
system and not by the module. When a task receives a create signal, it is the operating
system of the host machine that provides the functionality to load the task. When the sm-
ulation has ended, the tasks |oaded into the kernel are released along with all the resources
allocated to them (i.e., memory). This occurs when the tasks receive a delete signal from
the operating system. After the delete signal is received, the task goes to the dormant state.

Thetwo other signals, cycle and resume, generate eventsthat the module hasto handle. The
handlers for these events are implemented as two services: init and cycle. Theinit service
initializesthe modul e all ocating the resourcesit will use asindicated in theinterface object.
The cycle service performs the evaluation of the output and derivative tasks of the process,
which communicate with other processesin the kernel through the ovar object. The numer-
ical integration algorithm running in the kernel, asindicated in the following section, con-

trols this service.
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Figure 2-13. Signal diagram.
2.4.3.2 Numerical integration

This section describes the interaction between the numerical integration algorithms and the
task-scheduling algorithm presented in Section 2.3.

Consider the following system of equations:

y =f(t,y) Equation 2-2

Assume y is a vector where y; is the i-th state variable. Furthermore, consider aso the
second order Runge-Kutta formulas:
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k, = hf(t,y,)

ko = hi(t,+ 2h, v, + 2k, Equation 2-3

3
yn+1:yn+k2+o(h)

where the constant vectors k; and k, are of same dimension as vector y.

The integration formulas evaluate the derivative functions at different points as indicated
in Equation 2-3. Every evaluation of f must correspond to the eval uation of the schedule for
the configuration since the integrator sees the configuration as a single function. Based on
this, the numerical integration method implemented in the kernel first evaluates the output
functions and then the derivative functions, as prescribed in the schedule, for every major

and minor integration step (Figure 2-14).

2.5 M odule definition language

We defined a high-level language to describe component models and configurations. In the
design of our language, we need to choose a set of high-level concepts from the domains
we are dealing with, give them a suitable syntactic form, and give them precise meaning in
terms of some underlying mechanism. Such alanguage must provide notations and toolsto
describe component models and their interactionsto form complete configurations. It must
handle large-scale, high-level interfaces, and it must support the adaptation of these inter-
facesto specific implementations. Three properties characterize what an ideal modul e def-

inition language (MDL) should provide: composition, reusability, and analysis [122].

Composition: Dictatesthat it should be possible to describe a system as an aggregation of
design entities and their connections. This allows design entities to be combined

into larger systems.
Reusability: It should be possible to reuse design entitiesin different system descriptions.

Analysis: It should be possible to perform arich analysis of system descriptions. Thisis

equivalent to verifying the correctness of the connectionsin the system.
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Figure 2-14. Flowchart of a single integration step

Even though the language was intended to implement the complete functionality of the
component, it presents some limitations on the descriptive power of the component. In this
language, the types of ports are all assumed real valued quantities. No effort was made to
associate energy domains to the ports asindicated before. In addition, an interface has only
one implementation. Binding the binary code that executes the implementation to theinter-
face description creates the default match between the implementation and the interface.
The language was not developed further because in our experiments we observed that the
approach taken was not the best suited for the kind of problems we were interested in solv-
ing. Inthe rest of thisthesis, we present a modeling paradigm that will overcome these dif-

ficulties.

2.5.1 Module

A moduleisan abstract definition of the behavior of afamily of components. It definesthe
logical points of interconnection between the component and its environment. Any number
of module instances can be obtained from a single modul e description. A module can have

any number of attributes of the following types:

* other module definitions called component modules
» connections

* ports

* initial values on the port variables
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A module is defined by the following grammatical construct:

nodul e_def ::= nodule identifier nodul e_qualifier
nmodul e_body endnodul e ;

nmodul e_body = interface_def
body_def |
interface_def body_def
body_def = subnodul es body_dec

connections body_connections ;
initialization body_initializations ;

The modul€’ s body has two parts: the definition of the module interface and the definition
of the modul €' s body which includes submodules, connections and initializations. The non-
termina symbol module_qualifier in the module definition rule serves the purpose of iden-
tifying the module as defining a configuration or a primitive component. In this respect, it
is semantically incorrect to define a module body for a primitive module because it is
assumed that a primitive has no other information except its interface. The primitive

module must be initialized in the configuration that is instantiating the module.

Hierarchical structures are constructed by local module definitions through the submodule
construct. The embedding of amoduleinto aconfiguration carries the following semantics:
amodule A with an embedded module B implies that every instance of A has an instance of
B (Figure 2-15).

This instantiation model meets the reusability property required in the definition of the

MDL. Since we can instantiate amodul e a number of times, given different module param-
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eters, the instantiation process will take care of the configuration of the module according

to the definition given in the configuration containing the module.

2.5.2 Interface

The interface of amodul e defines the communication channels between the module and its

environment. It is defined by the following grammatical rule:

interface_def ::= interface interface_constituent

An interface block contains a number of declarations that specify the number of input and
output portsthe length of the state vector. In addition, it identifies the module as integral or
direct feed-through.

Ports are the logical point of interaction between the component and the environment. A
port has adefined causality identified by two keywords: inputs and outputs. An input cau-
sdity value means that the environment in which the module is embedded computes the
value of the port. An output causality value means that the module owning the port com-
putes the value of the port. To illustrate these modeling constructs, consider the following
fragment.

Listing 2-6. The definition of a primitive module

nmodul e gi nbal is
interface
decl are(inputs, 2);
decl are(out puts, 4);
decl are(states, 4);
decl are(dft, false);
endnodul e;

In the example, the module gimbal is defined. This definition declares that the module
gimbal has two inputs, four output ports and four states. Since the output operator of the
gimbal module does not depend on its inputs, the module is classified asintegra (i.e., has
adirect feed-through value of false).
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2.6.3 Connections

A connection defines asymmetric relation between two ports. A connectionissemantically

correct only if the involved ports have identical structures and if they are connectable: two

ports are connectable if their causality is consistent.

Not all connection schemesare valid. We can classify connectionsin two types: type | con-
nections, which involve ports owned by modules that belong to the same configuration;

type Il connections, which involve a port owned by amodule embedded in a configuration

and a port owned by the configuration (Figure 2-16).

Given this classification, the semantic meaning of a connection can be interpreted as fol-

lows:

Table 2-2. Semantic meaning of connections in a configuration

Ports Typel Typell
X<in> y<in> — y =X
X<in> y<out> X:=y —
x<out> y<in> y:i=X —
x<out> y<out> — X:=y

A connection implicitly defines aconstraint equation between the variables associated with

the two ports.
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2.6.4 Initializations

Theinitialization block of amodul e servesthe purpose of providing the parametersrelevant
to the execution of the submodules. This results in code reusability; only one instance of
the executable code is loaded into the kernel, but it is used with different parameters. An

initialization is defined using the following rule:

body_init_decl::= setstate ( init_statenent_args ) |
setparam ( init_statenent_args )

init_statenent_args ::=identifier , array_def

An example of a complete module specification is given in Listing 2-7 on page 50.
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Listing 2-7. Example of the definition of a configuration

nodul e seeker isa configuration with
i nterface
decl are(i nputs, 4);
decl are(out puts, 2);
declare(dft, true);

subnodul es
g isa nodul e gi nbal ;
pid_y, pid_p isa nodule pid;
cl, c2 isa nodule coupling;
dc_p, dc_y isa nodul e dcnotor;

connections

g.in[0] @cl.out[0]; g.in[1l]] @c2.out[O0];
out[0] @cl.in[1l]; g.out[2] @c2.in[1];
out[0] @pid_p.in[0]; g.out[2] @pid_y.in[0];
out[1l] @pid_p.in[1]; g.out[3] @pid_y.in[1];
out[0] @out[0]; g.out[2] @out[1];

Q Q@

dc_p.in[l] @cl.out[0]; dc_p.out[0] @cl.in[0];
dc_y.in[l] @c2.out[0]; dc_y.out[0] @c2.in[0];

pid_p.out[0] @dc_p.in[0]; pid_y.out[0] @dc_y.in[0];
pid_p.in[2] @in[0]; pidy.in[2] @in[2];
pid_p.in[3] @in[1]; pid_y.in[3] @in[3];

initialization

setState(g, [0.0, 0.0, 0.0, 0.0]);

set Param(g, {[1l.041e-6, 1.118e-6, 1.660e-6],
[2.647e-7, 2.634e-7, 1.975e-7],
[2.079e-3, -1.266e-3, -8.206e-3, 54.2le-3],
[1.573, 0.81108]});

setState(pid_y, [-0.14]);

set Param(pid_y, [45, 0.01, 0.5]);

setState(pid_p, [0.14]);

set Param(pid_p, [30, 0.01, 0.6]);

setState(dc_p, [0.0, 0.0]);

set Param(dc_p, [4.05e-7, 7.9e-3, 8.13e-4, 100, 10]);

setState(dc_y, [0.0, 0.0]);

set Param(dc_y, [4.05e-7, 7.9e-3, 8e-5, 400, 10]);

set Param(cl, [1000, 10]);

set Param(c2, [500, 10]);

endnodul e;
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2.8 Summary

In this chapter, we described the software engineering abstractions used to develop com-
posable simulations of software components. Based on these software abstractions, we
described the system architecture of a computational tool for rapidly creating simulations

for mechatronic systems.

The abstractions are based on a three-level hierarchy: conceptual level, component level
and process level . Each abstraction level represents adifferent aspect of the model, and the
three collectively support composability of simulation software modules. Similar to aphys-
ical design where subcomponents come together to form large more complex components,
the simulation software components can be made up of smaller, smpler components by

combining them into a configuration.

We identified propertiesthat are shared by configurations and component models: interface
and implementation. The fact that they share these properties allows the use of configura-
tions in larger configurations as if the configuration were an individual software compo-
nent. The advantages provided by this characteristic are twofold: first, we have a
mechanism to hierarchically compose simulation models. This is useful when dynamic
reconfiguration of simulation software isrequired to achieve refinement, and therefore dif-
ferent levels of granularity, in the smulation. Second, we can exchange back and forth
between the use of a component or the use of a complete configuration both having the

same interface, thereby possibly reducing s mulation time.

Composability of software componentsis apowerful mechanism that provides hierarchical
composition of simulation models. Furthermore, it allows one to build the simulation of a
complex system that integrates mechanics with electronics and information technology

modules.
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chapter 3 LInear Graph-
Based Modeling of
Mechatronic
Systems

3.1 Introduction

Mathematical models of components identified in a physical system serve as building
blocks in the analysis and design of such system. These mathematical models in general
should cross energy domain boundaries to capture the complex interactions between differ-

ent energy processes taking place in the system.

A modeling paradigm to model the behavior of mechatronic systems needs to be able to
capture the complex inter-domain interactions that occur in the system. There exist differ-
ent methodol ogies that can be used to model such systems, including, object-oriented mod-
eling and graph-based modeling methods. In this thesis, we have taken the graph-based
approach. More specifically, we model mechatronic systems by means of a linear graph

that captures the energy flow of the system.
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Thelinear graph approach isbased on the fact that for any physical system we can find two
variables, namely, across and through variables that capture the energy flow through the
system. These two variables were first proposed by Trent [143] as a way of relating two
measurements, taken between the terminals of a physical component, to a mathematical
representation of the system. This representation captures the energy flow in the system
sincethe selection of across and through variables is made such that their product givesthe
power flowing through the component. We call these kinds of systems, conservative sys-
tems[60] because the flow of energy is constrained by two sets of equations, one that spec-
ifies that the sum of through variables entering a node is zero, and the other that specifies
that the sum of across variables around aloop of edges is zero. These equations are Kirch-

hoff’ s network equations of conservative systems.

In addition to conservative systems, mechatronic systems include non-conservative sys-
tems. These systems do not satisfy Kirchhoff’s networks laws. The signal domain of a

mechatronic system is a non-conservative system.

This chapter defines the two complementary variablesfor awide range of physical compo-
nents and presents the fundamental building blocks used to represent mechatronic systems,
including conservative and non-conservative systems. We propose a hybrid representation
based on acombination of linear graphs and block diagramsto capture the different aspects
of the system.

It isimportant to emphasize here that the modeling concepts presented in this chapter will
only be applied to energy domains other than the mechanical energy domain. Although the
concepts presented here apply to mechanical models in which the dynamic variables are
scalar variables, the process is quite different when planar and spatial mechanisms are
included in the analysis. Since the topic of rigid body dynamicsis out of the scope of this
work, we build on the work by Dr. McPhee in the Motion Research Group at the Depart-
ment of Systems Engineering at the University of Waterloo to deal with the mechanical
domain for complete spatial (3D) rigid and flexible body dynamics [69, 80, 81, 82, 83,
124].
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Figure 3-1. Two-terminal element.

The material presented in Section 3.2 isareview of the work by Roe [109] and Trent [143]
in Systems Theory. In Section 3.3, we extend this approach to model non-energetic systems
by using a hybrid representation based on linear graphs and block diagrams.

3.2 Dynamic system elements

In this section, we will summarize system elements and generalize their propertiesin terms
of energy storage, dissipation and transformation. A uniform terminology and symbolism
applicableto all the physical systems involved in a mechatronic system will be developed.
In addition, we will introduce the concepts of energy sources, which can supply energy to
dynamic systems, transformers, and gyrators. Proper use of these idealized lumped ele-

ments permits any physical system to be modeled.

3.2.1 Generalized variables, power and ener gy

A variable is a measurable characteristic of a system that may change with time. In this
modeling approach, asystem element is described by arel ationship between two variables,
athrough variable, which has the same value at the two terminals or ends of the element,
and an across variable, which is specified in terms of arelative value between the terminals
(Figure 3-1). These variables are called terminal variables. We will use the symbolsf, and

v to indicate any physical through and across variables, respectively.

These two variables may be expressed as the time derivative of the integrated through vari-
able h, and the integrated across variable x, respectively.



_dh
dt

v=I
dt

f
Equation 3-1

Table 3-1 lists the through and across variables f and v and their respective integrals h and

x for the various physical systems.

Table 3-1. Through and across variables for physical systems

Type of sys- | Through Integrated through | Across vari- | Integrated across
tem variable, f variable, h able, v variable, x
Mechanical | Force, F Tranglational Velocity dif- | Displacement differ-
tranglational momentum, P ference, v,, | ence, X,
Mechanical | Torque, T Angular momen- | Angular Angular displace-
rotational tum, h velocity dif- | ment difference,

ference, Q,, | O,

Electrical Current, i Charge, q Voltage dif- | Flux linkage, A o1
ference, v,
Hydraulic Fluid flow, Q | Volume, V Pressure dif- | Pressure momen-

ference, P,; [tum, I,

Thermal Heat flow, q | Heat energy, E Temperature | Not generally used
difference,

e21

The power flow [0 into an element or system through two points (1) and (2) which have a

common through variable f and an across variable difference v, is generaly
O = fvy, Equation 3-2

and the energy W transferred is the time integral of the power. Thus, during time interval

ty -ty

t t
W, = LbD dt = Lbfvﬂdt Equation 3-3
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Figur e 3-2. Tetrahedron of state for two-terminal elements.

The only exception to the relations given in Equation 3-2 and Equation 3-3 isthat in ather-
mal system power isthe through variableitself and energy istheintegrated through variable
or the amount of heat transferred.

3.2.2 Two-terminal e ements

An element or a system composed internally of many elements, which is described as
shown in Figure 3-1 by the relation between a single through variable f and a single across
variable difference v, , is called a two-terminal element or system. Since energy can flow
into or out of this system only by virtue of f and v,, (their product in most cases), the
system is often called a single energy-port. Since the behavior of the element isgiven by a
relationship between the terminal variables f and v, , the energy flow to or from the two-
terminal element is determined by either terminal variable. Three types of elements can be

identified: energy storage (delay and accumulator), dissipative, and source elements[143].

The generalized relations between the through and across variables for the delay, accumu-
lator and dissipative elements may be summarized with of atetrahedron of state [61, 112],
where the across and through storage variables determine the state of the element (Figure
3-2).
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3.2.2.1 Delay ener gy storage elements: generalized inductance

Generalized inductances are described by a single-valued rel ationship between the through
variable (f) and the integrated across variable (x). For such an element we can write this

relationship as follows:
Xo1 = g(f) Equation 3-4

where x,; = 0 whenf = 0. If theelement isideal (i.e., linear), we can write Equation 3-

4as X, = Lf,orif Lisconstant,

_ 9(21 df

Va =g T La Equation 3-5

where L is called the generalized inductance. For ideal springs, L isthe reciprocal stiffness
or compliance; for ideal inductances, L isthe inductance; and for ideal hydraulic elements,

L istheinertance.

The energy W supplied to a delay element defined by Equation 3-4 is

th f .
W = Lafv21dt = jofolx21 Equation 3-6

The energy function isafunction of theterminal equation and the final value of the through
variable. Energy is thus stored by virtue of the through variable, and these elements are
called delay energy storage elements. Table 3-2 summarizes the delay energy storage ele-

ments.

Table 3-2. Summary of delay energy storage system elements.

Physical ele- | Termina equa- | Energy function |Ideal terminal | Ideal energy
ment tion equation

Tranda- X, = o(F) F 1dF 5
tional spring 2 W = Io Fdx,, |vy, = Kat W = %F?
Rotational 0,, = g(T) T 1dT 172
Spring W = IOTdG)Zl Q21 = Ra W = EE
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Table 3-2. Summary of delay energy storage system elements.
Physical ele- | Terminal equa- | Energy function |Ideal terminal | Ideal energy

ment tion equation

Electrical A, = g(i) i g 1 -
inductance | - e joudA21 vy =L W=l

Hydraulic M, = 9(Q) Q dQ W = 1| 2
inertance W = Io Qdry | Py = I = 31Q

3.2.2.2 Accumulator energy stor age elements. generalized capacitance

Translational and rotary masses, as well as electrical, hydraulic, and thermal capacitances

are defined by a single-valued function of the form:

h = g(v,) Equation 3-7
where h is the integrated through variable and is defined as zero when v,, is zero. In all
cases except the electrical capacitance, the elements described by Equation 3-7 must have
one terminal attached to a constant across variable so that dv,/dt = O; i.e,, areference
point.

For any ideal capacitance,
h = Cvy, Equation 3-8

and, if Cis constant,

dv.
-dh_ c.2t Equation 3-9

f‘& dt

where Cisthe generalized capacitance. For ideal masses, C isthe mass or moment of iner-
tia. For ideal electrical, hydraulic and thermal capacitance, C isthe electrical, hydraulic or
thermal capacitance, respectively.

The energy supplied to a generalized capacitanceis

L Va1
W = ["vyfdt = [ vydh Equation 3-10
t, 0
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Energy is, therefore, stored as afunction of v,, and this type of element is called accumu-

lator energy storage element. Table 3-3 summarizes the accumulator elements.

Table 3-3. Summary of accumulator energy storage system elements.

Physical ele- | Terminal equa- | Energy function | Ideal terminal | Ideal energy
ment tion equation
Tranda- p = g(V,) v, dv _1 2
tional mass ? W = Io v,dp F = ma2 W =5M;
Inertia h =qg(Q Q, 1..2
9(822) W = I Q,dh | T = Jd_Qz W =33Q;
0 dt
Electrical q = g(V,) Vor dv _1.2
capacitance - W= Io Vpdg = 521 W= 5Cva
Hydraulic | v = g(P,) P, dP _ 1.2
capacitance 2 W = Io P,dv Q= Crgt 2 |W=5GP

3.2.2.3 Energy dissipator element: generalized resistance
Translational and rotational dampers, and electrical, hydraulic and thermal resistances are
defined by the single-valued function:

f = 9(vy) Equation 3-11

wherethefunctiongissuchthat f = 0 whenv,, = 0 andthesignsof fand v,, areaways
the same. An element that meets the requirements of Equation 3-11 iscalled a generalized

resistance. If theresistanceisidedl,

f= évﬂ Equation 3-12

where R is the generalized resistance of the element. The resistance of ideal translational
and rotational dampersisthereciprocal of the damping coefficients. the electrical, hydrau-

lic, and thermal elements have their resistances equal to R.

The power [ supplied to a generalized resistanceis:

O = fvy, = vy 0(Vyy) Equation 3-13
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Sincethesignsof fand v,; arealwaysalike, O isalways positive and power always flows
into the resistance. Hence, the generalized resistance dissipates energy, and it is called
energy dissipator element. Table 3-4 showsthe energy dissipator elementsfor the mechan-

ical, electrical, hydraulic, and thermal systems.

Table 3-4. Summary of energy dissipator system elements. 0 =0.

Physical ele- | Termina equa- | Power function Ideal terminal | Ideal power
ment tion equation

Trandational | F = g(v,,) O = Fvy F = bvy O = bvg1
damper

Rotational T=9(Q,) |0 =TQ, T = BQy O = Ble
damper

Electrica i = 9g(vy) 0 =y i =1y 0 =12
resistance R'Z R
Hydraulic Q=1(Py) |0 =QPy _ 1 _ 1
resistance Q= Efpﬂ 0T EfP21
3.2.2.4 Energy sources

By source we mean a device capable of delivering energy continuously to a system. Two
types of idealized sources are considered, one in which the across variable is a prescribed
function of time, and one in which the through variable isaprescribed function of time. The

first type of idealized source is called an across source and the second is called a through

Source:
Va1 = 9,() Equation 3-14
f = gy(t)

Although sources are usually used to supply energy to asystem, the source may also absorb
energy. When the source is absorbing energy, the sign of the conjugate variablefor asource
(ffor an across source or v,, for athrough source) is the same asthat of the variable defin-
ing the source. For any source, the flow of power into the sourceis = fv,, > 0. If f and
v,, areof oppositesign [0 <0 (the source suppliesenergy). Although [ can also be neg-
ativefor energy storage elements (energy isbeing removed from the element), only sources

can supply power and energy continuously over an extended period of time.
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Figure 3-3. Terminal graph for couplers

3.2.3 Multi-terminal components

Multi-terminal components, called couplers, arise in system modeling to capture interac-
tions between two energy domains, or to provide transformations between terminal vari-

ables of the same energy domain.

Theterminal equation for acoupler specifieswhether it is obtained from ahybrid parameter
model or not. Hybrid parameter couplers are called direct couplers because in their ided
form they impose constraints on dynamic variables of the same type. That is, constraints
between across variables a one or constraints between through variables alone. Non-hybrid
parameter couplersare called inver se couplers becausein their ideal form they impose con-
straints between variables of different types[143]. Figure 3-3 showsthe terminal graph for

direct or inverse couplers.

3.2.3.1 Direct couplers (transformer)

Terminal equations for direct couplers are of the form:

h.. h f
[Va] - [ aa ab] [ a] Equation 3-15
fi hpa Ppy| | Ve

Matrix H is assumed to be invertible so that one can find a new model where the roles of
the across and through variables are exchanged. If welet h,, = hy, = 0 and hy, = —h,,
we obtain the model of an ideal direct coupler. That is, the coefficient matrix for an ideal

coupler is skew-symmetric so that no power is stored in the element:
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v 0 h,l|f
O =|fv|| 3 = |f.v ab| | "al = Equation 3-16
[a J [fb] [a J [_hab 0] |Vp
Examples of direct couplers are shown in Table 3-5. With the exception of the electrical
transformer, transformersin other energy domains must have the terminals 1 and 3 (show
in Figure 3-3) common (this requirement does not apply to direct couplers that model

energy transducers).
Table 3-5. Example of physica elements represented by generalized direct couplers. These models are
based on those presented by Roe [109].

Terminal equations

Name
Gear train (transformer) r NG
b
O —
Qu _ | N, H
T N0
Na

0
[V41] - a
F. Ty 0
ra

Lever (transformer)

—
o

ol
1
<
N o

where rp/r, isthe lever ratio.

Electric transformer r 7
Np
0 —IrT.
i N V.
a b 0 21
Na
where N,/ N, istheturnsratio.
DC motor (electrome- q
chanical transducer) [v21] ) R,+L agt Ke [ ia]
T d/|Q
b —Km By Iy L%

where kg and k;,, are the electrical and motor
constants respectively.
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3.2.3.2 Inverse couplers(gyrator)

Terminal equations for inverse couplers are of the form:

f
Va| = [qaa qati [ﬁi Equation 3-17
Vb Apa Gbo) |
Thisis ageneraization of atwo terminal dissipative component. This form of the inverse
coupler terminal equations is called impedance form since it represents a dissipative com-

ponent where the independent variables are through variables. If the model isinverted, we

obtain the second form of an inverse coupler: the conductance form.

H _ [gaa gati H Equation 3-18
fo Oba Yob| | Vb
Where G = Q1. If the coefficient matrix of an inverse coupler is also skew-symmetric,

we have the ideal inverse coupler form and no power is stored in the element:
f
0 = [r6) 3 = [laty 0 vl |fal = g Equation 3-19
Vb ~Uap O |Th

These models represent non-ideal characteristics of their corresponding system compo-
nents. However, we can make some simplifications to find the idealized model, which will
be of one of the previous two classes: direct or inverse ideal coupler. For example, if in the
model of the gear train we neglect the damping coefficient and the inertia effects we obtain
the ideal direct coupler. Smilarly, if we neglect the leakage, damping and mass in the

model for the hydraulic piston we obtain the ideal inverse coupler.

An example of an inverse coupler isthe hydraulic piston:

Fal _ {0 A} Va1 Equation 3-20
Q) |-A0||P

where A isthe area of the piston.
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3.2.4 Linear graph representation of n-terminal elements

A two-terminal component that is connected to two terminals, A and B, in agiven system,
can be represented as a directed edge between two vertices, a and b, in agraph. In general,
the graph representation of the component is adirected edge that joins two terminal points.
This graph representation is called terminal graph of the component, and associated with

thisterminal graph are the component’ sterminal variables. Thisisillustrated in Figure 3-1.

Often, there will be a one-to-one correspondence between the terminal graph of a two-ter-
minal component and the physical object; however, this does not aways have to be the
case. Consider the position of the center of mass of arigid body. To obtain meaningful mea-
surements, we require areference point with respect to which we will measure the position
of the center of mass. If we consider the position of the body in 3-dimensional space, we
need three measurements to determine its position unambiguoudly, for instance, the x-posi-
tion, the y-position, and the z-position, relative to the reference point. Each measurement is
given by an instrument located between two terminals; one terminal is associated with the
rigid body and the other terminal with afixed reference. If we also include the orientation
of the rigid body, three more measurements are needed. Therefore, the rigid body should
not be treated as a single component; rather it should be treated as if it were six distinct
components, each having itsown terminal graph. Thismeansthat thereisaclear distinction
between simulation component and system components: a simulation component isamod-
eling abstraction used to characterize a dynamic property of a system component and thus
it is related to a terminal graph. If we admit the variables associated with the termina
graphsto be elementsof (16 we can represent the rigid body as a single two-terminal com-
ponent having vector-valued across and through variables (Figure 3-4), however we must
not forget the fact that we need six measurements to determine the position and orientation
of the object.

Another aspect of interest in modeling physical systemsisthat of non-ideal properties. For
instance, one might be interested in modeling the passive (resistive) effects occurring in a

transformer while it is coupling two e ectric networks. In such situations, one treats the
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Figure 3-4. Displacement measurement of arigid body in space with respect to areference frame.

device as being two components, separating in thisway the coupling function from the pas-
sive function. A similar decomposition arises when a physical inductor is treated as two
components, an ideal inductor with aresistor in series. In this case, the physical deviceis
not described by a single terminal graph but rather by a collection of terminal graphs each
modeling a particular aspect of the device.

Interactions between components in different energy domains cannot be described with a
two-terminal element. It is necessary to introduce el ements that have more than two termi-
nals; i.e., n-terminal elements. Within this category, we find the transducer elements pre-
viously defined. The system graph associated with an n-terminal element will be derived
from measurements taken between pairs of terminals. However, asis shown by Roe [109],
we only need n—1 across measurements to completely determine the across variables
between any pair of terminals. Thisnumber corresponds to the number of branchesin atree
selected in the graph of the n-terminal element. The graph of an n-termina element is
derived from connecting every terminal in the component to every other terminal in the
component. The terminal graph of an n-termina element isthetree T of n—1 edges con-
necting the n vertices corresponding to the n terminals of the system component. To illus-
trate this case consider the electric transformer (a 3-terminal system component) shown in
Figure 3-5. The graph of the component includes an edge from node 2 to node 4. However,
only two across measurements will completely determine the device giving a terminal

graph with two edges.
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Figure 3-5. n-terminal component

Asisthe case with two-terminal components, the edgesin aterminal graph of an n-terminal
component will be associated with measurements taken between terminal pairsin the phys-
ical system. The number m of independent across and through measurements required to

completely characterize the component has an upper bound:

m<n-1 Equation 3-21
Theinequality in Equation 3-21 holds if the component has any of the following two prop-
erties [143]:

1. For al t, an acrossinstrument placed between a pair of terminasgivesanull reading, in

which case the two terminal's can be treated as one.

2. Aninstrument attached to two points shows that these are dynamically independent; in

which case, an instrument needs not be attached at these two points.

In the case where multiple energy domains are associated with a given physical object, a
set of terminalsis associated with each energy domain. Once the sets of terminals are cho-
sen, the complementary variables (across and through variables) of each energy domain are

identified on the terminal graph associated with each energy domain (Figure 3-6)

In summary, there exists an isomorphism between linear graphs and physical systems. For
a system composed of m subsystems, the system graph is the union of al terminal graphs
for all the components of the system in one-to-one correspondence with their interconnec-

tion.
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Figure 3-6. Terminal graph identifying the variablesin a multi-domain component.

Thetopological propertiesof any graph are captured in two matrices, namely, theincidence
and the circuit matrices. For a system graph, these matrices provide the basis to define two

theorems of systems theory that define the conservative properties of a system [109].

Theorem |. The oriented sum of through variables associated with the edges incident on

agiven vertex is zero at any instant of time:

Ay =0 Equation 3-22

where matrix A is the incidence matrix of the system graph.

Theorem |1.The oriented sum of the across variables associated with the edgesin agiven

circuit is zero at any instant of time.

Bx =0 Equation 3-23

where matrix B isthe circuit matrix of the system graph.
The proofs of these two theorems can be found in [109].

Given these two theorems, we can restate Theorem A-l to account for our definition of

across and through variables as follows:
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Figure 3-7. Terminal graph of signal-controlled driver.

Theorem I11. If Tisan arbitrarily selected tree of a system graph, the across variables of
the chords of T can be expressed as linear combinations of the across variables of the
branches of T, and the through variables of the branches of T can be expressed as linear

combinations of the through variables of the chords of T.

The proof of thistheoremissimilar to that of Theorem A-l and it followsfrom Equation A-
6 and Equation A-7 in Appendix A.

3.3 Low-power component modeling

In order to include information technology components aswell as other types of low-power
devices in the system graph, it is necessary to extend the system graph representation to

includesignals. A signal representsthe value of some system variable asafunction of time.

To introduce signals in the system graph we define the concept of variable elements. A
variable element is an element that can have one or more input signals that modify its
response. The simplest variable element is the signal-controlled across or through driver.
In this case, either the across or through variable associated with the terminal graph will be
completely defined by the signdl; i.e.,, x(t) = f(s(t)) or y(t) = h(s(t)). Where x and y

represent across and through variables, respectively.

Similarly, a variable passive element is also signal-controlled, but here, the input signal is
modulating one of the element parameters (Figure 3-7). Output signals are obtained from

the system graph as “measurements’ of system variables (Figure 3-8).

In the context of mechatronics, it isimportant to have a system representation that is capa-

ble of handling signal elements. Mechatronic systemsincludeinformation technol ogy com-
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Figure 3-8. Reading values from aterminal graph
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Figure3-9. A positioning system. The system graph shows the interaction between the signal block and
the terminal graph.

ponents for which there is no energy flow and that therefore cannot be represented by a
terminal graph. As an example, consider an embedded controller. The control algorithms
are provided as algorithmic components that must interact with the rest of the system but

do not generate or transfer any measurable power.

Toillustrate this, consider a portion of a positioning system composed of an angular posi-
tion sensor, aregulator, and a current source (Figure 3-9). The regulator obtains the signal
input from the position sensor to provide an output signal used to modulate the current

source.

In summary, signals can only arrive at an edge of a termina graph and they can only be
read from abstract nodes associated with that edge. In this way, no ambiguities can arise
when augmenting the system graph with a block diagram describing the interaction of low

power components and we have a better representation to derive a set of system equations.

The synthesis of system equations proceeds by considering only the system-graph portion
of the entire model. This way the algorithms presented in Chapter 5 can determine a suit-

able causality assignment. Once the system equations are derived, the equations derived
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from the block-diagram are incorporated in the set of equations and a sorting algorithm is
performed to find a correct computational order of evaluation of the system equations

derived from the system graph and the computational blocks specified in the block diagram.

3.4 Port-based multi-domain modeling of mechatronic
systems

In this section, we present the modeling paradigm used to describe mechatronic systemsfor
which the behavior is given by alinear graph. In this approach, which is based on object-
oriented modeling concepts, system models are defined by interfaces, and interactions
between components are modeled by connections between components' interaction points.
The objective of thismodeling layer isto encapsulate all behavioral information (the linear

graph) into a single entity that can be used to build larger systems.

Simulation models of mechatronic systems must be able to capture interactions between
componentsin different energy domains. In thisrespect, weregard componentsfrom asys-
temspoint of view, i.e., asastructure of interrelated elements that are embedded in an envi-
ronment. Taking a systems approach to modeling mechatronic systems fits well with our
concept of composability—namely, as the synthesis of simulations through the definition

of the constituent components and their interactions.

In our modeling paradigm, subsystemsinteract with each other through ports[31, 35]. Ports
represent localized points on the boundary of the system where energy exchange between
the system and the environment takes place. At a port, energy flows in and out of the sys-
tem. Consequently, there is a port for each interaction point, and each port will belong to
an energy domain. The energy flow through aport is represented by means of the general-
ized across and a through variables (see Equation 3-1 on page 55). For example, consider
an electric transformer with four terminals. Each terminal represents a port through which
electrical energy flows in and out of the transformer. In this example, the ports belong to
the electrical energy domain; this captures the flow of power in terms of the voltages and

currents on the two sides of the transformer.
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Figure 3-10. Model of an engineering system. Energy ports are represented by non-directed lines while
signal ports are represented by arrows.

Connections between ports represent the interactions between different components. A
connection between two ports representsthe energy exchange between two subsystems and
imposes agebraic constraints on the port variables involved in the connection. In general,
these congtraints take two forms: one form enforces the equality of the across variables, and
the second enforces the sum of the through variablesto be zero;these are the Kirchhoff net-

work constraints.

Physical interactions that represent energy exchange have no predefined direction. There-
fore, we capture aphysical interaction with undirected connections representing non-causal
interactions. This approach to modeling reflects the physical interactions more accurately
and relieves the modeler of specifying the input/output relations, as would be required in a

modeling environment such as Simulink.

Besides ports and connections that model energy flow, we aso consider signals and signal
ports. No energy flows through the signal ports, and the interaction between signal portsis
causal. That is, signal ports have a predefined input-output direction that constrains the
signal flow between components. Signal and signal ports capture a system based on a block

diagram description similar to Simulink.

The system’ s ports are collectively grouped into an interface, which defines the interaction
points of the system with the environment. In this way, we can describe systems as self-
contained entities, whose i nteractions with the environment can be described independently

of theinternal behavior of the system, asillustrated in Figure 3-10.
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The port-based modeling paradigm can describe component interactions in any energy
domain aslong astheinteractionisnot distributed but lumped. Consider for example aflex-
ible beam. A finite element model may describe the behavior of the beam. However, pre-
suming that the interaction points of the beam arelocalized at the two ends, we can describe
itsinteraction with the environment with two portslocated at the two ends. Thus, our mod-
eling paradigm is limited to interactions that are localized at a finite number of points on

the boundary of the system.

Asillustrated in Figure 3-11, the port-based modeling paradigm also supports a hierarchi-
cal model structure. The hierarchy can have any number of levels, however, in order to
transform it into an adequate simulation model, the hierarchy must be terminated with

primitive systems, or systems that cannot be divided into smaller subsystems. Compound
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Figure 3-11. Hierarchical model structure

systems on the other hand are composed by connecting primitive models or compound

models at alower level in the hierarchy.

3.5 Summary

In this chapter, we defined the fundamental building blocks for modeling mechatronic sys-
tems. The approach is based on graph-theoretic concepts and is applicable to any physical
system for which we can find two types of variables: across variables and through vari-

ables. The graph-theoretic modeling paradigm was extended to include signal domain com-
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ponents. As aresult, we defined a hybrid modeling approach combining linear graphs and

block diagrams with signal-controlled elements.

The system graph definesthe topology of the energy flow of the system and in order to have
acomplete model weinclude the terminal equationsof the components. Terminal equations
model physical characteristics of the device and it was argued that a physical device may
have more than one terminal equation which in turn is associated with an edge of the ter-

minal graph of the component.

A last note on the terminal equations, they are non-causal relationships between terminal
variables. This fact provides greater modeling flexibility since the task of assigning the
causal formisnot part of the modeler responsibilities. The causal form is derived from the
topological properties of the system graph, which improves on model reuse and reduces

possible modeling errors.

The mathematical model described by the linear-graph approach is encapsulated into a
port-based object to provide aself contained entity that allowsits composition into alarger

system.

74



chapter 4  Synthesis of the
system graph for
mechatronic
systems

4.1 Introduction

In this chapter, we define the approach to synthesize the system graph of amechatronic sys-
tem. The approach takes two steps, which can be performed concurrently. On one side, the
system graph for the non-mechanical part of the system is built, and on the other side, the
mechanical system graphis built.

The system graph for a mechatronic system is constructed with the help of a system editor
that is tightly integrated with a CAD system. The approach to building a system in the
system editor is called schematic-diagraming. In this approach, the modeling is done at the
component level and the interactions between components are defined by connections
between terminals.

Asisshownin Figure4-1, the system editor isbased on the concept of modeling layerseach

of which represents a different energy domain of the system. The modeling layer for the
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mechanical energy domainisimplementedin aCAD system. When acomponent isbrought
into the system editor, the models that make up its entire description are included in their

respective modeling layers.

The user identifies the interactions between components by defining the connections
between the terminals of the components. Interactions are classified as. 1) mechanical
interactions, 2) terminal connections, and 3) edge associations. Termina connections and
edge associations arise from the interconnection of el ements in non-mechanical modeling
layers. On the other hand, mechanical interactions such as rigid connections, prismatic

joints or revolute joints arise from the interconnection of two rigid bodies.

Thediagramillustrated in Figure 4-2 showsthe different stages and the flow of information
required in order to arrive at aset of algebraic differential equationsthat define the behavior
of the system. This chapter covers the topmost nodes in the diagram, namely, the synthesis
of the system graph. The rest of the flow diagram will be covered in Chapter 5.

After the design isdefined in the system editor, the topology and geometry of the systemis
derived from the high-level description given in the system editor, which provides as out-
puts the system topology and its geometry. The analysis occursin two parts. the analysis of
the mechanical domain, and the analysis of the non-mechanical energy domains. In the
mechanical domain, the analysis starts by extracting the kinematic and geometric informa-

tion from the CAD model. This information is used in the generation of the mechanical

76



System
Editor

Model system
eometr
Fragments topology g y
model
fragments

eometric &
Kinematic
Anadysis

kinematic &
geometric properties

system graph

block diagram
equations

dynamic equations
3D system graph

Dynaflex

Reduction to
StateSpace Form

equations
of motion

DAE
Equation
Sorting
BLT form

Simulation
Kernel

simulation
output

Visualization

Figure 4-2. System data flow diagram.

77



system graph. The output of this process is passed on to Dynaflex [124] to generate the
equations of motion of the mechanism. The analysis of the non-mechanical energy domains
starts by deriving the system graph from the topological information provided by the
system editor. The system graph is used to write the terminal equations in causal form,
which are reduced to a state space form. This set of equations is combined with the equa-
tions derived from Dynaflex and with the equations derived from the signal domain. This
new set of equations is transformed to a set of differential algebraic equations, which is

sorted to find a computationally correct order of evaluation [34].

The output of the sorting processisasystem of equationsin Block Lower Triangular (BLT)
form [39]. In thisimplementation the equationsin BLT form are translated into ASCEND
language [100, 101], which is the target simulation language.

The output of the ASCEND simulation is sent to the visualization process. In this process
two different approaches are provided: 1) an animated view of the motion of the mechanism

or 2) agraph of the state variables versus time.

4.2 Synthesis of the system graph for non-mechanical
energy domains

Terminal connections represent the interaction between components within the non-
mechanical energy domains. Interactions are non-causal, which means that the terminals
involved in the connection do not have a predefined direction. A terminal connection

between two terminals indicates that both terminals are mapped to a single node in the

system graph.

Asdefined in Chapter 3, the mathematical model of a component consists of two parts: the
terminal equations (behavior) and the terminal graph (topology). The process of generating
the system graph is atwo-step process[32, 33]. First, the terminal graphs of the individual
components are instantiated to create a disconnected graph with n. components, where n.
is the number of terminal graphs in the system. Second, the information provided by the
terminal connections is used to reduce the graph to a non-connected graph with ng <n,

components, where ng is the number of energy domainsinvolved in the design.
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Figure 4-3. Schematic diagram of the electrical components of the missile seeker

We define atopological operator merge(u, v)—given two vertices u and v, merge combines
the two vertices into a single vertex such that the edges adjacent to u and v now share the
same vertex—asfollows. Let G bethe system graph definedby G = (V, E) whereVisthe
set of vertices and E is the set of edges represented as ordered sets { u, \} . Then,

{uvy OV=V « V-{\},

merge(u, v) O
ge(u, v) O(edE),vle=e~el,u

Equation 4-1
where the operator [, replaces the occurrence of vertex v by u in the ordered pair e.

The generation of the system graph is a transformation operation that reduces a non-con-
nected graph with n, components to a non-connected graph with ng components by a suc-

cessive application of the merge operator on the terminal graphs of the components.

To illustrate this, consider the design of the electric system of a missile seeker shown in
Figure 4-3. The components included in this design are signal amplifiers and actuators
(yaw and pitch). The initial system graph consists of n, = 4 terminal graphs. Terminal
connections derived from the system description are used to perform successive applica-
tions of the merge operation to reduce the electrical system graph to aconnected graph with
ng<n; = 1. For instance, the electrical system of the pitch-motor and the amp-voltage-
source are connected through connections (a, ¢) and (b, d) which result in two merge oper-
ations asindicated in Figure 4-4.

A similar process occurs with the other two electric components leaving an electric system

graph with two components. However, the termina connection between the amp-voltage-
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Figure 4-4. Topological operations to a connected electrical system graph

sources defines the common ground, which merges the ground nodes of the two compo-

nents reducing the electrical system graph to a connected graph with a single component.

Edge associations arise from the energy exchange between different energy domains. They
occur when system variables in the terminal equations of a component are associated with
other edgesin the terminal graph. For example, consider the terminal equation of the elec-

trical edge of a DC motor.
v(t) = K_0(t) +R+ L%i (t) Equation 4-2

Variable 6(t) isasystem variablethat is associated with an edge (in the mechanical system
graph) that is not part of the electrical domain. These types of variables are called exoge-

nous since they are assumed to be known within that portion of the model. The definition
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of exogenous variableswithin aterminal equation establishes an association between edges

in the system graph.

4.3 Synthesis of the system graph for 3D M echanics.

The difference between the system graph for non-mechanical energy domains and the
system graph for the mechanical domain liesin the dimensionality of theterminal variables.
Variablesin the mechanical domain are elements of [1° x SO(3) whereas variablesin the

system graph are elements of [J (i.e., scalars).

Once the system graph for the mechanical domain is generated, the dynamic equations of
the 3D mechanics of the system are derived using a sub-module (Dynaflex), which is spe-
cifically designed for the analysis of three-dimensional constrained mechanical systems
[124]. Dynaflex is a research system developed at the University of Waterloo based on a
graph-theoretic approach in which the connectivity of the bodies in the mechanism and the
forces acting on them are represented by a linear graph (mechanical system graph).
Dynaflex isbased on the same principles asthose used in the derivation of the system equa-
tions for non-mechanica energy domains, and therefore it can be seamlessly integrated

with our approach.

Our approach is general enough to accept different mechanism analysistools; however, the
only restriction isthat it must provide dynamic equationsin symbolic form. Thisis because
these equations are combined with the remaining system equations, which are derived from

the other non-mechanical energy domains (see Figure 4-2).

Similar to the basic modeling elements we defined in Chapter 3, Dynaflex provides a set of
modeling elements for mechanica systems, including, body elements, arm elements (posi-
tion vectors), motion and force drivers, spring-damper-actuator elements, and joint ele-
ments[124]. This classification of elementsis used in away analogousto that presented in
Chapter 5 to find the normal tree of the system graph. Once the mechanical system graph
has been defined—as indicated later in Section 4.3.2—penalty costs are assigned to the
edges of the system graph based on the type of element they model. Thisweighted graph is
used to find atree that will define the causality of the terminal equations associated with
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the edgesin the mechanical system graph. Thistreeisfound by applying the minimum cost
gpanning tree algorithm to the weighted graph.

4.3.1 3D mechanisms

In this section we present asummary of the featuresthat are available in Dynaflex, and that

we use to describe our mechanical models.

A 3D mechanism is defined as afinite number of bodies (rigid or non-rigid) connected in
an arbitrary fashion by mechanica joints that limit the relative motion between pairs of
bodies. Multibody systems contain a number of fundamental elements, which can be clas-

sified asfollows:
* Rigid bodies.
» Jointsthat provide kinematic constraints.

» Forces: springs, dampers, actuators.

In the following subsections, we describe the types of kinematic constraints and external
forces that can be included in the mechanism (i.e., elements defined by Dynaflex) as well
astheir linear graph representation. The material presented herein isfor completenessonly.
Its presentation will make it easier to understand Dynaflex’ representation of 3D mecha-
nisms and the algorithms to automatically derive this representation from the CAD model
(Section 4.3.2).

4.3.1.1 Kinematic constraints

To define the kinematic joints in the system uniquely, we assume that the mechanism does
not have fully constrained joints (i.e., they are not rigidly connected). If this were not the
case, then the bodies that are involved in the joint should be combined into asingle rigid
body to avoid structural singularities or index problems in the resulting equations of

motion.

For a 3D mechanism with an open kinematic chain, if n is the number of bodies we will
find that there will be exactly n—1 articulated joints. With thisin mind, we must make a

number of choices to appropriately specify the kinematics of ajoint.
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1. Choice of body fixed reference frame—for each body i (i = 0...n) abody fixed refer-
ence frame must be chosen. On bodiesi = 1...n theorigin of the reference frame
must coincide with the center of mass of the body, while for the ground body (n = 0)

any point can be chosen as origin.

2. Choice of reference bodies—in general, the choiceis arbitrary. However, we must
decide for each joint, which of the two coupled bodies is considered as the reference
body and which oneisthe body in motion relative to the reference body in order to find
an orientation for the edge that represents the joint in the system graph (see vector c; in
Figure 4-5).

3. Choice of articulation points—for each jointj (j = 1...n) anarticulation point on each
of the corresponding bodies is defined. To isolate the effects of reaction forces on each
connected body, thejoint is broken up asillustrated in Figure 4-5, wherer; and r; are
two edges in the terminal graph of the joint. Their terminal equations define position
vectorsinalocal reference framethat identify the position of the articulation points A, .
Edge ¢; represents the joint. This edge is directed towards the body whose motion is
relative to the reference body. The terminal equations associated with edge ¢; are
grouped into the (r, F¢) set of equations. The set r, = (X, w) contains the terminal
equations for relative displacement and angular velocity of the joint. The set

F. = (F, T) contains constraint forrce/torque terminal equations.

Every kinematic joint imposes forces and/or torques as well as kinematic limits on the rel-
ative motion of the connected bodies. The nature of these forces and torques provides a
classification scheme of different kinematic joints [69] among which we include the fol-

lowing.

Revolutejoint. The revolute joint allows no relative displacement between the connection

points but imposes a rotational constraint such that rotation can occur only about one axis:

x=0 T=0 Equation 4-3
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Where u is the unit vector along the axis of rotation, and ¢ is the angular displacement
about that axis.

Prismatic joint. The prismatic joint allows no relative rotation between connected bodies
but permitsrelative translation along afixed vector on one of the bodies. The terminal equa-

tions are the following:

Equation 4-4

where lAJ Is a unit vector along the diding axis, w isthe angular velocity associated with
thejoint and sisthe trandational displacement of the moving body relative to the reference
body.



Fixed joint. The fixed joint allows neither relative rotation nor relative translation of the

connection points. This joint specifies arigid connection between two bodies:

=0 .
X Equation 4-5
w=20
43.1.2 Forces

In Dynaflex, two types of forces are identified: those acting on ajoint or on abody from an
inertial reference frame (called force driver element) and those acting between bodies (rep-

resented by spring-damper-actuator elements).

The first type of force driver, called position driver, is represented by a vector departing
from the origin of theinertial reference frame and directed towards the point of application
of the force. The second type of force driver, or joint driver, is represented by spring-
damper-actuator elements located parallé to the joint’ s degree of freedom. The definition
of ajoint force driver element acting parallel to ajoint specifies three spring-damper-actu-

ator elements, one for each degree of freedom the joint might have.

Forces acting between bodies are represented by spring-damper-actuator elements. Gener-
ally these elements appear together as shown in Figure 4-6, thus they are incorporated in a

single spring-damper-actuator element having the following equations:

Letr,, kO{i,j} inFigure4-6 betwo edgesof theterminal graph of the element. The ter-
minal equations associated with edges I represent the positions of the attachment points
P\ in the inertial reference frame. The length of the spring-damper-actuator element can

be written as:
I =|r—ri Equation 4-6

and the timerate of change of length is then

_ (rj—r;) Hrj=r;)

I =il

Equation 4-7

The force vector of the spring-damper-actuator is given by
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Figure 4-6. Spring-damper-actuator element

F = [k(l —lg) +dl + F(t)] u; Equation 4-8

wherek, d, F are the spring constant, damping coefficient and actuator force respectively,
o is the undeformed spring length and u;; is the unit vector that defines the direction of

the element in space.

Similarly to the translational spring-damper-actuator element, torsional spring-damper-
actuator elements may be defined between adjacent bodiesthat are connected by arevolute

joint. For such element the net torque can be written as

T = [k(8-8p) +d,8+ T(D)]uj Equation 4-9

Where k;, d., T are the spring constant, damping coefficient and actuator torque respec-
tively, 6, is the undeformed spring angular displacement and u; j is the unit vector that

defines the direction of the element in space.

4.3.1.3 Kinematic analysis of the 3D mechanism

The system graph of the mechanical system captures the topology of the mechanism. How-
ever, to have a complete model, geometric and inertial information must be added to the
topology. Work related to kinematic and geometric analysis [126] allows us to automati-
cally determine the instantaneous kinematic relationships between components in the

mechanism. This geometric analysis further provides information about the origin of the
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inertial frame, the center of mass of each body, the location of articulation points in each

body, the type of joint, and the points of application of internal forces.

Using a geometric kernel (ACIS) and the kinematic analysis tools developed in our group
[126], we are able to update the kinematic information in the mechanical system graph from
changes made in the CAD model. In the future, the geometric kernel can be replaced by a
commercial CAD environment. As aresult, modifications to the geometry of a component

ina CAD system could be automatically updated in the corresponding simulation model.

4.3.2 Synthesis of the mechanical system graph

The process for obtaining the graph representation suitable for Dynaflex consists of three
steps. First, an extended system graph is generated. This step maps the geometry of the
mechanism directly into alinear graph representing itstopology. The second step identifies
composite bodies consisting of rigidly connected subcomponents. In a final step, single
bodies replace composite bodies reducing the system graph to a minimal graph with the

same topological properties.

The generation of the extended system graph involves adirect trandation of the kinematic
information into the linear graph representation. The result of this translation is a system
graph that includes all kinematic information including fixed joints and redundant joints.
However, to avoid structural singularities or index problems, and to improve the efficiency
of the symbolic computationsin Dynaflex, we ssmplify thisinitial system graph by lumping

all rigidly connected bodies into a single composite body.

Algorithm A. (Synthesis of the mechanical system graph). This algorithm takes a kine-
matic description of a 3D mechanism and generates an extended system graph describing
the topology of the system. Bodiesin the system are identified by integer numbers from O
to n where the Oth body is assumed to be the ground body. M odeling elements are repre-
sented by single edge terminal graphs.

Al. Defineaninertial frame of reference. Assign anodein the system graph to the origin

of the inertial frame. Call this node ny.
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A2.

A3.

A4.

A5.

AB.

For each body i (i = 0...n) in the system, assign a node n; to the center of gravity

CG,.

Foreach body i (i = 0...n), add arigid body element and a force driver element

modeling the weight of the body from ng to ny.

For each joint j (j = 1...n) connecting bodiesk and |, assign a node nj, to an articu-
lation point in body i (i =k, I). Assign aposition vector element to each of the con-
nected bodies such that the element is oriented from n; (i =k, I) to nj,. If joint j isa

prismatic joint, adiding vector element is assigned instead.

For eachjointj (j = 1...n) assignajoint element oriented from n, to ny, where
body k is assumed to be the reference body. A restriction imposed by Dynaflex is
that a prismatic joint be represented by two elements: a sliding vector e ement and a
fixed joint. Thusif joint j isaprismatic joint, in addition to replacing the position
vector element by a sliding vector element we also assign afixed joint element prop-

erly oriented.

Assign a position vector element oriented from ng to ng to specify the position of the

ground body with respect to the inertial frame.

Performing a depth-first traversal on the extended system graph identifies composite bod-

ies. The agorithm explores all paths created by rigid connections and collects all bodies

along the path into asingle composite body. We can formally state the algorithm asfollows:

Algorithm B. (Composite body identification). The algorithm takes as an input the sys-

tem graph and generates as output the set of composite bodies. The algorithm uses the fol-

lowing sets to keep track of all nodesin the graph: the set CLOSED, contains all nodes
aready visited. The set LUMPS contains all the composite bodiesin the system. OPEN is

aset containing all the nodes to-be-visited. ¢ contains the bodies to be combined into the

current composite, and SY STEM is the set of CG nodes of the system graph.

B1.

Set CLOSED ~ U, LUMPS - [0
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B2. While SYSTEM # [0 do
B3. Setcg -~ first(SYSTEM), & — {cg} ,
B4. OPEN -~ sucessors(cg) \ CLOSED,
SYSTEM — SYSTEM \ {cg
CLOSED  CLOSED [ { cg
B5. While OPEN # [0 do
B6. cg — first(OPEN),
B7. £ -&0{cg,
OPEN ~ (OPEN\{cg} ) O (sucessors(cg) \ CLOSED)
SYSTEM — SYSTEM \ {cg}

CLOSED ~ CLOSED [O{cg
B8. Continue B5.
B9. Set LUMPS — LUMPSO {&

B10. Continue B2.

B11. The algorithm terminates. We have checked all bodies in the system and have
defined the composite bodies that must be created.

Algorithm B uses the predicate successors. Given a node in the system graph, successors
returnsthe adjacent nodesif the path to these nodes is through arigid connection. However,
since we want to find the path of all fixed joints we require that adjacent nodes satisfy the
condition that a node ns is a successor of node ny, if and only if ng is adjacent to an edge e

of type position vector or type fixed, and the edge e is incident to node n,,.

The last stage in the synthesis of the system graph is to perform the reduction process that
will combine the identified bodies into single composite bodies and remove redundant

joints. To find redundant joints we first need to determine those bodies that are constrained
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by more than one joint. We do this by detecting loopsin the system graph where the bodies
in the loop appear more than once. Once we have found such bodies, the next step is to
decide wether the joints that constraint these bodies are redundant or not. Revolute joints
areredundant if and only if their axesare colinear. Thiswould result in an over constrained
mechanism for which one of the two joints can be discarded for analysis purposes. If their
axes are not colinear, either because of numerical inaccuracies or because of design intent,
the configuration represents an overconstrained body for which we cannot discard any of
the joints for analysis purposes. In this event, the algorithm reports the problem to the user
stating that the system is fully constrained. The reduction algorithm can be stated as fol-

lows:

Algorithm C. (Graph reduction). All bodies i [J ¢ are lumped together and all their cor-
responding elements are replaced by one single rigid body element. This new element has
an attribute that specifies what individual bodies are composing this compound body. This
attribute is used to compute geometric and physical properties of the compound object.
The input to the algorithm is the system graph and the set LUMPS computed by Algo-
rithm B.

Cl. Set n — [LUMPS . For 1<k<n replace the edges in the system graph which are

associated with the bodiesin LUMPS, for single edges that represent the element

LUMPS,.

C2. Set joint — articulatedbodies(LUMPS) . Inthis step we obtain a set of equiva-
lent joints formed by the new bodiesin the new graph. This process takes the old
joint definitions and maps the constrained bodiesto the lumped bodies, thus creating

new joint definitions in terms of lumped bodies.

C3. Step C2 may reveal that any two bodies are connected by more than one joint. Since
thisis not allowed we must remove redundant joints. We decide which joints to
remove as follows: if any two bodies are connected by more than one joint and at
most one joint has an associated motor, we keep the actuated joint and remove the

rest. If no motors are associated with any redundant joint, we arbitrarily pick one. If
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there are more than one actuated joints thisis an error condition and the systemis

overconstrained and cannot be solved. Set m — |joint].

C4. Foreachjoint (j = 1...m) connecting bodiesk and |, assign anode n;, to an articu-
lation point in body i (i =k, I). Assign a position vector el ement to each of the con-
nected bodies such that the element is oriented from n; (i = k, ) tom,. If jointjisa

prismatic joint, the diding vector element is assigned instead.

C5. Foreachjoint (j = 1...m) assignajoint element oriented from nyy, to ny, where
body kisassumed to be the reference body. If joint; isaprismatic joint, in addition to

replacing the position vector e ement by a dliding vector element we also assign a

fixed joint element properly oriented.

As an example of how these steps are followed consider the design of a missile seeker
shown in Figure 4-7.
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This design contains 9 bodies: housing, gimbal ring, camera, pitch connector (2) yaw con-
nector (2), shaft (2). A kinematic description of the system reveals that there are a number
of bodies that may be combined to form composites (Table 1).

Table 1. Kinematic description for the seeker system
Type of Joint Reference body Secondary body

FIXED housing pitch connector (a)
FIXED housing pitch connector (b)
REVOLUTE* pitch connector (a) gimbal ring
REVOLUTE pitch connector (b) gimbal ring
FIXED gimbal ring yaw connector (a)
REVOLUTE* yaw connector (a) shaft (a)
FIXED gimbal ring yaw connector (b)
REVOUTE yaw connector (b) shaft (b)
FIXED shaft (a) camera
FIXED shaft (b) camera

From the kinematic description shown in Table 1, the first stage of our derivation generates
an extended system graph shown in Figure 4-8. Secondly, Algorithm B identifies the com-
posites listed in Table 2.

Table 2. Composite bodies found by Algorithm B
BODY_1 shaft (b) camera shaft (a)
BODY_2 housing pitch connector (b)  pitch connector (@)
BODY_3 gimbal ring  yaw connector (b)  yaw connector (@)

Finally, the reduction stage yields the following kinematic relations:

Table 3. Kinematic description for the composite bodies in the seeker

Type of Joint Refer ence body Secondary body
REVOLUTE BODY 2 BODY 3
REVOLUTE* BODY 2 BODY 3
REVOLUTE BODY 3 BODY 1
REVOLUTE* BODY_3 BODY 1

92



RV

n2 A n7
RV - RV
n5 _ >
C) Ny
5 N
S §
< 2 <
w B & @
RV % 2. 8 s 5
N e z g
Q o 3
% =
nl Qof n9
(N « O
@ e W
Oyq;

W Sing w
n4 n3
pitch connector (a) no camera

W: WELD joint

RV: Revolute joint
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Notice that there are two revolute joints per pair of composite bodies. Kinematic analysis
reveal s that the rotation axes of each pair of joints coincide. For the Dynaflex analysis, one
of the two points is removed to avoid concluding over constrained kinematics; only the
joints marked with an asterisk are considered. At the end of the reduction process, we
obtain the reduced mechanical system graph shown in Figure 4-9.

In addition to the inertial parameters and the kinematic properties, dynamic elements such
as external forces, and forces acting between any two bodies are included in Dynaflex rep-
resentation. For this example, only two force elements are introduced: e8 and €12, which
are the result of the motors built into the corresponding joints. Furthermore, we introduce
gravity forces acting on the bodies at their center of mass (el, €3, €5) representing the
weight of BODY_2, BODY _3, and BODY _1, respectively.
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Figure 4-9. Reduced mechanical system graph

4.4 Summary

In this chapter, we defined the algorithms to automatically synthesize the system graph of
amechatronic system. In general, the system graph is anon-connected graph in which each

connected component corresponds to an energy domain involved in the system.

It was shown that the process of generating the non-mechanical system graph involves the
topological modification of the system graph formed as a non-connected graph where each
connected component corresponds to aterminal graph. For the mechanical system graph,
it was shown that the extended graph is a direct trandation of the kinematic information
into the graph representation. However, to avoid structural singularities or index problems,
this graph is further reduced to combine rigid bodies connected by fixed joints. As alast
step, the articulated redundant joints are removed from the graph to prevent Dynaflex from

considering the system to be overconstrained.
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Chapter 5 Automatic
Generation of
System-level
Dynamic Equations

5.1 Introduction

A modeling environment capable of generating the dynamic equations of the system
requires the ability to determine the causality of the equations. Recall that the basic condi-
tion for composability isthat the equationsin the model be non-causal. Causality is defined
once the compl ete topology of the system is known.

Converting the system of non-causa equationsinto a system of causal assignments can be
divided in two major steps: first, finding the causal directionsfor all the equations and sec-

ond, sorting the equations into a computationally feasible order of evaluation.

Care must be taken when the system of equations includes software components; software
components have fixed causality which imposes restrictions when mixing symbolic equa-

tions and software components.
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Finding anormal treein the system graph causally orients the system of equations. Sorting
of the equationsis performed by a modification of the classic Block Lower Triangular algo-

rithm to account for software components in the system of equations.

5.2 Algebraic properties of linear graphs

The terminal equations are insufficient to describe the mechatronic system completely. An
additional e equations are required to make the problem well-posed: 2e equations in 2e
unknowns. These additional equations are derived from the connectivity of the components

given by the topology of the system graph.

In any connected graph G, atree T isaconnected subgraph that contains all the nodes of G
but no loops. The edges that are not part of the tree form asubgraph T called cotree. For a
graph with e edges and v vertices, there are exactly v—1 branches (the edges of T). Con-

sequently, the number of chords (the edges of T) in the cotreeequals e—v + 1.

If we add any chord between any two vertices in the tree, we establish a circuit. Sincein a
connected graph thereare e—v + 1 chordsfor agiventree T, there are as many unique cir-
cuits defined by the chords of T. These are called f-circuits (fundamental circuits) of the

graph and an element of this set is called f-circuit.

The branches of T provide the dual of the f-circuits: the f-cutsets (fundamental system of
cut-sets). A cut-set of a connected graph is the set of edges such that the removal of these
edges from the graph leaves the graph partitioned in exactly two connected components.
The f-cutsets with respect to atree T of a connected graph G isthe set of v—1 cut-setsin
which each cut-set includes exactly one branch of T. An element of thef-cutsetsiscalled a
f-cutset.

We now regard the system graph as two subgraphs, a spanning tree’ T and a cotree. We
can identify v—1 pairs of terminal variables (v, f;) with the branches of the spanning
treeand e—v + 1 pairs of terminal variables (v, f-) with the chords of the cotree. If the

system graph is divided in two non-connected subgraphs by a cut including exactly one

1. A spanning tree for G is afree tree that connects all verticesin G.
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branch of T and some chords, the cut isunique (i.e., an f-cutset). It isclear that for atree T
with v—1 branches, there will be as many unique cuts; i.e., the f-cutsets of the system

graph with respectto T.

The connectivity relations of the system graph can be compl etely specified by means of the
augmented incidence matrix, denoted A . Theincidence matrix isasquare matrix of dimen-
sionsv x e, wherev arethe vertices and e are the edges of the system graph, and it contains
information both about the orientation of edgesin the graph and how they arejoined to form
nodes (See “Matrix representations of linear graphs’ on page 181).

In general, for a graph with p connected components, the incidence matrix is a direct sum.
A matrix M is said to be adirect sum of rectangular submatrices M, M, ...M,, if for any
M, in M no nonzero element liesin arow or column of M associated with any of the other
submatrices [143]. The existence of adirect sum in amatrix aways indicates the existence
of subgraphs; therefore, the M, matrices can be regarded as the incidence matrices of each

of the p connected components.

Consider the incidence matrix A of a connected graph (p = 1) G. Since the sum of all
rows of A equals zero, its rows are linearly dependent. Removing any row from A will
leave v—1 linearly independent rows. We call this new matrix the reduced incidence
matrix, denoted A. From graph theory [121], we know that if T is a tree of a connected
graph G, the v—1 columns of A that correspond to the branches of the tree T constitute a
nonsingular matrix. Thusif atreeis chosen and the columns of A are properly arranged, the
matrix A can be partitioned into the (v—1) x(v—1) submatrix At referring to the
branches of the tree only, and the (v—1) x (e—v+1) submatrix Ac, referring to the

chords or to the cotree.

A = [AT Ac} Equation 5-1

Two new matrices can be defined to describe the topology of the graph. The fundamental
circuit matrix (designated B) captures the connectivity relations between circuits and
edges, and the fundamental cut-set matrix designated Q. Matrix Q captures the connectivity
between cut-sets and edges.
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If the columns of matrix B are properly arranged matrix B can be partitioned into the
(e—v+1)x(v—1) submatrix Bt referring to the branches of the tree and the
(e—v+1)x(e—v+1) submatrix B referring to the chords of the cotree. However, since
each chord appears exactly once in any given f-circuit in the positive sense, the matrix

Bc = U, i.e, aunit matrix. Then we can write

B [BT Uc} Equation 5-2

When the columns of matrix A are properly arranged such that thefirst v—1 columns of A
arein direct correspondence with the branches of some tree T of a graph G, an equivalent

matrix Q can be derived from A by applying row operationsto A.

Matrix Q represents the fundamental system of cut-sets with respect to the tree T, and

includesthe v—1 cut-sets of G in which each cut-set includes only one branch of T. Then

Q= [UT QC} Equation 5-3

In Appendix A we show that the incidence matrix and the circuit matrix capture the alge-
braic properties of the associated linear graph. Specifically, Theorem A-I shows that the
across variables associated with the chords of atree T of the system graph can be expressed
as linear combinations of the across variables associated with the branches; this equations
arereferred to asfundamental circuit equations. Similarly, the through variables associated
with the branches of thetree T of the system graph can be expressed aslinear combinations
of the through variables associated with the chords. This equations are referred to as fun-

damental cut-set equations.

The e—v + p fundamental circuit equations and the v—p cut-set equations of a system
graph G with e edges, v vertices and p connected components are referred to as the con-
straint equations of the system. These equations are, given by:
Vo(t) = =Bqv, (1) Equation 5-4
fo(t) = —Qcf (1) Equation 5-5
Termina equations together with the constraint equations of the system constitute the

mathematical model of the system. Terminal equations represent a model of the physical
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characteristics of the component while constraint equations describe the topological rela-
tionships between components. It must be emphasized here that the model of each compo-
nent in asystem includes both the terminal equations and the associated terminal graph: the
terminal graph only provides the topological structure of the system component while the
terminal equations provide the mathematical model of the basic operation of the compo-
nent. Together the two create a complete model that can be used in larger systemsthat are

more complex.

Structural analysis of the system equations is accomplished in two stages [32]. First, the
causality of each element in the system graph is determined. This procedureiscalled selec-
tion of the normal tree. Once a normal tree has been selected, the system equations can be
derived directly from the tree. The second stage deals with the ordering of the equations

and software components into a correct sequence of evaluation.

5.3 Sdection of the normal tree

Once a mechatronic system has been described as a system graph, the dynamic equations
can be derived from the graph without the need to consider the underlying physicsin each
of the energy domains. The system equations can be derived by simultaneously considering
the e terminal equations and the e independent topological constraints (cut-set and circuit
equations). Theremaining questionsthat we will addressin this section are, which topolog-
ical constraints need to be considered, and which of the two system variables (across or
through) should be the independent variable in each of the e terminal equations? Both of
these questions are answered in the normal tree selection algorithm presented in this sec-

tion.

The terminal equations plus any independent set of e constraint equations unambiguously
define the dynamics of the system. However, before these equations can be numerically
solved they must be expressed in state space form in which the derivatives of a state x are

expressed as explicit functions of the states and time:

x = f(x1) Equation 5-6
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Expressing the equations of the system in this form implies using the smallest possible
number of equations (equal to the order of the system) and requires expressing the high

order derivatives as afunction of low order derivatives of state variablesin each equation.

This can be accomplished in the following way. Let us divide the system variablesinto two
groups: primary variables and secondary variables—one of each for every edge. Assume
now that in the terminal equation of an edge, the highest order derivative of the primary

variable p is expressed as a function of the secondary variable, s:

p™" = f(s) Equation 5-7
On the other hand, assume that in the constraint equations the secondary variables are

expressed as a function of the primary variables:

s = g(p) Equation 5-8
Then, by substituting the constraint equations (5-8) into the terminal equations (5-7), we

get aminimal set of dynamic equations of the form:

p™ = f(g(p)) Equation 5-9

which is exactly the desired state-space representation.

The final step in the derivation of our approach isthe selection of the primary and second-
ary variables. According to the fundamental circuit equations (5-4) and the fundamental
cut-set equations (5-5) the dependent variables in the constraint equations are the through
variables in the branches of the tree and the across variables in the chords of the cotree:

fr = Qcfc

Equation 5-10
Ve = Bqvy

From equations (5-8) and (5-10), we can identify primary variables with the set of v—p
across variables associated with the branches of a forest and the set of e—v + p through
variables associated with the chords of a coforest. Smilarly, the dependent variables in

equation (5-10) are identified as secondary variables of the system graph.

Based on the selection of primary and secondary variables, we can obtain dynamic equa-

tions of the form (5-9). Thisis achieved by selecting a tree on the system graph such that
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the following two conditions are satisfied: (1) the highest order derivatives of as many pri-
mary variables as possible appear in the termina equations as functions of secondary vari-
ablesand low order derivatives of primary variables, and (2) the terminal equations contain
asfew derivatives of secondary variables as possible. The tree that satisfies these two con-

ditionsis called anormal tree of the system graph.

The form of the terminal equation is used to guide the selection process as follows. If an
algebraic terminal equation can be inverted, one may classify the corresponding edge as
either abranch or a chord. Thisimplies no preferred causality on that element. If the com-
ponent isadriver, the corresponding edge will be classified depending of thetype of driver.
Acrossdriversare confined always to the tree thus the corresponding edge will be abranch.
Through drivers are always confined to the cotree and the corresponding edge will be a
chord. That is, drivers have a predefined causality that cannot be changed: recall that the
terminal equation for adriver is an explicit function of time. Then if an acrossdriver has a
defining function x(t) = f(t) the primary variable x is completely specified for all t and

we cannot solve otherwise.

If all through drivers cannot be included in the cotree then they form a cut-set, smilarly if
all across drivers cannot be included in the tree, they form a circuit. Cut-sets of through
drivers or circuits of across driversin general violate the vertex and circuit theorems (See
Appendix A). A system graph without cut-sets of through driversor circuits of across driv-

ersisaconsistent system.

For terminal equations containing derivative terms of the terminal variables, we are inter-
ested in writing them as explicit functions of low-order derivatives and time. To achieve
thiswe examine which time derivatives of the terminal variables occur inthe terminal equa-
tion. If the highest order derivative of an across terminal variable appears in the equation,
the corresponding edge is assigned to the tree if the topology of the system alowsit. If on
the other hand the highest order derivative of athrough terminal variable appears, the edge
isassigned to the cotree. This preferred assignment of causality resultsin a set of ordinary

differential equations written in canonical form.
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Preferred causality, however, is not always achievable. This may be because of the viola-
tion of the fundamental property of atree of asystem graph; if introducing a new edge into
the tree creates a cycle the edge cannot become a branch and therefore it must be confined
to the cotree. Thisimpliesthat the associated terminal equation cannot be written in canon-
ical form, which meansthat the system of differential equationsisstructurally singular; i.e.,
it haslost one degree of freedom. A common examplethat reflectsthisisthat of two capac-
itorsin paraléd. In that system, we have two differential equations but only one degree of
freedom.

Elements in the system graph are classified as follows. If in the terminal equation of the
element the term dnvi(t)/ dt occurs, element i is called nth-order accumulator el ement.
Similarly if d”fi(t)/ dt occursin the terminal equation, element i iscalled nth-order delay
element. If element i does not correspond to either an acrossdriver or athrough driver, and

neither d"v;(t)/dt nor d"f.(t)/dt occur, wecall the element i an algebraic element.

This classification of elements is useful only for two-terminal elements. Multiterminal
components that have terminal equations, which can be written in the form given in
Equation 5-11 (i.e., ideal transducers) present topological restrictions that must be taken
into account [109].

d
hllla +hyg0 0 [v1]
0 hzm% + oy f2
Equation 5-11
d
= H . [gl(t)]
d \Y; t
Korigp * Kot 0 2 1%

The issue here isto decide whether the element that correspondsto v, and f; or the element
that corresponds to v, and f, should be confined to the forest. Both elements cannot be on
the forest because Equation 5-11 expresses v, in terms of v, and f; in terms of f,, and we
must avoid doubly specifying across or through variables. Since the topological restrictions

on elements whose terminal equations have this form are very similar to those regarding
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the locations of across and through drivers, we classify the corresponding elements as gen-

eralized drivers.

The choice of what element is confined to the forest is arbitrary since in principle both can
be confined to the forest. However, adecision is made by looking at the global topology of
the system to consider the interactions between the multiterminal component and other ele-
mentsin the system graph. To illustrate this, consider element e; and element e, composing
amultiterminal component with terminal equations of the form of Equation 5-11 (Figure
5-1). Assume that element e; isconnected to an acrossdriver. Expanding Equation 5-11 we
observe that the highest derivative of element e; isthe derivative of its across variable (vy);

Therefore element e; can be considered an accumulator element.

dv, dv,
hlua +hypvy = klZla + KypoV, + 04 (1) .
Equation 5-12

2 df;
hzzla +hypofy = kzua +Kpyofy +05(1)

Consequently, element e; should go into the tree such that its terminal egquation expresses
the derivative of the across variable (v4) asafunction of the exogenous variables. However,
since the across driver must go to the tree, adding element e, to the tree creates aloop, as
is illustrated in Figure 5-1, which violates the tree property rendering the system graph
inconsistent. Therefore, element e; must go to the cotree. Once we decided that element e;
must go into the cotree, its complementary element (i.e., element e,) must go into the forest.
The global topological structure of the system graph constrained element e; to be confined
into the coforest. Had we only considered the local topology, element e; could have been

assigned to the tree. However, from the global perspective that choiceis not valid.

Multiterminal components for which the terminal eguations cannot be written in the form
of Equation 5-11 (i.e., non-ideal transducers) need to be classified following the rules pre-
sented in this section to classify two-terminal elements. That is, we must consider the form

of each terminal equation based only on the terminal variables associated with the element.
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Figure5-1. Assignment of elementsin a multiterminal component.

Each element hastwo variables associated with it, namely v;(t), and f,(t) . For each termi-
nal equation, we look for the highest order derivative of the terminal variables and classify
the element accordingly. If there are no derivative terms of the terminal variables, we call
this element an algebraic element. If on the other hand, the terminal equation associated
with the element can be written such that aterminal variable (either v;(t) or f,(t)) can be
written as an explicit function of the terminal variables v, (1), fj (H)dj #i ,wecall thiscom-
ponent ageneralized driver. Therefore, an element i will be considered ageneralized driver
if either its across or through variable is completely defined by the complementary vari-
ables of the elements j #i of the multiterminal component. In the case of multiterminal
components coupling different energy domains, the terminal variable of element i is com-

pletely defined outside its energy domain (i.e., exogenous variables).

For example, consider the following terminal equations for a DC motor where the induc-

tance L and the inertia of the rotor J have been omitted to create a simpler model:

[vl(t)] _ | Ryig(t) +kyba(t) Equation 5-13

To(0] =k, (1) + Bo8a(1)

We classify the element associated with the electrical domain (first row in Equation 5-13)
as algebraic since both terminal variables v and i appear in algebraic form. Similarly, the
element associated with the mechanical domain (second row in Equation 5-13) isclassified
as afirst order accumulator element since the angular velocity appears in the equation. If
on the other hand, we had considered 6, in the equation for the el ectrical domain, wewould

have concluded that the element is a first order accumulator. However, in this case we
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would be saying that the equation of the electrical domain could be used to compute the
angular velocity of the rotor, but we also have away of computing the angular velocity of
therotor by using the terminal equation of the mechanical domain. Thisresultsin adouble

specification of the angular velocity of the rotor:
Kp(To(t) + K1 (1)) = By(vy(t) —Ryiy (1)) Equation 5-14

Giving a single equation in three unknowns. Furthermore, if the damping factor B, is

neglected we have

vi(D| _ |Ryig(t) + kyBa(t) Equation 5-15
T,(1) K4 (0)

which forcesusto classify the element assigned to the mechanical domain as a generalized

through driver since the torque is completely specified outside the mechanical domain.

This taxonomy of elements is used in guiding the selection of the normal tree. The follow-
ing section presents an extension to the method presented by Roeto find anormal tree. This
suffers from the problem of finding and comparing subgraphs in larger graphs (i.e., sub-
graph isomorphism) making it excessively complex. The subgraph isomorphism problem
isan important problem in complexity theory and it is known to be NP-complete [128]. In
Section 5.3.2, we present an algorithm to find the normal tree based on the minimum cost
spanning tree (MCT) algorithm. The total running time of MCT algorithmis O(nlog, n,)

where ng is the number of edges in the system graph [27].

5.3.1 Extension to Roe's method

The approach that follows to find anormal tree is an extension of Roe's method to find a
normal tree. The original algorithm can only accept first-order derivative elements and
algebraic elements. We have extended this agorithm to work with higher-order derivative

elements as well as with multiterminal components.

1. We start by selecting a subgraph G4 of G consisting of all across driversand general-
ized across drivers. Select atree T, in G;. Note that for asolution to exist, T, = G;

sinceit isassumed G4 contains no circuits.
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. Consider asubgraph G, of G containing all elements of G, and all nth order accumula-
tor elements. Select atree T, of G, containing T;. Cotree T,’ contains at most nth order

across elements, i.e., those that cannot be included in the tree.

. Consider subgraphs G, ..., Gnu where G includes (n-1)-th order accumulator ele-
ments, G, includes (n-2)-th order accumulator elements and so on until Gna includes
first order accumulator elements. Subgraphs G, ..., Gnu are selected such that
G,0GJ GJ L. G, .Selecttreessuchthat T, 0TS T4 . T

Ng

. Consider a subgraph G(nu +1) containing all elements of Gna and all dissipative ele-

ments. Selectatree T, , ;) suchthat T, OT, ...

- Consider subgraphs Gy, ;7). ---» G(n_+n,) SUchthat G, , 1) 0 G(na+2) and also

includes al nth order delay elements, G(nu +2UG and also includes al (n-1)-

(ng +3)
th order delay elements, and G, ,,._1) U G(na ) which aso includes all first
order delay elements. Select trees in G; such that

T, OT e T o8 o T 4n, - Sinceweprefer that all delay elements be

inthe coforestwehave T, 1) = Tp 12y = o = Ty 4y -

. Consider a subgraph Gy, that includes all elements of G(na +ny) andall through drivers
and generalized through drivers, i.e., the entire graph G. Select atree Ty which includes
T(na g For a solution to exists, this graph must not contain cut-sets of through driv-
ers. Also we require that the through drivers be in the coforest so we have

Tino+1) = Ting+2) = o = Tngeny = Ty

This systematic selection process will produce a normal tree where a maximum number of

accumulator elements are assigned to the tree and a maximum number of delay elements

are assigned to the cotree. However, there may be the case that the topology of the system

requires accumulator elementsto be assigned to the cotree or delay elementsto be assigned

to the tree. This poses no problem in the selection of the normal tree. However in the deri-

vation of the state equations this would mean that the system presents a structural singular-

ity and that the system is of lower order. The effect that this has on the formulation of state

equations aswe will seein the next section is that not all the dynamic elements contribute

to the state variable vector.
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Although the algorithm presented here is suitable for automatization, it has some draw-
backs. Finding a subgraph that contains a set of specified elements is a complex process
that requires subgraph isomorphism. A simpler algorithm based on the classification crite-

ria presented earlier, can be devised.

5.3.2 Selection of the normal tree. minimum cost spanning tree

The algorithm, based on the minimum-cost spanning tree [5, 27] presents an improvement
over Roe's algorithm since there is no need to find subgraphs of the system graph. This
algorithm isbased on the fact that it isalways possible to find aspanning treein aweighted
graph having minimum total cost [5].

Algorithm D. (Normal tree). The normal tree of a system graph G isfound by defining a

real function w: e - O* onthe edges of G that computes the weight of the edges as fol-

lows:

Let K, and K, represent the highest derivative order of all accumulator elements and all
delay elements respectively, and O:e - 0" be areal function defined on the edges that
computes the highest derivative order of the element associated with edge e. Next, classify
the edges of G asfollows. Let all across drivers and generalized across drivers belong to

the class c2, accumulator elements to the classes

-1, Equation 5-16

cff = {ey]O(ey) = Ky —i} i =0, ..,Kq

dissipative elementsto class ¢d = {ea‘O(e5) = 0} , and delay elementsto the classes

cl = {eT‘O(eT) = K, —i} i=0..,k.—-1. Equation 5-17

T
Finally, al through drivers and generalized through drivers will belong to class c®. The

weight functions w defined on the edges of G are chosen for each class such that
WA SWE <wf <. <w g <wO <wf <wl... <wg g <w® Equation 5-18

where w” isthe wei ght function associated with class t ;W

. isthe weight function asso-

ciated with class ¢”, w? is the weight function associated with class c®, w; isthe weight

function associated with class ¢', and wi(D isthe weight function associated with class ¢’
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In other words, the weight function w ranks the edges of G based on their respective classes.

Any weight function that satisfies the ranking in equation (5-18) is admissible.

The next step in our approach isto find a minimum cost spanning tree that minimizes the
total cost (weight) of the weights assigned to the branches of the tree. Aho et. al. [5] shows
that it is always possible to find such atree based on the following property. Let V be the
set of vertices of G and U be a proper subset of V. If e

i = (U, V) isan edge of lowest

cost such that udU and vV —U, then there is a minimum cost spanning tree that
includes e, ,

inAho et. al. [9]

. The proof of this property is outside the scope of thisthesis but can befound

The weight assignment is performed only one time and it has order O(e) where eisthe
number of edges. The worst-case performance for the minimum-cost spanning tree algo-
rithmis O(nvz) where n,, is the number of nodesin the graph. However, it can be made to
runin O(nlog, n,) when efficient data-structures are used to represent the graph [27]. This
algorithm will perform much better than that based on the selection of subgraphs of the

system graph.

Once a normal tree has been selected, we can write e cut-set and circuit equations, and e
terminal equations. The constraint equationstogether with the terminal equations constitute
the set of equations for the complete solution of the mechatronic system excluding the
mechanical energy domain. To completely specify the mechatronic system, these equations
are combined with the dynamic equationsfor the 3D mechanism derived by Dynaflex. This
new set of equations will be in general a set of differential algebraic equations (DAE),
which constitute the set of equations for the complete system.

The MCT algorithm requires as a precondition that the graph is connected. In general the
system graph G of a mechatronic system is non-connected. If that is the case, the problem
would beto find anormal forest! and MCT could not be directly applied to G. One solution
approach isto apply the M CT algorithm to each component in G independently. Thiswould

1. A normal forest is defined to be a set of normal trees for each connected subgraph of G
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find anormal tree for each connected component that would comprise the resulting normal
forest.

5.4 Synthesis of system level dynamic equations

This section introduces an algorithm to automatically formulate the state space equations
for amechatronic system. Given anormal tree T of the system graph G derived by the algo-
rithm presented in the previous section. The algorithm presented here is based on the

branch-chord method to formulate state equations proposed by Roe [109].

Algorithm E. (Equation synthesis). The algorithm takes as input a normal tree and
returns the set of dynamic equations of the system. Once the normal tree is selected, the
state variables of the system can be readily identified: they are the across variables corre-
sponding to the branch nth order accumulator elements, and the through variables corre-
sponding to the chord nth order delay elements.

El.For all elementsin G write the terminal equations such that they show primary vari-

ables as explicit functions of secondary variables and derivatives.

E2.Write the set of topological constraint equations for the system which are the cut-set
and circuit equations derived from G. At this point we have 2e eguationsin 2e

unknowns.
E3.Apply Algorithm F to reduce this number of equations to a set of m nth order differen-
tial equations where m equals the number of state variablesin the system.
The reduction processis as follows:
Algorithm F. (Reduction). The algorithm takes as input a set of 2e equations and returns
aminimal system of mnth order differential equations.

F1. Substitute the constraint equations into the terminal equations to eliminate branch
through and chord across variables. Thiswill leave the terminal equations as afunction
of primary variables only.
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F2. Eliminate the algebraic relations from the resultant set of terminal equations. To easily
identify which equations to use in the reduction process, the set of equations obtained
in F1isnow partitioned into three subsets: set A contains al equations that include dif-
ferential terms of primary variables. Set B contains equations which specify across and
through drivers, and set C contains equations which can be solved algebraically for pri-

mary variables.
F3.The system of algebraic equationsin set C is then solved for the primary variables.

F4.The solution to the system of algebraic equations together with the equations in set B
are substituted in the set of differential equations. Thiswill produce a set of differential
equations as functions of primary variables (and their derivarites) of dynamic elements

and the specified drivers.

F5.The differential equations obtained in F4 are then rearranged in canonical form to

obtain the desired state space equations.

55BLT form

The set of equations obtained in the previous section is causally oriented, however, no com-
putational order of evaluation is given for the set. In this section, we explore a method to
find a computational order for the set of dynamic equations, and show how to incorporate

the software components in the solution of such equations.

We seek aform in which the system equations are given as a sequence of blocks of one or
more equations. In thisform, the state derivatives and the algebraic variablesare unknowns.
The equations are al first-order differential and algebraic equations. Each block can be
solved as a separate problem assuming all previous blocks are solved. Therefore, what we
seek is a Block Lower Triangular (BLT) order of the system equations [37, 38, 39, 130,
131, 138, 150]. The BLT form is a permutation of equations and unknown variables so that
thestructural incidence matrix of the system equationsistriangular or block triangular. The

incidence matrix is a square matrix where rows represent equations and columns represent
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Figure 5-2. lllustration of a BLT form. Black regions indicate that the variable appears in the equation.
White areas indicate that the variable does not appear in the equations while gray areas indicate that
variables may or may not appear in the equation.

unknown variables. It indicates what variables appear in each equation (Figure 5-2). Inthis

form, the state derivatives and the algebraic variables are regarded as unknowns.

The BLT form partitions the set of equations into k blocks of order n, where ny is the
number of unknown variablesto solve for in the subsystem of n, equations. Equations and
software components are sorted such that variables appearing in the equations within each

block are either unknowns of the same block or variables solved from previous blocks.

To introduce software components into the incidence matrix we first define two functions

associated with each software component (Figure 5-3):

X = fy(t,x,u)

y = (6% u) Equation 5-19
That is, a software component will have an operator that computes its outputs and one that
computes its derivatives. The unknown variables of the software component are the inputs
given in the input vector u. If the output function y = fy(t, x, u) depends on the input
vector u, the software component is classified as algebraic; otherwise, it is classified as
non-algebraic. This property determines when the software component should be sched-
uled for evaluation and will be used when we introduce the software component to theinci-

dence matrix.

Before we generate the BLT form, the system equations are augmented with equations of

theform:
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Figur e 5-3. Software component.

yi(t) = fo(t, %, u) Equation 5-20

In addition, al occurrences of references to software components in the system equations
arereplaced by they; variables. In thisway, every software component is executed at most
once in the evaluation of the dynamic equations. The result of this substitution is a system

of equations (5-21) where v represents the algebraic variables of the system.

X = fy (6 %, Y, V)
Yi :fo,i(X’X’U)

Whereu = [v ;(] and x isthe state vector of the dynamic equations. In this new system
of equations, some of the equations are explicit assignments to state derivatives; others are
assignments to algebraic variables. The third type of equations includes those introduced
by the software components. For any equation of this kind, some of the unknown variables
will appear as inputs to the function f;, ;(x, X, u). We call that subset of variables the

dependency set for the software component.

Entries in the incidence matrix indicate whether a variable appears or not in a given equa-
tion. However, variables in the dependency set need to be treated in a special way. If the
software component is algebraic, the variables in the dependency set aretreated as ordinary
variables, that is, the equation y; related to the algebrai c software component depends on its
inputs. If on the other hand the software component is non-algebraic, the output function
fo,i(X, X, u) doesnot depend ontheinput variables and they are not considered in theinci-
dence matrix. The BLT form orders the output functions of the software components only;

the derivative function is evaluated at the integration stage.

Given the correct order of evaluation for the system equations that include software com-

ponents, we can evaluate them numerically using the following iteration at each major and
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Figure 5-4. Single iteration to evaluate the system equations

minor integration step (Figure5-4). We first evaluate the BLT that will compute the
unknown derivatives and the values of unknown variables. In doing so, we evaluate the
output operators of the software components. Finally, we proceed to evaluate the derivative
operators of the software components. Since the variables that are computed by equations
together with the output variables of the software components are known, al inputs to the
derivative operators for the software components are ready and can be evaluated to com-
plete the evaluation of the vector of derivatives. Thisis executed every minor/major inte-

gration step.

If the ssimulation kernel supports distributed processing, we may be able to evaluate the
output operators of software components giveninthe BLT form or the derivative operators
in parallel on different computers. This provides the ability to run legacy software evenin

different architectures, in remote computers.

5.6 Example: positioning system

To illustrate these concepts, we will use the following example: apositioning system. This
system involves two energy domains: electrical and mechanical, and includes information
technology components. The system graph consists of adigital controller, aDC motor, gear
box, shafts, rotating inertia and angular position sensors (potentiometers) as illustrated in

Figure 5-5.
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Figur e 5-5. Positioning system

The terminal equations for the different components in the mechatronic system are given
by:

Table 5-1. Terminal equations for the components in the positioning system

Domain Component Edge | Terminal equation
Electrical Sensor 11 .
vy () = Og(H)Rygig (1)
em
DC motor 7 ) d.
vo(t) = k. Bs(t) + RyiL(t) + L7a|7(t)
Current driver 10 i10(t) = I(t)
Variabledriver | 9 Vo(t) = fou(vep (1), Vrep: 1)
Mechanical | Sensor 0 To(t) = byBo(t)
DC motor 8 Tg(t) = bgbg(t) + Igbg(t) — ki (1)
Gear train 5,6 i 2 N ]
b d, J a N5
Ts(t)] _ | >dt ">dt Ng| [B5(1)
B4(t) Ng 0 Te(t)
L N6 -
Inertia 1 T,(t) = J,6.(t)
Shaft 3 T4(t) = K305(1)
4 T,(t) = K, 0,4(1)
Damper 2| Tat) = byBa(t)
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Figure 5-6. System graph for the positioning system.

The system graph for the mechatronic system is shown in Figure 5-6. Two coupling ele-
ments are used: the DC motor that couplesthe electrical domain to the mechanical domain,
and the sensor that couples the mechanical domain back to the electrical domain. A signal-
controlled voltage driver will model the controller. Following the classification rules

defined before, the elementsin the system graph fall in the following classes:

Table 5-2. Classification of elementsin the positioning system

Edge | Class Weight
0 first order accumulator W,
1 second order accumulator w,
2 first order accumulator W,
3 algebraic element Wsy
4 algebraic element w,
5 second order accumulator We
6 generaized across driver W
7 first order delay W,
8 second order accumulator Wy
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Table 5-2. Classification of elementsin the positioning system

Edge | Class Weight
9 signal-controlled across driver Wo

10 through driver Wi

11 algebraic element Wq;

where the weights w; are selected such that

Wg <Wg <(Wg = Wy = Wg) <(Wp =W,) < Equation 5-22
(W3 = Wy = Wypq) <wg <y,

Within the electrical domain, the sensor represented by element 11 is classified asan alge-
braic element sinceitstwo terminal variables only appear algebraically in the equation. On
the other hand, element 7 is classified as afirst order delay element since its through vari-
able appears differentiated in the terminal equation. In the mechanical domain however,
element 6 representing the gear train is classified as a generalized across driver. Thisis
becausethe value of B4(t) isdetermined by 65(t) . If we had neglected the dynamics of the
gear train, we would have an ideal transducer of the form given by Equation 5-11 and we
could have made the opposite choice. From Algorithm D, we obtain the forest containing
edges {0,1,2,6,8,9,11} leaving edges {3,4,5,7,10 in the coforest as shown in
Figure 5-6 in bold lines.

Having selected anormal forest, we proceed with the derivation of the topological matrices,
which are given by the incidence matrix A , the fundamental cutset matrix Q, and the fun-

damental circuit matrix B as follows;

101000000000
01 01000000O00O
-1-1-1-10 0 0 0 0 0 0 O
B 000010000100
A=l0000010000T01 Equation 5-23
0000001100 0-1
0000000-10010
0 00000O0O010-10
'0000-1-1-10-1-10 0]
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10100000000 0
01010000000 0
0000100001 0 0
Q=100000100000 1
0000001000 1 -1
0000000100-1 0
0000000010-1 0

Equation 5-24

10100 0 000000
0-1010 0 000000
B=10000-10 000100 Equation 5-25
0 0000 0-111010
0 0000-1100001]

Once a suitable formulation forest has been selected, the columns of the incidence matrix
for each energy domain are arranged to include the branches of the defining tree asthefirst
v—1 columns. Similarly, the columns of the circuit matrix for each energy domain are
arranged to include the chords of the defining tree asthelast e —v + 1 columns. This order-
ing is necessary since we know that the submatrix of the incidence matrix given by the
branches of thetreeisnon-singular. Furthermore, we also notice that since the system graph
is not connected, the incidence matrix A is a direct sum. Therefore, the columns in each
submatrix are arranged so that the branches come first and then the chords of each tree in
the forest.

Now we proceed to write the terminal equations of the elements in the system. Since we
already have anormal forest, they can bewritten in maximal form; i.e., amaximum number
of equationswith derivativesof primary variables written asexplicit functions of secondary
variables, as well as algebraic equations written as explicit functions of secondary vari-

ables. This selection results in the following terminal equations:
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vyy(t)y = 20ORuiu( io(t) = 1(1)

em
t) —k.Os(t) — R,i(t
Vo (1) = (Vi1 (1), Vrees t) %H(t) _ V(1) — K Ifi(7) Si4(t)
Bo(t) = T%—(t) T4(t) = bgBs(t) + JgBs(t) + Te(l;[l)Ns
0 6
Bg(t) = Tg(t) —bgei(gt) + K7 (t) 1,(6) = Ky8a(D) Equation 5-26
Ng
Bg(t) = N. B5(1) T,(t) = K,8,(t)
6
_ L
O1(t) = 3,
To(t)
0,(t) = b,

The constraint equations for this system can be written from the cuset (Q) and circuit (B)

matrices obtained from the system graph as follows:

Vo(1) = vg(t) i5(0) = (1)
Vo(t) = V(1) 112 (t) = =40(1)
Bs(1) = B4(1) T4(t) = —Tg(1)
0,(t) = 0,(1) —0,(1) = By(t)  T4(t) = —T4(t) Equation 5-27

B5(t) = B6(1) —B8,(1)  T4(1) = T5(t) —T4(1)
To(1) = 14(0)
To(t) = T4(1)

This set of 24 equations in 24 unknowns represents a necessary and sufficient set of equa-
tions for the mechatronic system. At this point, we start the reduction process to find a set
of five ODEs as indicated by the selected forest. We now proceed to substitute the con-
straint equations into the terminal equations for the elements to obtain the branch-chord
equations
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vty = _do(WRuli(®) io(t) = 1(t)

eI'n
t) —k Bg(t) — Ryi(t
Vo(t) = foue(Va1 (D), Vrer 1) %h(t) _ Yo(t) — ki Ei) 717(1)
eo(t) = T?)_(t) T5(t) = b598(t) + JSGg(t) + TS(:I) Ns
0 6
Bg(t) = —T5(t) _bge;:t) +kpi(t) 14() = Ky(84(8) — 65(1) Equation 5-28
N
Bg(t) = —N—Zeg(t) T,4(1) = K (8,(t) —B,(t) —B8,(1))
01 = STl
Ji
T,(1)
02(t) = b,

Next, we build the system of algebraic equations (Equation 5-29) and solve it for the alge-
braic variables v, (t), T5(t), B5(t), T5(t), T,(t)

V(1) = —w T5(t) = b598(t)+J598(t)—T—3(:|)6N5
N ’ Equation 5-29
B4(t) = _N—Zeg(t) T4(t) = Ky(Bg(t) =B, (1))

T4(1) = Ky(8,1(1) —85(1) —8,(1))

obtaining
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Bo(D)Ryy110(t)

vy (t) = 5

m

N5
Bg(t) = —N—698(t)

_ —K3(N5Bg(t) + Ngb, (1)) Equation 5-30
T5(t) = Ng

T4(t) = Ky(8,(1) —6,(t) —8,(1))
N2(bss(t) + J5Bs(t)) + NK(NgBy(t) + 8, (t)Ng)
NG

T5(t) =

The solution to the system together with the equations defining across drivers are substi-

tuted in the differential equations to obtain the state space equations:

K4(61(t) —85(1) —B4(1))

Bo(t) = b
0,(t)R,,1(t
d out(‘%,%gpt} —kmBs(t) —R7i(t)
a'7(t) = ™
Bg(t) = _ (b5 +bg)Bg(t) NsK3(NsBg(t) + 8, (O)N5) —kni7(DNG  Equation 5-31
i gt Js (Jg+ J5)Ng
_ —K3(N5Bg(t) + NgBy (1))  K,(81(t) —8,(t) —B8y(1))
O.(t) = N3 - -
691 1
B,(t) = K4(91(t)—g2(t) —8,(1))
2

Equation 5-31 includes the output function (f,,;) associated with the controller. In this case
the output function is algebraic since it depends on the inputs to the component (i.e., the
controller). To determine the computational order of the equationsin Equation 5-31, first,
we rewrite the system of 2nd order differential equations as a system of first order differ-
ential equations as given by Equation 5-21. With this new set of equations, the BLT form

can be obtained.
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5.7 Summary

The normal tree of the system graph provides the meansto find a causal orientation for the
system of equations. In this chapter, we showed that an efficient way of finding such atree
is by converting the problem to that of finding the minimum cost spanning tree of a

weighted graph.

Additionally, when the design uses software components, we presented a method that com-
bines the symbolic description of the dynamic equationswith the software components. We
also pointed out the importance of properly classifying the software components to obtain

aconsistent BLT form that can be used in sSsmulation.
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chapter 6 Reconfigurable
models of
mechatronic
systems

6.1 Introduction

A generally accepted approach of evaluating designs is by using virtual prototyping. With
virtual prototyping, the designer can evaluate designs without building physical prototypes.
Virtual prototyping is a useful approach to improve the design process; however, to take
full advantage of the benefits of this technique, design tools must integrate analysis tools
transparently to the designer.

In addition to being integrated with the design tools, analysis tools must also support the
evolutionary nature of the design process. Since the design process is dynamic, the behav-
ioral descriptions provided by these tools need to be easily adjustable to changes in the
design. The reconfigurable models described in this chapter are a step toward providing
such flexible behavioral descriptions.
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The modeling paradigm presented in thisthesis, allows the designer to model systemsin a
hierarchical fashion. Initially, a system can be described by high-level components and the
interactions between them. The models of the high-level components can then be refined
iteratively without having to modify the system-level model description. As a result, the
system model can be incrementally adapted as more detailed design features become
known. This is in contrast to most currently available modeling environments in which a

small change in the system description may require alarge change in the model structure.

6.1.1 Related work

To provide simul ation support to the mechatronic design approach, we need modeling tools
that capture system behavior across energy domains. In recent years, anumber of modeling
languages have emerged that capture mathematical models of mechatronic systems. These
languages are based on object-oriented principles, and include Dymola[41], OMOLA [9],
NMF [118], and—more recently—Modelica[47] and VHDL-AMS[60].

Although these modeling languages are object oriented in nature, they do not permit the
model structure to be easily modified. Instead, only mechanisms for parameter reconfigu-
ration are provided. Given the evolutionary nature of the design process, it would be desir-

able to accommodate reconfiguration of the model structure also.

In de Vries work with polymorphic models (the MAX system), he suggests an approach
to achieve structure configuration [ 146] . His polymorphic models are similar to our concept

of reconfigurable models; however, they present the following limitations:

* Aninstance of amodel is considered an implementation. This forces a new typeto be

defined for each new set of parameter values for an implementation.

» Models are represented by bond graphs, which limits their applicability to lumped

parameter systems.

To overcome such limitations, we propose a system representation based on two concepts
(introduced in Chapter 2): interface and implementation. In this model representation, sys-
tems are described from a systems engineering point of view where subsystems interact

with their environment through energy exchange. The interface of a system describes the
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interaction through a set of ports. The implementation, on the other hand, describes a sys-
tem’'s internal behavior. The interface and implementation together define a complete
model of asystem. A direct consequence of this new representation isthat it is possible to
assign different implementations to the same system interface, thereby achieving reconfig-
urability of models. We call system models that are based on this modeling paradigm

reconfigurable models.

The proposed system model has the following characteristics:

* It supports the definition of systems whose behavior is defined by both energy
exchange and signal flow.

* |t providesfor gradual refinement of models.

6.1.2 What isareconfigurable model?

Model reconfiguration is based on two principles. composition and instantiation. Compo-
sition is the mechanism that allows us to specify a model of a device from a collection of
building blocks, while instantiation performs the realization of individual building blocks.

To illustrate theidea, consider an electric DC motor. Themodel of thisdeviceis commonly

expressed as a set of equations:

T=Ki+b6

. di .
v—R|+La+k9

Equation 6-1

However, looking at the energy transformation properties of thismachine [64], namely, the
conversion of electrical energy into mechanical energy, a finer decomposition based on
energy balance can be achieved. In this decomposition the interaction of each subcompo-
nent is established and well defined. Figure 6-1 shows the decomposition of the electric
machine into three components. electrical system, coupling field and mechanical system

where;

» W total energy supplied by the electrical source.
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A,

electrical system coupling field mechanical system

Figure 6-1. Energy-based block diagram of an electric motor.

W): total energy supplied by the mechanical source.

Then the energy distribution law can be expressed.

WE = We+WeL+WeS
WM = V\/m'*'\/\/mL'+'\/\/mS

Equation 6-2

where

W, energy stored in the electric or magnetic fields which are not coupled with the

mechanical system.

W, : heat |osses associated with the electrical system. These loses occur due to the
resistance of the current carrying conductors aswell asthe energy dissipated from these
fields in the form of heat due to hysteresis, eddy currents and dielectric losses.

W, energy transferred to the coupling field by the electrical system.
Ws energy stored in the moving member and compliances of the mechanical system.
W energy losses of the mechanical system in the form of heat.

W, energy transferred to the coupling field.

If we define WE as the total energy transferred to the coupling field then:
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W = W + W, Equation 6-3
where
» W energy stored in the coupling field.

* W : energy dissipated in form of heat due to losses within the coupling field.

The electromechanical system must obey the law of conservation of energy:
Wi+ W, = W+ W, Equation 6-4

An energy-based system decomposition for an electric motor consists of three basic build-
ing blocks, each representing one subsystem of the machine. Thisdecomposition represents
the general behavior of an electric motor where each subsystem can be described in its most
general terms with no reference to the underlining equationsthat ruleitsdynamics. That is,
at this level of description we are interested only in the fundamental building blocks and
how they interact with each other. The specifics of each subsystem are introduced |ater
when information about the experiment is available. For example one experiment may
require the model of the machineto consider how thetotal magnetic flux ® of thefield coil
affects the torque of the motor. This can be captured by a model of the coupling field such
as:

T, = d—WF Equation 6-5

€ de

which specifies torque as the rate of change of the energy stored in the coupling field as a

function of 8, where 0 isthe angle between the magnetic axes [64].

Different models of the electrical subsystem can be provided as well, namely, separate
excited, shunt, series, or compound. Each model describes the electrical system of the
machine based on different topological connections. Similarly, the mechanical system can
be described by different modelsincluding rigid bodies or non-rigid bodies, linear or non-
linear contacts, etc. The basic characteristic of a reconfigurable model is that it is defined

in terms of generic descriptions of submodels.
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Oncethe model of the electric motor isdefined in terms of generic subsystem components,
each of the subsystems must be instantiated. A model is said to be an instance of ageneric
description if it meets the requirements that the generic description specifiesfor that model.
From this point of view, the generic description defines a family of models that can be

exchanged for one another.

Reconfigurability is achieved by the instantiation principle since every model instance that
matches the requirements of its generic description is a potential candidate. This provides
the ability to describe mathematical models of devices in a very structured way that can
change as the requirements of the problem change. Traditional modeling allows parameter
instantiation but does not provide aconvenient mechanism for changing the structure of the
model.

Reconfigurable models are based on the port-based modeling paradigm introduced in
Chapter 3. In the next section, we will refine the port-based modeling paradigm, and in

doing so, we define the basic elements that constitute a reconfigurable model.

6.2 Port-based multi-domain modeling of mechatronic
systems

Recall that in a port-based multi-domain model of a mechatronic system (see Chapter 3)
subsystems interact with each other through ports. Connections between ports represent the
interactions between different components, which can be of two kinds: interactions that
capture energy flow, for energy-based systems, or interactions that capture signal flow, for
non-energy based-systems. In the first case, the connection is non-directed to reflect the
non-causal nature of the energy exchange; in the second case, signal flow isrepresented by

adirected connection.

Asillustrated in Figure 6-2 the port-based model can be hierarchical (compound model) or

primitive. Primitive models represent the behavior of a primitive system component in
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Figure 6-2. Port-based model

terms of constitutive equations. Compound models represent their behavior in terms of the

structural arrangement of primitive or compound models.

6.2.1 Equation-based modeling

The behavior of a primitive system can be specified using either of two formalisms,
depending on whether the system is energy-based or not. Both formalisms represent the
behavior of the system with aset of constitutive equations. The difference between the dif-
ferent types of systemsliesin how the constitutive equations are specified and how the sys-

tem’s topology is described.

In the first formalism, the behavior of non-energy-based systems is described using a pro-
cedural approach. In this case, asignal quantity represents the quantity that is available to

the environment through the interface of the system. Constitutive equations of thiskind are
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described as assignments (causal equations) that compute the value of a signal quantity

based on the inputs to the subsystem.

In the second formalism, the behavior of energy-based systems can be represented using a
graph-based model [35]. Each edge in the graph has two associated quantities, called
branch quantities: across quantity and through quantity. These quantities are analytic func-
tions of time (i.e., they are piece wise continuous with afinite number of discontinuities).
Across quantities, represent effort such as voltage, temperature, or pressure that are the
result of a measurement taken across two energy ports of the system. Through quantities
represent flow such as current, heat flow rate, or fluid flow rate that are the result of amea-
surement taken in series with the component. To illustrate this, consider an example of an
electrical network. Here, the vertices of the graph represent equipotential nodes in the cir-
cuit, and edges represent branches of the circuit through which current flows. The measure-
ment taken across two nodes defines the across branch quantity, while the measurement

taken in series with the component defines the through quantity.

The constitutive equations are expressed by relating the across and through quantities of
one or severa branches—for example, a resistor has a single branch, and its constitutive
equation (Ohm’'s law) relates the voltage across (the across quantity) and the current

through (the through quantity) the resistor.

Constitutive equations define the behavior of a subsystem without mention of a particular
causal direction. The causal direction emerges only when the equations are combined with
constitutive equations of other subsystems, and the quantities that are external to the sub-
system are specified. A quantity is external to the subsystem if its value is computed using
a constitutive equation that is not part of the constitutive equations of the subsystem. For
example, when the constitutive equation of aresistor is combined into a larger system of
equations, either the voltage or the current will be defined externally; Ohm'slaw is causally
oriented toreflect this: v :=iR or i := v/R. Inthefirst case, thevoltage viscomputed from
the current i, which is computed using an external equation. Similarly, in the second case,

the current i is computed from the voltage v.
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The equations appearing in the model can be of several kinds: ordinary differential equa-
tions, algebraic equations, or differential-algebraic equations. Ordinary differential equa-
tions (ODE) can represent the variation of quantities asafunction of asingle variable, such
astime. Therefore, ODEs are used to represent lumped parameter models. Algebraic equa-
tionsdo not contain partial or total derivatives. When amodel includes both ODE and alge-
braic equations, the resultant system of equations is called a differential-algebraic system
of equations (DAE). Inthistype of system, algebraic equations represent constraints among
the state variables defined by the set of ODEs.

Constitutive equations of both types (i.e., non-causal and causal) may include a combina-
tion of branch quantities and signal quantities. We call these types of models hybrid models
since they describe the interaction of energy-based systems with non-energy-based sys-
tems. An example of this type of behaviora description would be an electromechanical
system controlled by adigital controller.

If the system is compound, its behavior is described according to the structural arrangement
of subsystems, which in turn may be compound or primitive. This unambiguously defines
the topological constraints among components. Consequently, a compound system can be
reduced through a sequence of agebraic transformationsinto a primitive model that exhib-

its the same behavior.

6.2.2 Meta knowledge

Whether using acompound or primitive model to describe asystem’ sbehavior, constitutive
equations do not provide sufficient information to reason about the properties of the system
since they are based on implicit assumptions and approximations. In other words, the con-
text in which a model of a system can be applied is not explicit. If such knowledge were
explicit, one could not only reason about the applicability of the model to agiven problem,

but also decide when models having similar properties can be interchanged.

One kind of meta knowledge that we consider is the operating region of the model. The
operation region defines the space of admissible values for the quantities of the model,

which provide meaningful results. Outside this space, the model may provide erroneous
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if oc,(ql, g2, g3)
Ra(9l, 92, g3)=0

elif 0C(ql, g2, q3)
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elif ocy(ql, g2, g3)
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elif 0Cy(ql, g2, qg3)
Ro(gl, g2, @g3)=0

Figur e 6-3. Segmentation of the domain based on different operating regions

results that invalidate its application. To ensure that a model is used within its operating
region, we explicitly express its bounds through the operating conditions of the model.
Operating conditions are conditional expressions on the quantities of the model and explic-
itly define the sub-domain for each quantity for which the equations stated in the model are
valid.

When it is necessary to define multiple operating regions, for example to capture a large
portion of the system’ s operating region, operating conditions are digointed. Each element
of the disjunction represents a valid operating region that has an associated set of constitu-
tive equations. In other words, operating conditions allow us to segment the domain of the
guantitiesinvolved in the constitutive equations. Consequently, we can obtain amodel that
isapplicablewithin alarger operation region of the system. For example, consider the oper-
ation region of the system shown in Figure 6-3. The domains of the three quantities define
the solution space of the system. The operating conditions given as a function of the three
quantities (represented by the functions OC;) segment the space into four regions (A, B, C,
and D), each of which has an associated set of equations (represented by the function R)

that describe valid behavior under these conditions.

6.2.3 Current support for port-based modeling

Using object-oriented modeling principles, it is possible to describe a port-based model that

is composable and hierarchical [9, 47, 60, 118]. However, in an object-oriented modeling
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paradigm, there is not necessarily aclear separation between the interface of the model and
the implementation of its behavior. Often both concepts are merged together into asingle
modeling entity. In this modeling approach, only parametric reconfiguration is allowed.
However, to evaluate the design at different levels of detail, changes in structure should

also be supported.

Ideally, the designer should be able to specify a system based on an understanding of its
behavior and its interaction with the environment. Details of how the system achieves its
behavior or about its internal structure do not become important until later, when the
designer has selected aparticul ar instance of the given system. Moreover, asthedesign pro-
cess evolves, the designer should be able to change the structural configuration of the sys-
tem. To provide a modeling paradigm that admits structural modifications as well as
parametric configuration, we extend the port-based modeling paradigm to reconfigurable

models in the following section.

6.2.4 Reconfigurable component models

In this section, the port-based modeling paradigm presented in the previous section is
extended towards reconfigurable models. In a reconfigurable model, the interface of the
model and the implementation of its behavior are considered to be two separate, but depen-
dent, concepts. By considering these two concepts independently, it is possible to associate
different implementations to asingleinterface, achieving a structural modification of mod-
els, and consequently, creating areconfigurable model (Figure 6-4). A reconfigurable com-
ponent model is a mathematical model that provides a mechanism to describe changesin
structure as well as the basic parameter configuration mechanism and it is based on two

principles: composition and instantiation.

The composition principle denotes the mechanism by which the behavior of the component
is described in terms of interfaces of subcomponents and their interactions. Since compo-
sition unambiguoudly represents topological constraints anong components, a composed

model given by the pair (®|¢,) can bereduced to a primitive model (®|@,) which exhibits
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Figure 6-4. A reconfigurable system model.

equivalent behavior, where (®|@) represents the binding of implementation ¢ to interface
P,

Asaresult of the principle of instantiation, compound implementations are abstract. They
are a composition of abstract interfaces, that still need to be bound to implementations to
specify the behavior completely. Consequently, instantiating a compound component (i.e.,
acomponent with acompound implementation) requires the recursive instantiation of each

interface in the component.

Reconfigurable models are hierarchical in nature. Based on the composition principle, we
define self-contained implementations of a system in terms of the composition of sub-
system interfaces; i.e., a compound implementation. However, a hierarchical system
defined by reconfigurable models is not fixed. Rather, it changes as implementations are

bound to the interfaces (model instantiation) that describe the compound implementation.
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Specifically, binding different implementations to an interface results in a different struc-

tural arrangement and thus a different hierarchical structure.

The second principle—the principle of instantiation—describes the mechanism by which
the interface of amodel is bound to itsimplementation. An implementation that meets the
requirements of an interface, can generally be bound to it. However, the semantics of the
resulting model must be consistent with the context in which the model is used. For exam-
ple, consider the case of aresistor and a capacitor whose interfaces both include the same
set of interaction points (two electrical terminals). In such a case, an implementation that
satisfies the interface for the resistor will also satisfy that of the capacitor. However, the
semantics of the resulting model will differ; hence they cannot be interchanged. In sum-

mary, we will allow bindings that produce models having the same semantic meaning.

There are two kinds of implementations that can be bound to an interface and maintain a
consi stent semantic interpretation of the model : implementations with different representa-
tions of equivalent behavior, and implementations with different behavior. Accordingly, if

T and K aretwo implementations that satisfy interface ® , then,

SEMANTICS(®[T) = SEMANTICS(P|K)) Equation 6-6

The instantiation principle also provides the basis to define a family of systems. An inter-
face that can be bound to different implementations by the instantiation principle defines a
family of systems. All members of the family will show the same interaction characteristics
but with different formal behavior. This method of describing membership of an element
inaset isreferred to as atype in the theory of computational objects and can be phrased as
follows [1]:

“The type of an object provides the semantic information
that completely characterizes the object but not its behav-
ior.”

An interface defines atype, each member of which is a subsystem having a unique formal
behavior. Based on this observation, it is possible to organize system models into a type
hierarchy. This type hierarchy is derived from a type system that provides the notions of
subtype and supertype[1].
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Let the symbol <: represent areflexive and transitive subtype relation between interfaces |

and ', then:

Definition Subtyping. I’ <: 1 if I’ has the same ports and parameters as | and possibly

more, and the following conditions pertain:

1. Thetypes of the ports are subtypes of types of corresponding portsin I.
2. Thetypes of the parameters are subtypes of the corresponding parametersin I.

3. The semantics of the parameters are equivalent to the semantics of the corresponding

parametersin .

Based on the definition of subtype (and its complement, supertype), two operations can be
defined on the type hierarchy, namely, specialization and generalization. Specialization
involves finding an interface for the same family of components that includes more detail,
while generalization involves finding an interface (again for the same family of compo-
nents) that is less specific. These operations are carried out by traversing the hierarchy in

either a downward direction (speciaization) or an upward direction (generalization).

Definition Specialization. Let x and y be two interfaces. Interface y is a specialization of

interface x, denoted y = x, if and only if the type of y is a subtype of the type of x, and
for any system Sthat contains x, y can be substituted for x while maintaining the same

semantics. This can be stated formally as:

y 3 x = TypeOf(y) <: TypeOf(x) O Equation 6-7

(09, S(x«y) -
SEMANTI CS(S|y) = SEMANTICSS|)))

where the operator S(x «y) should be interpreted as “x is substituted by y in S’ and §|,
should be read “the system Sevaluated with interface X”. Similarly, it is possible to derive
the property of generalization based on the supertype relation.
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6.2.5 Parameter handling

In addition to the ports, it is also important to include the parametersin the interface. M odel
parameters describe fundamental characteristics of the system. For example, inertia and
torque constants specify the invariant properties of a system that represents an electric
motor; they are constant quantities that do not change value throughout the entire smula-

tion.

In defining parameters of lower level subsystems, two kinds of parameters can be identi-
fied: formal and actual parameters. A formal parameter is defined locally in the interface
of the subsystem, and it is used by a bound implementation. An actual parameter contains
the value of an argument that isrelated to aformal parameter in a call to the model, and it
is defined by the environment. The value of the argument is the value of an expression
defined in terms of the formal parameters in the current scope. Parameter composition
ensures that the parameters of the system are propagated to al the subsystems that were

incorporated into the compound implementation.

The principles of instantiation and composition together with parameter propagation pro-
vide the infrastructure required to define reconfigurable models. In the next section, we
present the structure of a reconfigurable component model. Based on this structure, later
we define two important concepts that help support the design process. namely, component

selection and model selection.

6.3 Component structure

In this section, we present a component structure based on an AND-OR tree that captures
the complete model space for a component. In this context, the component structure is a
complete behavior-based characterization of the component. It spans the space of possible
system modelsfor a given component where elements within it are instances of areconfig-
urable component model; i.e., pairs of the form {®|@ where ® isan interfaceand @ isan

implementation bound to @ .

Inan AND-OR tree representation of the modeling space, each implementation of an inter-

face generates AND arcs. The degree of an AND arc is defined as the number of successor
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Figure 6-5. Component model structure based on an AND-OR tree

nodes the arc may point to. AND arcs of degree > 1 represent compound implementations
and the nodes pointed to by the AND arc represent the interfaces that comprise the imple-
mentation. AND arcs of degree = 1 represent primitive implementations. AND arcs are

indicated in Figure 6-5 with aline connecting all of the components.

Inan AND-OR tree, several AND arcs may emerge from asingle node, indicating alterna-
tive implementations of the interface. These are called OR arcs. OR arcs define valid
changesin structure that the model may undergo, thereby popul ating the model space of the

component.

The structure of the AND-OR tree and the principles of composition and instantiation are
tightly related. The principle of composition is described by an AND arc pointing to all the
constituents of the composed model. The principle of instantiation, on the other hand, is

described by an OR arc since it describes alternative ways of defining the component.

For example, the AND-OR tree shown in Figure 6-5 depicts part of the structure of a per-
manent magnet DC motor. The top-level interface of the motor can be bound to different
implementations, which indicate different alternatives to describe its behavior, i.e., OR
arcs. In Figure 6-5, the AND arc of degree = 3 consisting of the subsystems electrical,
conversion and mechanical, indicates that this particular implementation is a compound
system composed of the interfaces electrical, conversion and mechanical. Each interface,
in turn, generates an AND-OR tree that expands the possibilities in the selection of their

respective implementations. For instance, the implementation “armature losses’ of the
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interface electrical, spans an AND arc of degree = 2 with two interfaces: resistor and
inductance. Similarly, the interface mechanical can be described using any of the two

implementations, one that considers friction and another that neglects friction.

In summary, the representation of acomponent model using an AND-OR tree describesdif-
ferent ways of modeling the component, by capturing the modeling space spanned by the
reconfigurable model. Points within the space represent specific modeling instancesfor the
component, given by the binding (®|@)> of implementation @ to interface ®. The next sec-
tion, describes a component model library intended to select and organize reconfigurable

models based on this representation.

6.4 Modd libraries

This section presents a model library of reconfigurable models with the aim of providing
the designer with tools to achieve both component and model selection. By component
selection, we mean that the library should supply reasonable alternatives of commercially-
available components based on given requirements. For example, the library should be able
to answer requests such as “Find a permanent magnet motor with a maximum torque rating
of T”. Model selection means that the library will provide the user with different model
alternatives or different implementations for a particular subsystem. This is important
because the availability of modeling alternatives (or implementations for a given model)

lets the user explore the behavior of a subsystem at different levels of detail.

Modelsinthelibrary range from subsystemsthat are abstract to othersthat are concrete and
completely defined. An abstract system is characterized by an interface with unknown
parameters and a default implementation. A concrete system is characterized by an inter-
face with a fixed set of parameter values and a particular implementation. However, the
implementation of a concrete system does not need to be fixed. It may be the case that the
designer isinterested in analyzing the behavior of a concrete system under different exper-
imental conditions, making it necessary to select a different implementation for the com-

ponent.

138



Subsystems and components within the library are both described by animplicit AND-OR
tree. Abstract subsystems are described by an AND-OR tree of level >=1; i.e.,, the model
space of the component. On the other hand, concrete subsystems are described by a sub-
graph (i.e., an induced tree) of the AND-OR tree that represents particular selection of
implementations for all subsystems in the component. The induced sub-graph on the com-
ponent model structure (component AND-OR tree) has no OR arcs and is defined by the
binding (®;|p,» fori =1...N, k0O 1...n, where N isthe number of interfacesand n; isthe
number of implementations for interface ®; as defined for the component. An example of

an induced tree isindicated by bold arcsin Figure 6-5.

To fully define a concrete component, in addition to finding an induced sub-graph in the
component structure, it isnecessary to definethe set of parametersthat definethe properties
of the component.This combined process is known as realization. Realization of a (con-
crete) component isthe process of finding an induced sub-graph in the component structure
together with the assignment of fixed parameter values for the component. Only when

parameter values are fixed in theinduced sub-graph do we have afully realized component.

Models within the library are organized in a hierarchy based on type. This organization is
such that models that are subtypes of parent models add only new information to the inter-
face. For instance, in Figure 6-6, the component labeled diodeTh (thermal diode) is a sub-
type of component diode since it adds the thermal ports and parameters needed to describe
that interaction. The other portsin the model remain the same, satisfying the subtype rela-
tion stated earlier.

The library of component models defined in this section exhibit the following characteris-
tics[18]:

» Themodelsin thelibrary arereusable and reconfigurable—the system model proposed
in this chapter promotes reusability and reconfigurability of models. Moreover, since
model s range from abstract to concrete, they are sufficiently general to be used in dif-

ferent contexts.
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Figure 6-6. Component library browser. Green nodes represent abstract interfaces which do not have an
implementation associated. Gray nodes represent generic component interfaces, that is, interfaces that
have not yet been parametrized. Finally, pink nodes represent interface instantiations; i.e., fully
parametrized components. These represent manufacturer components as given in a component catalog.
* Themodelsin the library can be shared—system models are described using aweb-
savvy format (See “ Component modeling markup language”) based on alanguage
explicit enough that users others than the original author can understand it. Moreover,
the designers sharing the models can use domain specific browsers dedicated to pre-

senting the models in familiar terms.

* Themodelsin the library are accessible—the browsing mechanism allows users to
interactively select model instances (i.e., model selection) and to search for component
alternatives based on a given set of requirements (i.e., component selection). Conse-
guently, the availability of modelsin the library is brought to the attention of the

designer, thereby making the information fully accessible.

The next section describes the representation language used to characterize the structure of

reconfigurable models stored in the library.
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6.5 Component modeling markup language

As indicated above, this section describes the component model |anguage used to charac-
terize reconfigurable component models. We have developed a neutral-format, model
description language that captures component model structure based on the AND-OR tree
representation introduced earlier. The language is in neutral format since it is based on
XML (extensible markup language) [158] and can be translated to the simulation language
of choice. A translator to VHDL-AMS [60], the target language used to model our simula-
tions, has been developed. Trandators to other modeling languages (e.g., modelica [47],
ASCEND [101], OMOLA [9], or NMF [119]) can be written aswell. In the design of this

model description language, the following criteria were established:

» Multi-energy domain—the language should be able to capture the interactions between

components in multiple energy domains.

» Non-causal equation models—the language should expressthe laws of physics without

assigning causality.

* Meta-knowl edge—the language should provide elements to represent knowledge
implicit in the constitutive equations (such as assumptions and approximations). In
other words, the context in which this model can be applied should be made explicit

enough to provide a basis to reason intelligently about these models.

The markup language proposed in this chapter meets the above requirements and supports

our concept of reconfigurable models as defined earlier.

6.5.1 Why XML?

XML was selected because it provides clear document structures and a context-free vocab-
ulary. In addition, all XML documents share a common hierarchical structure and can be
managed, read, edited, searched and presented using the sametools. We can take advantage
of XML’s hierarchical document structures to capture the hierarchical nature of the com-
ponent models. Using XML, it was a so possible to define catalogs of components and pro-

vide search mechanismsto explore the entire content of the document. In short, by defining
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a markup language based on XML to represent component models the following features

were attained:
* Document sharing—designers can use standard XML toolsto view and edit models.

» Component search—designers can use search tools to locate component models based

on desired characteristics.

» Expressiveness—arich internal structure and arich vocabulary makes model knowl-

edge clear.

* Reuse—a consistent document structure makes it easier to reuse document content,

extract it and apply content to different problem domains.

6.5.2 The markup language

System models are organized into a document, the internal structure of which captures the
hierarchical structure of component models. All aspects of the structure (i.e., modeling con-
structs) are described with a rich vocabulary that translates into XML tags. A document
type definition (DTD) describes the interna structure of a document and defines the sym-
bols in the vocabulary. The use of this DTD ensures that the models will be well formed
and valid. Well-formedness means that it is possible to check that the document is syntac-
tically correct before it is processed, while validity involves checking the document struc-

ture to ensure it contains all the parts required by the DTD but no extraneous parts.

The markup language defines the two basic modeling entities, interface and implementa-
tion, as the core of the internal document structure. Symbols in the vocabulary include
interface and implementation as well as symbols used to represent constitutive equations,

subcomponents, interactions between components and meta-knowledge.

At the top level, a document consists of either interface and implementation declaration
blocks or component declaration blocks. In the first case, the document specifies the basic
component models, whilein the second case, the document instantiates completely defined
components by specifying the parameters and implementations of the basic component

models (i.e., it defines a catalog of components). Using a single markup language, we can
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describe the two kinds of system models described earlier, abstract system models and con-

crete system models.

In the markup language that we have defined, the interface of the system includes—along
with ports and parameters—declarations that are common to all implementations of the
interface, conditional statements that check the validity of parameters, and the meta-knowl-
edge about the different implementations associated with the interface. For example, the

interface declaration for the DC motor in Figure 6-5 would be as follows:

i nterface DCnotor
paraneters

ktau: real = 1.0e-14;

km real = 1.0;

Ra: real = 1.0;

La: real = 1.0e-3;

Jm real = 1.0e-14;

Bm real = 1.0e-5;
ports

pos, neg: electrical
rotor, reference: rotational
end DCnot or

In the language, two sections describe an implementation of an interface: the declaration
section and the statement section. The declaration section defines quantities or subcompo-
nents (in the case of a compound component) that are local to the body of the implementa-
tion. The statement section defines the behavior of the component with either a set of

congtitutive equations or a set of connection statements.

Compound components are described with two vocabulary symbols: component and con-
nections. Components declare the instances to be used in the model, and connections define
the interactions between declared subcomponents. A component declaration is an XML
sub-structure that describes the induced tree in the AND-OR tree of the component. It cap-
tures parameter propagation and the binding of interface-implementation for all subcompo-

nents of the component.

For the DC motor illustrated in Figure 6-5, the implementation composed of the three sub-

systems: electrical, conversion and mechanical would be the following:
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i mpl enentation dcnotor-cnp i npl ements DCnot or
decl ar ati ons
el ect- subsystem el ect (Ra=10, La=0. 1)
bound-to armature-1-inpl
resistor ra(r=Ra) bound-to resistor
i nduct ance | a(l =La) bound-to inductance;
conv-subsystem conv( Knekm Kt =kt au)
bound-to conv-i npl;
mech- subsystem nech(Bnel. Oe- 5)
bound-to friction-inp;
st atenents
connecti ons;
end dcnot or - cnp;

In this implementation the paths DCmotor-Electrical-[ Resistor, Inductance], DCmotor-
Conversion, and DCmotor-Mechanical-[ Friction] shown in Figure 6-5 provide the subtree
selected for the DC motor. This means that for the electrical system of the DC motor this
implementation includes armature lossesin the el ectrical subsystem. Similarly, the selected

subtree indicates that the implementation considers friction in the mechanical subsystem.

Binding the electrical subsystem to the implementation armature-l-impl requires also bind-
ing implementations for each component declared within it. For example, in this case,
implementation armature-I-impl is an implementation composed of three components:. ra
and la. These bindings are recursively specified in the declaration of the component el ect.
For example, component ra with interface resistor is bound to implementation resistor.
Implementation resistor isdefined by aset of constitutive equations, and it does not specify

new bindings for any components; i.e., it is aprimitive implementation.

Within the DC motor, subcomponent interaction is specified by means of connections in

the statement section, which define the structure of the DC motor.
Listing 6-1 and Listing 6-2 show the XML representation for the DC motor AND-OR tree

shown in Figure 6-5.

6.6 Summary

In this chapter, we have described a modeling paradigm based on reconfigurable compo-

nent models that supports the design of mechatronic systems. In this paradigm, mathemat-
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Listing 6-1. An XML representation of a DC motor model. Interface body.

<interface ident="DCnotor">
<generics>
<paraneter semanti cs="torque_constant"”
defaul t="1. 0e-14" nature-type="real" ident="tau"/>
<par aneter semanti cs="notor_constant"
defaul t="1.0" nature-type="real" ident="knt/>
<par aneter semanti cs="armature_resi stance"

defaul t="1.0" nature-type="real"” ident="Ra"/>
<par aneter semantics="armat ure_i nduct ance"
defaul t="1.0e-3" nature-type="real" ident="La"/>

<paraneter semantics="rotor _inertia"
defaul t ="1. 0e-14" nature-type="real" ident="Jnf/>
<paraneter semantics="friction”
defaul t="1.0e-5" nature-type="real” ident="Bni/>
</ generics>
<boundary>
<term nal nature-type="electrical" nanme="pos"/>
<term nal nature-type="electrical" nanme="neg"/>
<term nal nature-type="rotational” nanme="rotor”/>
<term nal nature-type="rotational” name="reference”/>
</ boundar y>
</interface>

ical models consist of two elements:. interface and implementation. The interface defines
the mechanism by which the model interacts with its environment, while the implementa-
tion describes the behavior of the component. Model reconfiguration is achieved when the

model of a component is defined by binding an implementation to an interface.

We showed that an AND-OR tree that captures all possible modeling alternativesfor a par-
ticular component describes the modeling space of the component. Using this AND-OR
tree representation, we showed how these reconfigurable model s can belogically organized

into alibrary of components that supports model selection and component selection.
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Listing 6-2. An XML representation of a DC motor model. |mplementation body.

<i mpl ement ati on conpound="true"
of -interface="DCnot or" ident="dcnotor-cnp">
<conponent interface-nane="el ect-subsystem nanme="el ect">
<par anet er - bi ndi ng actual -part="10" formal -part="Ra"/>
<par anet er - bi ndi ng actual -part="0.1" fornmal -part="La"/>
<par anet er - bi ndi ng actual - part="10" formal -part="knl'/>
<bound-i npl ement ati on i npl enent ati on- name="armature-1-inpl">
<conponent interface-nane="resistor" nanme="ra">
<bound-i npl ement ati on i npl enent ati on- nanme="resi stor"/>
</ conponent >
<conponent i nterface-nane="i nductance" nane="I|a">
<bound-i npl ement ati on i npl enent ati on- nanme="i nduct ance"/ >
</ conponent >
</ bound-i npl enent ati on>
</ conponent >
<comnponent interface-nane="conv-subsystenm nanme="conv">
<par anet er - bi ndi ng actual -part="32. 0e-3" formal -part="tau"/>
<bound-i npl enent ati on i npl enent ati on- name="conv-inpl"/>
</ conponent >
<conponent interface-name="nmech-subsystent’ nane="nmech">
<par anet er - bi ndi ng actual -part="1.0e-5" formal -part="Bni"/>
<bound-i npl ement ati on i npl enment ati on-nanme="friction-inpl"/>
</ conponent >
<concurrent - st at enent s>
<connect term nal -B="neg" term nal-A="el ect.neg"/>
<connect term nal-B="rotor" term nal-A="nech.| oad"/>
<connect term nal-B="reference" term nal -A="nmech.ref"/>
<connect term nal-B="conv.elect” term nal-A="el ect.conv"/>
<connect term nal-B="conv.nech" term nal -A="nmech. conv"/>
<connect term nal - B="pos" term nal -A="el ect. pos"/>
</ concurrent- st at ement s>
</inplenmentation>
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chapter 7 Case study—
Mechatronic design
of amissile seeker

7.1 Introduction

In this chapter, we examine the design process of amissile seeker. The example followsthe
flow of design infor mation model as described in [125, 136] (Figure 7-1) for three complete
levels of refinement to the point where the actual mechanism of the seeker is formulated,

the actuators and gears are selected, and the controllers are derived.

The flow of design information model identifies different states within aparticular stagein
the design process. The edgesin the state diagram denote the flow of information from one
state to another. Design activities transform design information and move this information

from one state to another; labels attached to the edges indicate such design activities.

There exists adirect correspondence between our reconfigurable modeling paradigm and a

number of states and transitions in the flow of design information mode! (illustrated in by
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Figure7-1. Flow of design information model. Adapted from [125, 136]

the shaded area). This correspondence is exploited in this example to allow the designer to

evaluate the behavior of the proposed artifact by means of reconfigurable models.

In the flow of design information model, the family of solutions state represents afamily of
artifacts that may meet the engineering requirements. The relationship between a solution

family and its member artifactsis ssimilar to the relation between a class and its instances
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in object-oriented programming [125, 136]. Similarly to aclassin object-oriented program-
ming, a solution family describes a collection of elements that share common properties.
Element members of this family are equivaent to instance objects. This means that every
member of the family shares the same set of attributes that describe the family, but with

possibly different attribute values.

The family of solutions is equivalent to our AND-OR tree description of a component.
Recall that an AND-OR tree represents the model space of a component. Elementsin this
model space, which share the same attributes with the rest of the membersin the space, rep-

resent specific instances of a component.

Interfaces and implementations in the reconfigurable modeling paradigm have two equiv-
alent views in the flow of design information model. Interfaces map to unbound descrip-
tions and implementations map to behavior model. Through the principle of instantiation,

we move to the proposed artifact state.

The proposed artifact state is reached when the designers compl ete the description of the
artifact. The designers do so by defining parameter values in the unbound description and
by binding the unbound description to a behavior model. This process corresponds to the
instantiation principle for a reconfigurable model and it is represented by an induced tree

in the AND-OR tree of the component.

Oncethe designer has selected a proposed artifact, the observed behavior isderived by sim-
ulating the artifact. The results of the ssimulation are used in the behavior evaluation state.
In this state, designers compare the artifact’ s intended and observed behaviors and identify
any discrepancies. Based on the nature of the discrepancies the designer may choose to
instantiate a different artifact (by means of reconfigurable models) assuming that the cur-
rent sol ution family remains promising and the proposed artifact can beimproved (refined).
Alternatively the designers may decide that the current solution family is not adequate and
may select a different family. At this point our reconfigurable modeling paradigm can be

used again to instantiate and analyze behaviors of member of the new family.
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7.2 Thedevice

The seeker is a device of medium complexity with two rotational degrees of freedom
(called pitch and yaw). The two degrees of freedom allow the device to scan a two-dimen-

sional workspace. Figure 7-2 illustrates a compl ete seeker.

The design of the device must meet design specifications such as desired range of motion
and desired acceleration. All this should be consider together with the physical dimensions
of the device and physical properties of the selected materials. The design of the seeker also
includes the selection of actuators and control systems. In this chapter, simulation will be
used to verify the different alternatives available while selecting the actuators, controllers,

and geometry.
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The compl ete structure of the seeker, based on an AND-OR treg, isillustrated in Figure 7-3.

7.3 lteration |

The design begins with the recognition of need for a mechanism that allows the scanning

of atwo-dimensional workspace.

7.3.1 Customer needs

The customer needs for the seeker specify the desired characteristics the intended design

must achieve. With reference to Figure 7-4, these include:
1. Light weight.

2. Manageable size.

3. Scan asguare two-dimensional area of 800m by 800m.
4. Minimum cruising altitude h is 250m.

5. The seeker is mounted on a missile traveling with a maximum cruise speed of 800K m/

hr. (222.22m/ sec) and it should track a stationary object on the ground.

7.3.2 Specifications

The specifications are derived from the customer needs. Thisresults in the following spec-

ifications.
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1. Weight limit of 800gr.
2. The size of the seeker will be determined later.

3. The seeker needs to span a 120 degrees arc (it needs to cover an area of 400m from the
center of the plane). Thisis considering the minimum cruising altitude, which is, from
the customer needs, equal to 250m. The range of motion of the device should be 1.0
rad.

4. The maximum velocity of the missile (800 Km/hr.) istranslated into arequired angular
velocity (for asingle degree of freedom) asfollows: let 6 = atan (E) where d isthe
distance of the seeker to the target and h is the missile cruising altitude. Taking the

derivatives with respect to time we find the angular velocity:

o _ gatan(g) = —Y Equation 7-1

dt  dt 2
h(l + d—zj
h
which hasamaximum value, when d = 0, of 0.888 rad/sec. To compensate for sudden
changesin direction, we will require that the seeker should be able to track atrajectory

with afrequency of 2Hz (T = 0.5 sec.). Under this requirements, we define a desired

trajectory q4(t) with components:

. (2t
6y = gysin( 22
Equation 7-2
27t
By = gzcos(7)
with period T = 0.5sec and amplitudes g; = 1rad.
The desired trajectory renders a desired velocity and desired acceleration of
- — prla
W, = 4rtcos(4mt) o, =-16m sin(4rmt) Equation 7-3

W, = —Anisin(4mt) ay = —16T[2COS(4T[t)

rad

from which the maximum desired angular velocity is w, ., = 12'555 and the maximum

max

angular accelerationis a_ ., = 160rid2 for both degrees of freedom.
Sec

max
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Figure 7-5. Initial kinematic model.

7.3.3 Engineering requirements

The engineering requirements formalize the specifications to a structure that facilitates its
realization [125, 136]. At this stage we specify the form requirements of the missile seeker

asfollows:
1. Perpendicular axes for the two degrees of freedom.(Figure 7-5).
2. Symmetry.
3. Sizerestriction.
a. Length: 30 cm

b. Width: 10cm
c. Height 30cm.

The design will consist of agimbal ring, which will provide the yaw motion, and a compo-
nent that contains the optics of the seeker, which will provide the pitch motion. The gimbal
ring will support the optics housing and the two will have perpendicular axes with respect
to each other. To comply with the size restriction, the gimbal ring will have aninitial diam-

eter of 20cm and a width of 4.5cm. The optics housing will have a diameter of 8cm and
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gimbal ring

optics housing

Figure 7-6. Geometric model of the seeker design.

width of 5cm. The combined actuation of the pitch and yaw degrees of freedom would pro-
vide the required workspace coverage. The desired kinematic design is illustrated in
Figure 7-6.

7.3.4 Family of solutions

After establishing the engineering requirements we must explore possible solutions. In this
case we turn to the description of the seeker based on the AND-OR tree (Figure 7-3). At
this stage we define the high-level components that comprise the device; these represent
broad concepts that suggest the structure of the device and the interaction between sub-
components (Figure 7-7).

The component graph defines the device as a collection of high-level concepts and their
interactions. In this graph, we can identify two subsystems: a positioning system for each
degree of freedom controlling a rotating mass (Figure 7-8). From the engineering require-
ments and the specifications, it is estimated that the components composing the yaw motion
will be of 600gr (gimbal ring and optics housing), and the component comprising the pitch
motion will be of 300gr (optics housing). This would provide a (estimated) rotational iner-
tiaof J = 0.002 Kg-m? for the yaw mechanism and of J = 0.001 Kg-m? for the pitch

mechanism.

155



VREF

E.’.p:':rrr.f rhiba

YSOEREEIEE EIF E =

b= |
-
| | P e P .:-\.']I
Affmrial g h.llu.l!.ﬁ HC] CoEnga b RS Al Ciiast .
Figure 7-7. Conceptual design of the missile seeker.
Sensor
2
L

Controller Rot. Damper
Vg Rot. | nertla 0
J1

®

Figur e 7-8. Positioning system

achieve the required speed and the required torque.
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The load datais used to determine the amount of torque the motors need to provide. In this
case, we will use amotor and a gear box to provide the desired torques. We have selected
the MicroMo series GNM 26A and GNM 31 with nominal input voltage of 24 volts, speeds
up to 4000 rpm, and torque up to 130 x 10~ N-mand 240 x 10> N-m [85], for the pitch
and yaw degrees of freedom respectively. In addition, a gearbox with ratio 30:1 would
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Figure 7-9. Model selection tool

7.3.5 Behavior evaluation

The behavior evaluation involves comparing the ssimulated behavior with the intended
behavior. To perform the analysis, we select the behavior for each component in our com-
ponent graph using the model selection tool (Figure 7-9) and the AND-OR tree description
of the design shown in Figure 7-3.

The goal of thisanalysisisto verify that the motors can provide the required torque without
going into saturation. A ssimple model of the motors will be used for this purpose. We will
use amodel for the selected motors with no friction and with no armature losses. The con-
troller will be a simple analog proportional controller. In this case, the bindings of imple-
mentations to interfaces are the following: <motor, ideal>, <controller, analog> and
<seeker, simple>. Interfaces sensor and gear provide one implementation (the default
implementation) and thus no explicit binding is indicated.
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Figure7-10. Iteration |: Input voltages and generated torques of the selected motors using the estimated
loads.

Asillustrated in Figure 7-10, the input voltage to the motors does not exceed the nominal
supply voltage of each motor and the torque generated by each motor iswithin bounds. We
can conclude that the motors are appropriate to drive theloads. The next step isto focuson

the design of the actual geometry of the device.
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7.4 lteration |1

In the second iteration werefine the model of the seeker. A refinement for the seeker model

involves to define the geometry and materials.

7.4.1 Engineering requirements

The dimensions of the seeker are now established and fixed according to the customer
needs (Figure 7-11). It is assumed that the geometry is synthesized using a design advisor
such asthe one presented in [127]. Next, we choose the type of material wewill useto man-
ufacture the seeker. We have selected an ABS polymer for the gimbal ring with density of
p = 1.2(—:%, while the ABS polymer for the optics housing has density of p = 1.07(—:%
[79]. Using this information and the volume computed (we use the geometric kernel to
extract that information), we find the mass of the gimbal to be 0.35 Kg, and the mass of the

camera housing to be 0.33 Kg.

7.4.2 Observed behavior

Querying the geometric kernel we find that the gimbal provides a moment of inertia about
thezaxis (yaw angle) of 0.0018 Kg-m2 while the optics housing provides amoment of iner-
tia about the y axis (pitch angle) of 0.0012 Kg-m?. Both values of moment of inertia are
closeto the estimated values in the conceptual design. This suggest that the motors selected
in the previous section would be able to drive the load without going into saturation. To
corroborate this, we derive the dynamic model of the seeker [33] and perform a new anal-

ysison the refined system.

Inthisanalysiswewill also refine the models of the motors. Therefined model of the motor
includes the armature inductance as well as friction in the mechanical component. The
refined model of the seeker includes the dynamic model asit was derived from the geomet-
ric model. Asin the previous step, the new models are selected from the browser tool and
the new binding for the models of the motors is <motor, complex>, and the new binding
for the model of the seeker will be <seeker, dynamics>. The new implementations are

bound to the interfaces given in the conceptual graph without having to change the concep-
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tual description of the design. The result of the smulation at this stage is illustrated in
Figure 7-12.

161



7.4.3 Behavior evaluation

From the simulation results shown in Figure 7-12 we verify that the selected motors can
drive theloads. The pitch motor provides a maximum torque of 0.07 N-m, which resultsin
atorque slack of 0.06 N-m. The yaw motor, on the other hand, provides a maximum torque
of 0.06 N-m, which resultsin atorque slack of 0.18 N-m. We now proceed to complete the

design of the controllers.

7.5 lteration |11

In this iteration we concentrate on the design of the controllers that must be used to opti-
mize the behavior of the seeker. So far we have used an analog proportional controller.
However, in apractical implementation, we must use adigital controller that can beimple-
mented in amicro-controller. Inthislast iteration, we refine the model of the controller first
by providing arefinement from the analog domain to the discrete domain. The last refine-
ment takes the controller from the discrete domain to the discrete domain using a PWM

amplifier at the outpuit.

For this last iteration, the user requirements, specifications and engineering requirements

remain the same.

7.5.1 Family of solutions

Thefamily of solutionsfor this stage of the design is the subtree of the AND-OR treerooted
at the node controller. This family includes an analog controller, a discrete controller and
adigital controller. Inthis case, we are interested in the bindings < controller, discrete> and
<controller, discrete, SM>, which, through our reconfigurable modeling paradigm, can be

selected to study different system performance.

In the principle of PWM, a dc power supply is rapidly switched at a fixed frequency f
between “ON” and “OFF". This frequency is often in excess of 1KHz. The high value is
held during a variable pulse width t during the fixed period T. The resulting asymmetric
waveform has a duty cycle, defined asthe ratio between the ON time and the period of the

waveform, usually specified as a percentage:
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duty cycle = %100% Equation 7-4

As the duty cycle is changed (by the controller), the average voltage of the motor will
change, causing changesin speed and torque at the output. It is primarily the changein the
duty cycle and not the value of the power supply that determines the output characteristics
of the motor [59].

There are two alternatives provided in the family of solutions for each controller based on
the information encoded in the PWM signal. These are <controller, discrete, SLA>, <con-
troller, discrete, SM>, <controller, digital, SLA>, and <controller, digital, SM> (see
Figure 7-3). The behavior SLA (i.e., smple, locked anti-phase PWM) consists of asingle,
variable duty-cycle signal in which is encoded both direction and amplitude information.
A 50% duty-cycle PWM signal represents zero drive, since the average voltage delivered
to the motor is zero. On the other hand, SV (Sign/magnitude PWM) consists of separate
direction (sign) and amplitude (magnitude) signals. The (absolute) magnitude signal is
duty-cycle modulated, and the absence of a pulse signal (a continuous logic low level) rep-

resents zero drive. Voltage delivered to the motor is proportional to pulse width.

7.5.2 Observed behavior

The observed behavior is obtained for the discrete instance of the controller component
(Figure 7-13). For this design, we have selected the sign/magnitude PWM behavior. The

observed behavior of the discrete controller is shown in Figure 7-14.

7.5.3 Behavior evaluation

The error achieved by the yaw controller is0.009 rad while the error for the pitch controller
is 0.008 rad. At this last stage of the design of the seeker, we consider the error values
attained by the discrete controllers to be acceptable.
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Figure 7-13. Discrete controller with PWM amplifier.

7.6 Lessons lear ned

Throughout the example we observed that our simulation-based design environment can
help in the creation of different analysis settings, which can help in the evaluation of the
design without too much effort. By being able to analyze the behavior of the design early
in the design process, the designer is able to make more educated estimates that will reduce

design conflictsin later stages.

The quality of the design improves because more design alternatives can be explored
through the composition and instantiation of components. This is true since the use of
reconfigurable models allows the designer to test different alternative components and to

analyze the behavior of the system with these new components.

The port-based modeling paradigm permits reusable hierarchical models to be composed.
Thisis also an advantage because by having a minimal set of building blocks the designer

can compose alarge number of designs that can be used later in new design problems.
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Figure 7-14. Iteration I11: Tracking errors for yaw and pitch using a discrete controller.

7.7 Summary

In this chapter, we walked through a number of iterations to design a missile seeker. We
started off by defining the customer needs and the requirements based on these needs.
Based on the flow of design information model weidentified several areasthat map directly
to our reconfigurable modeling paradigm. As a result, a seamless integration between the
design process and evolutionary simulation (based on our reconfigurable models) was pre-

sented. The complete simulation-based design framework is shown in Figure 7-15.

165



= s o-a]

BT B

mmpicen . mun | seal | [ el ey || peswimapee |

VL il B a0 LR3ED h

_ﬂ T
N T _ [P IEE T g TF T TT Y
L L | I L L]
ein ") eneas B 4 EEEEE
¥ ﬂ _ R AR
[ ETE T UL ETY o Th, T T
i Ol =N Rt
mrerpmpsi [ _ s §
ki -_-.,._.n._.-,._.ﬂ.r [EE 0l
¥ _U Kl
[EEtia TR LR T g I _ LI T
(T T T THT oy TS [ T LT
-L_'..-uu._-_.-.n.r.a-ﬂ & [ET, -
3 = _ sl §
.n:uu_nEH_n._ L1 23
_h-.:mEu...l.r_j [ ...H._._.-.__-.__-. 3
i | | T pan &
nm— i
e s |

{

Figure 7-15. The composable modeling and simulation environment.
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chapter 8 Conclusions

8.1 Contributions

While developing anew modeling paradigm for mechatronic systems that provides model -
ing and simulation support to the design process, significant contributions in the area of

modeling multi-domain systems were achieved. We can classify these as follows:
» Composable simulation.

* Port-based multi-domain modeling of mechatronic systems.

» Reconfigurable models.

» Structural knowledge representation.

» Multidisciplinary modeling and simulation representation.

We have grouped these contributionsinto two larger groups: intellectual and implementa-

tion contributions. Intellectual contributions include new ideas, and new algorithms, while
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implementation contributions include new framework and new representational structures.
Within the intellectual contributions of this work we can include composable simulation,
port-based multi-domain modeling of mechatronic systems, and reconfigurable models.
The implementation contributions of this work include the structural knowledge represen-

tation and multidisciplinary modeling and simulation environment.

8.1.1 Intellectual contributions

8.1.1.1 Composable ssmulation

In thisthess, we developed the idea of composable simulation. By composable simulation
we mean the ability to generate system-level simulations automatically by ssimply organiz-

ing the system components.

Composition is the basis for assembling simulation models of multi-energy domain physi-
cal components. It is through composition that our port-based models are assembled into a
complete model. When these models are combined into a complete system, our framework

automatically combines them into a system-level simulation.

Raising the level of user interaction to composition of system components rather than com-
position of simulation models will result in a significant reduction of effort in creating and
modifying system-level simulations and will reduce the simulation and modeling expertise

required of the user.

Our framework for composable simulation will therefore enable designers to verify their
physical designs with much less effort and time than isrequired in current ssmulation envi-

ronments.

8.1.1.2 Port-based multi-domain modeling of mechatronic systems

Multi-domain modeling of physical systems requires means to capture the interaction
between components within a single energy domain and across energy domains. To this
end, we developed anovel modeling paradigm based on port-based objects[133]. The port-
based object approach allows usto model system components by describing their behavior

and their interaction with the environment. Interaction paths capture energy flow (for

168



energy-based systems) or signal flow (for non-energy based systems). In thisway, we can
describe a system as a graph where nodes represent high-level system components and

edges represent their interactions.

Port-based objects can be compound or primitive. Compound port-based objects define the
behavior of asystem asastructural arrangement of subsystems (also modeled as port-based
objects), while primitive port-based objects are defined by the congtitutive equations
describing the behavior of the object.

The port-based modeling paradigm is the basisfor our multidisciplinary modeling and sm-
ulation environment, as well as for our concept of reconfigurable models. A port-based
object istransformed into a hybrid mathematical representation based on linear graphs and
block diagrams.

8.1.1.3 Reconfigur able models

To support the evolutionary nature of design, we extended the port-based modeling para-
digm to support reconfigurability of system models. Reconfigurable models are a powerful
abstraction that allows the designer to change the ssmulation models on the fly. The mod-
eling paradigm of reconfigurable modelsis based on the separation of the boundary of the
component (i.e., collection of ports) from the description of its behavior (which can be
given by equations—for primitive components—or by a composition of subcomponents—
for compound components). We called the boundary of the component itsinterface, and we

called its behavior the implementation.

Using the concept of subtyping, we organize the component interfaces into a semantic net-
work. Animportant virtue of this network isthat by traversing it (upward or downward) we
define two operations: refinement and generalization. Reconfigurability is achieved when
an implementation is bound to an interface. Therefore, this network completely definesthe
basic operations that are required to support reconfigurable models, namely, speciaization,

generalization, and reconfiguration.
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8.1.2 Implementation contributions

8.1.2.1 Structural knowledge representation

During design, it isnecessary to have access to a set of simulation models for a given com-
ponent. This set of models can be used to perform simulations at different levels of detall
and at different stages of the design process. We call this group of models the model space
of the component. We developed a representation to describe the model space of arecon-
figurable component. The representation isbased on an AND-OR tree[105]. The AND-OR
tree representation systematically organizes a family of possible structures of a system,
hence describing the model space of this system. Using the properties of the AND-OR tree,
OR arcs denote modeling alternatives, while AND arcs denote the elements comprising an

individual modeling aternative.

The structure of the AND-OR tree and the principles of composition and instantiation
defined in this work are tightly related. The principle of composition is described by an
AND arc pointing to all the constituents of the composed model. The principle of instanti-
ation, on the other hand, is captured by an OR arc since it describes alternative ways of

defining the component.

Based on this structure, we developed models of concrete components. These models are
characterized by an induced tree of the AND-OR tree. The collection of reconfigurable

model s represented by this component structure are stored in alibrary of components.

To describe this model structure, we developed a neutral markup specification language
based on XML. The purpose of this language is to facilitate sharing of reconfigurable

models among the members of ateam of designers.

8.1.2.2 Multidisciplinary modeling and simulation representation

We developed a novel multidisciplinary modeling paradigm that combines energy-based
and non-energy based systems into a single modeling representation. The formalism used
to represent a multidomain system is based on linear graphs [143]. We extended this for-
malism and created a hybrid representation for mechatronic systems. In this representation,

energy-based systems are model ed using thelinear graph formalism, and non-energy-based
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systems are modeled using block diagrams. We have combined the two formalismsinto a
hybrid representation that all ows the description of both types of systems. New elements—

variable elements—seamlessly interface the two formalisms.

We developed algorithms to automatically synthesize the linear graphs for al energy
domains involved, including signal, electrical, and mechanical domains. The algorithms
that synthesize the linear graph for the mechanical energy domain take care to simplifying
the graph. Thissimplification isdone in order to minimize the possibility of obtaining both
high-index algebraic differential equations and fully constrained mechanisms. The simpli-
fication algorithm works by identifying and removing redundant kinematic joints (i.e.,

joints that have coincident joint axes).

We formalized the causality problem as that of finding a minimum cost spanning tree on
the linear graph. This provided a convenient way for finding causal directions for all the
equations in the system. To incorporate the equations derived from the non-conservative
system, we defined an extension of the classic Block Lower Triangular algorithm to find a

feasible order of evaluation of the DAES.

8.2 Futuredirections

Thiswork is a foundation for a different approach to modeling. Our paradigm has raised
several issues that need to be addressed to develop its full potential. These issues provide
the basis for future research in the areas of reconfigurable models and improved support of

the design activities. Some of these issues include the following:

1. Automated model selection—A solution to the problem of automated model selectionis
required to have intelligent simulation-based design advisors. A simulation-based
design advisor isadesign tool that can suggest appropriate simulation models based on
information about the kind of analysisthat is to be performed. From this information,
the system should explore the model space for the component (the component AND-

OR tree) and find a subset of implementations that have to be bound to the interfaces
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used in the design. To accomplish this goal, we consider that the following questions
should be resolved, however, these questions present only a starting point from which

research in this area can leverage:

1.1. What semantic description (i.e., language representation) should we use to

describe an experiment?

1.2. What is the information embedded in a class of experimentsthat is relevant to
select a subset of models? This areawould be useful to reduce the search space

when working with a set of experiments.
1.3. What is the semantic content of a model?
1.4. What isthe mapping of the semantic content of an experiment to model semantics?
1.5. How would the computational requirements affect the model selection?

. Model aggregation—Composable simulation and port-based modeling allows usto
create models of physical systems by putting together simpler models. An important
problem isthat of aggregation of these models. Thisisimportant because we want to be
ableto abstract all details of the model being created such that the abstraction can be

used in larger models. Theissuesin this areainclude:

2.1. How does the context in which the aggregate is to be used influence the aggrega-
tion boundaries? It may be possible to have many different views of acomposition
depending on the context in which the aggregate will be used. The simplest case

would be to place an envelope around all components.

2.2. How can the ports and terminals of the elements of the aggregate be combined into
ameta-port (which may include ports and terminals)? If the composition can have
different views, it must have different ways of interacting with the environment.

Ports and terminals that are visible in one view may not be in another.

. Expanding the expressiveness of the modeling paradigm—As we pointed out in
Chapter 3, the port-based modeling paradigm can describe component interactionsin
any energy domain as long as the interaction is not distributed but lumped. As aresult,

only lumped parameter models can be described with this modeling paradigm. An
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important set of physical models, however, require the use of distributed parameter
models. Therefore, to expand the modeling capabilities of our approach, extensions to

distributed parameter modeling are required. The issues involved in this areainclude:

3.1. What representational structures should we use to describe a distributed parameter

model ?
3.2. Can the existing representations be used to extend our framework?

3.3. How can we relate the distributed parameter model to the lumped parameter

model ?

. Use of modeling in collaborative design—Design of mechatronic systems is a process
that is characterized by the involvement of a number of expertsin different areas, for
example mechanical, electrical and software engineering. Therefore, it is necessary to
provide s mulation support in a collaborative design environment. In this area, teams of
expertsworking on different portions of the design should be able to share the model of
the design such that others have an updated view of the problem. Theissues are related
to software systems architectures, since the objective isto implement a distributed
repository of models that is accessible from anywhere in the organization. These

include, version control, model sharing and locking, and consistency maintenance.

. Product structure—The product structure represents the physical organization of com-
ponents. It providesinformation not available in asimulation model of the device. This
information may influence the selection of the kind of models, and how these models
interact. An example of such case isthe physical proximity or actual mechanical con-
tact between two components. If the experiment we are performing considers the phys-
ical proximity of components, for example to capture the effects of heat radiation of
one component onto its neighboring components, the models that are selected should
account for those interactions. Considering the topology of the component in asimula-
tion run, would improve the fidelity of the simulation and give the designer a better
understanding of the interactions between components that may be otherwise excluded.
Theissuesto be addressed in this areainclude:
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5.1. What is the taxonomy of interactions that can be derived from the product struc-
ture? Physical proximity and physical contact are two examples, but are there

more?

5.2. What semantic description should these interactions have to be able to perform

inferences on the type of models required?
5.3. What semantic content is required to describe the models?

. Intelligent behavioral search of models—Typically, in design, one starts from func-
tional requirements, which after selection of the appropriate physical processes, are
transformed into form [96]. Once the form is synthesized, mathematical modeling can
provide a description of the behavior of theform. It would be desirable to provide tools
that can search for a component that meets given functional requirements. An example
could beto search for an electric motor that meets some torque or angular speed
requirements. This trandates into a search problem on the space of available compo-
nents. The result of the query should bring a subset of components that best match the
reguirements. Behavioral search is different from model selection. We can think of the
problem of formulating amodel for a physical device as being divided into two steps.
Oneisto find the device that matches the functional requirements (behaviora search)
and once the device is given, we need to select amodel for that device (model selec-
tion) that matches the requirements of some experiment. The issuesinvolved inthe area

of behavioral search include:
6.1. What is the semantic description of the query (i.e., aquery language)?

6.2. What is the semantic content of a model?. This semantic content may be different
from the semantic content in 1.3 above since it should reflect the properties of a

model related to the design requirements.

6.3. What is the best internal organization of modelsto make the query efficient? This
guestion isrelated to the design of the component repository. Should we use an
object-oriented data-base?, relational database?, distributed?
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7. Functional models—The function of adeviceisitsintended behavior. The functional
specification describes the device's goals. Functions are achieved through form. The
form of adeviceiswhere the physical processes associated with the device take place.
If we associate behaviors with form and combine them into a single component model,
we obtain component models containing a description of their form and one or more
behavioral descriptions. Using functional models in a simulation-based design environ-

ment requires that we address the following issues:

7.1. Mapping from function to form. If we associate the behavioral description of a
deviceto form, it may be possible to synthesize form from function. The combined
use of behavior and form could be used to test, through simulation, that the behav-
ior of a device matches the given functional requirements; this problem is related
to theissue of intelligent behavioral search of models (above). However, once aset
of (behavior of) devices has been identified to match the functional requirements,
further analysisis required to find the appropriate physical realization (form) of
the device; i.e,, to verify that the physical characteristics of the selected device

match the physical requirements (dimensions, materials, etc.)

7.2. Mapping from form to behavior. In this context, the problem is to find a kinematic
model that describes the form. This kinematic model is used in conjunction with
the behavioral description of the system to provide a complete model of the sys-
tem. To this end, work isin progressin our center. Thiswork deals with the auto-
matic synthesis of behavioral models that describe interaction between geometric
components [126]. Given the components for these interactions, the dynamic
model of the form can be synthesized and parametrized by obtaining lumped
parameters from the CAD model.

8. Integration with commercial CAD programs—We envision that the composition of
simulation models will consider the geometry of the physical device. In the current
implementation, the geometry is taken into account using a CAD package developed in
our group. If the modeling paradigm and software environment presented in this disser-
tation are to be used in an engineering setting, the framework must be integrated to

commercial CAD packages like I-DEAS or ProEngineer.
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8.3 Conclusions

In this dissertation, we presented a composabl e simulation framework to support the design
of mechatronic systems. Our framework allows ssmulations to be assembled from high-
level component descriptions, which results in a significant reduction in time, and hence
codt, of developing new simulations. Designers can take full advantage of these featuresto
test new designs or to test changes to existing designs. This could trandate in a larger

design space being considered which may result in better designed products.

The concept of reconfigurable models provides three basic operations: specialization, gen-
eralization, and reconfiguration. This alows the designer to create simulations at different
levels of detail by smply changing the implementations associated with the interfaces in

the design.

Reconfigurable models incorporate parameterization, typing, and port-based interfaces,
which allow building models as networks of encapsulated, reusable subsystems that are
explicitly classified. The classification of these modelsis given in the type hierarchy that
we used to organized the modelsin the library. It is explicit because we can determine the
properties of amodel from the type hierarchy through inheritance. The type hierarchy pro-

vides the information needed about a particular model at any time.

When we consider a component such that it is divided into two parts, an interface that
defines essential propertiesand an implementation that defines non-essential properties, we
achieve modularization of the component. Furthermore, when combining subtyping with
modularization, it becomes possible to define instantiations of an abstract concept (inter-
face) with an implementation. We can also define specializations or generalizations of an

abstract concept with the subtype relation.

Our framework allows the designer to consider concurrently the integrated system at dif-
ferent levels of abstraction, ranging from low-resol ution model s to high-resolution models.
Additionally, it gives the designer an unequal ed flexibility to manipulate the model of the

design.
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Appendix A Linear Graph
Theory

A.1l Introduction

Linear graph theory, a branch of combinatorial mathematics, has proved to be a useful tool
for the study of large and complex systems. Leonhard Euler wrote one of the first papers
on graph theory and laid the foundation for the theory when he published the solution to the
Konigsberg bridge problem in 1736. However, itsfirst application to an engineering prob-
lem did not arise until 1847, when Gustav Kirchhoff applied it to the study of electrical net-

works.

This appendix presents areview of the basic concepts in linear graph theory, namely, the
topological and algebraic properties. The material is based on the seminal work by Branin
[17] on network analogies for physical systems, and the work by Seshu and Reed [121] on
electrical networks.
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Figure A-1. A directed linear graph

A.2 Basic definitionsof linear graphs

The basic elements comprising alinear graph are line segments (called edges) each having
two end points (called vertices). If adirection is specified on each edge, they become ori-
ented edges and the graph is referred to as directed graph. Schematically, we can indicate
the edge orientation two ways, namely, by attaching a+ and a— to the two ends of the edge

or by attaching an arrowhead directed from the + end to the — end of the edge.

Definition Linear graph. A linear graph G isacollection of edges, no two of which have

apoint in common that is not a vertex.

Definition Connected graph. A graph G is connected if there exists a path between any
two vertices of the graph. If the graph is not connected, it contains p connected compo-

nents.

Figure A-1 shows an example of an oriented linear graph. This graph is a non-connected
graph having two connected components. The arrowheads on each edge indicate the direc-
tionality of the edges.

The following definitions set the basic terminology for linear graph theory.

Definition Subgraph. A subgraph Ggis asubset of edges of the graph G. Subgraph Ggisa
proper subgraph if it does not contain all edges of G.

Definition Incidence. Edge kisincident to avertex p if p is an endpoint of k.
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Definition Degree of vertex. The degree of avertex isthe number of edgesincident to that

vertex.

Definition Edge sequence. An edge sequenceis any subset Eg of the edges of G where Eg

can be ordered such that an edge k in Eg has a vertex in common with the preceding edge

k-1, and the other vertex in common with the succeeding edge k + 1.

Definition Path. A path is an edge sequence where each internal vertex has a degree of

exactly two and each terminal vertex is of degree 1.

Definition Circuit or loop. A circuit or loop is a closed edge sequence where all vertices

are of degree 2.

A tree T is a connected acyclic subgraph of a connected graph G that contains al the ver-
tices of G but contains no loops. The edges that are not part of the tree form a subgraph
T called cotree. Edges in the tree are referred to as branches, while edgesin the cotree are
referred to aslinks or chords. For agraph with eedgesand v vertices, thereareexactly v—1
branches. Consequently, the number of chordsin the cotree equals e—v + 1. If the graph
G is not connected, atree does not exists because by definition, atree is a connected sub-
graph of a connected graph. However, atree can be found for each of the connected com-
ponents of G. The collection of such treesis called a forest. Similarly, each component of
G defines a cotree and the collection of all cotreesiscalled acoforest. Therefore, inagraph
with e edges, v vertices and p connected components there will be v—p branchesin thep

trees (forest) and e—v + p chordsin the p cotrees (coforest).

Let G be a connected graph with v verticesand eedges (i.e., p = 1) and T be atree of G.
If we add any chord between any two vertices in the tree, we establish a circuit. Sincein a
connected graph thereare e—v + 1 chordsfor agiventree T, there are as many unique cir-
cuits defined by the chords of T. The fundamental circuits (f-circuits) of a connected graph

G for atree T arethe e—v + 1 circuits formed by each chord of the giventreeT.

As an example, consider the graph G shown in Figure A-2. Thetree T=(a, b, g, d) isindi-

cated by bold edgesin thefigure. The number of edges and verticesisnine and five, respec-
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Figure A-2. A connected graph with atree T indicated by bold edges

tively; therefore, the number of chords in the graph is five. The five fundamental circuits
defined by these chords and their tree paths are listed in Table A-1.

Table A-1. Fundamenta circuits for the tree of figure Figure A-2

Chord Tree path f-circuit
() (ab) (ab,f)
(h) (b, g, d) (b,g,d, h)
(©) (b, 9) (b,g,0)
(i) (a9) (agi)
(e) (a g d (agde

The table includes the f-circuits defined with respect to thetree T = (a, b, g, d). It has been
proved that any circuit in a graph can be made an f-circuit with respect to some tree [121].
This property is of utmost importance when we analyze the algebraic structure of the graph
sinceit alows usto select the causality of the equations of the physical system being mod-
eled.

Since the graph is directed, it is appropriate to consider the f-circuits oriented. As stated
above, achord uniquely defines an f-circuit; therefore, it is natural to assign the orientation

of the f-circuit to be consistent with the direction of the defining chord.
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A circuit in alinear graph has a dual called cut-set. A cut-set of a connected graph G, is
defined as a set C of edges of G such that the removal of these edges from G leaves G par-

titioned in exactly two connected components.

A fundamental system of cut-sets (f-cutsets) with respect to atree T of a connected graph
G istheset of v—1 cut-setsin which each cut-set includes abranch of T. The fundamental

cut-set orientation is to agree with the orientation of the defining branch.

We end this section by presenting an interesting property of a fundamental cut-set: if e;
represents a branch of atree T in a connected graph G, and (e, €,, €3, ..., €,) represents
the cut-set defined by e, , then each of the f-circuits defined by the chords e,, e;, ..., €,
includes e, . To illustrate this property, let e, be edge ain the graph of Figure A-2. The f-
cutset defined by this branch is (a, f, i, €) since the removal of this set leaves the graph in
two components one of which isthe isolated vertex 1. From Table A-1, we can seethat the
f-circuits defined by the chords (f, i, €) all include edge a.

A.3 Matrix representations of linear graphs

The connectivity relations of any oriented linear graph can be completely specified by
means of the augmented incidence matrix, denoted A .The incidence matrix containsinfor-
mation both about the orientation of edges in the graph and how they are joined to form
nodes. For adirected graph is G with v vertices and e edgesthe incidence matrix isav x e

matrix with entries a;; defined by:

B 1if edgej isincident at vertex i and is oriented away from vertexi
aj =9 —1if edgej isincident at vertex i and is oriented toward vertex i
0 if edgej isnot incident at vertex i

In general, for a graph with p connected components, the incidence matrix is a direct sum.
A matrix M is said to beadirect sumof My, My, ..M, if for any M, in M no nonzero ele-
ment liesin arow or column of M associated with any of the other submatrices[143]. The

existence of adirect suminamatrix aways indicates the existence of subgraphs; therefore,
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the M, matrices can be regarded as the incidence matrices of each of the p connected com-

ponents.

The incidence matrix for the graph shown in Figure A-1, is given by Equation A-1. As
expected, this matrix is a direct sum; there are two connected components in the graph,

which show up in the incidence matrix.

-1-10-110,0 00
01 10-10000
A=|10-110 1:0 00 Equation A-1
00000-4000
0O 0O0O0OO0O0O01-11
00000 O0-11-1

Consider the incidence matrix A of a connected graph (p = 1) G. Since the sum of all
rows of A equals zero, its rows are linearly dependent. Removing any row from A will
leave v—1 linearly independent rows. We call this new matrix the reduced incidence
matrix, denoted A. From graph theory [121], we know that, if T is a tree of a connected
graph G, the v—1 columns of A that correspond to the branches of the tree T constitute a
nonsingular matrix. Thusif atreeis chosen and the columns of A are properly arranged, the
matrix A can be partitioned into the (v—1) x(v—1) submatrix At referring to the
branches of the tree only, and the (v—1) x (e—v+1) submatrix Ac, referring to the

chords or to the cotree.

A= [AT Ac} Equation A-2

Two new matrices can be defined to describe the topology of the graph. The fundamental
circuit matrix (designated B) captures the connectivity relations between circuits and
edges, and the fundamental cut-set matrix (henceforth referred to asthe cut-set matrix) des-

ignated Q. Matrix Q captures the connectivity between cut-sets and edges.

The fundamental circuit matrix B of a directed graph G with respect to atree T is defined

by the e—v + 1 circuits formed by each chord as follows:
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1if edgej isincircuit i and the orientation of the circuit and the
edge coincide
bjj = —1if edgej isincircuit i and the orientation of the circuit and the
edge do not coincide
0 if edgej isnotin circuit i

If the columns of matrix B are properly arranged matrix B can be partitioned into the
(e—v+1)x(v—1) submatrix Bt referring to the branches of the tree and the
(e—v+1) x(e—v+ 1) submatrix B referring to the chords of the cotree. However, since
each chord appears exactly once in any given f-circuit in the positive sense, the matrix

Bc = U, i.e, aunit matrix. Then we can write

B = [BT Uc} Equation A-3

A closer ook to the matrices A and B will reveal avery interesting and fundamental prop-
erty of linear graphs. We can define two linear vector spaces associated with the graph G,
namely, the vector space Vg spanned by the rows of matrix A, and the vector space Vg
spanned by the rows of matrix B. Thesetwo vector spaces are subspaces of the linear vector
space V¢ of dimension e. It can be shown [121] that the matrices A and B satisfy the fol-

lowing relation:

ABT = 0and BAT = Equation A-4
Thisimplies that the two vector subspaces Vg and Vg are orthogonal complements of the

e-dimensional linear vector space V. This fact is known as the orthogonality principle.

Using this fact, we can derive an equation to find matrix B:

Bl .
[AT AC} [UT] = ABI+A.U. =0 Equation A-5
C
It follows that
Br = -AL(AFH)T Equation A-6

183



N
T

Figure A-3. An electrical network and its associated linear graph.

When the columns of matrix A are properly arranged such that thefirst v—1 columns of A
arein direct correspondence with the branches of some tree T of a graph G, an equivalent
matrix—two matrices A and Q are equivalent when their rows span the same vector
space—Q can be derived. Thismatrix isderived from matrix A by applying row operations
to A. Matrix Q represents the fundamental system of cut-sets with respect to the tree T. It

includesthe v—1 cut-sets of G in which each cut-set includes only one branch of T. Then

Q= [UT QC} Equation A-7
Since matrices A and Q are equivalent, the following relation holds

BQT =0 Equation A-8

It follows from Equation A-5 that

B = _Q(T: Equation A-9

A.4 Thealgebraic structure associated with alinear
graph
We will illustrate the algebrai ¢ structure associated with alinear graph, with the analysis of

a smple electrical network. Figure A-3 shows an electrical network and a linear graph

topologically equivalent to the network. The numbering of the elementsin the network and
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the edgesin the linear graph makes it easy to see the correspondence between them. In the

figure, all current directions and voltage references have been indicated.

It isatrivia exercise to derive the Kirchhoff’ s current and voltage equations for this net-

work and they are given asfollows:

i, (1) +i,(t) +ig(t)—i(t) = O
—iy(t) =i (1) —ig(t) = O

—i,(t) —ig(t) +iy(t)—ig(t) = 0 Equation A-10
ig(t) +i,(t) +ig(t) = O
ig(t) —ig(t) =0
and

—Vvy(t) +v,(t) +v,(t) = 0
=V (1) +vg(t) +v,(t) = 0
V(1) +vg(t) —vg(t) —vg(t) = 0
V(1) =vg(t) +vo(t) —vg(t) = 0

Rewriting the two systems of equations (A-10) and (A-11) in matrix form we obtain

Equation A-11

i1(t)
_ _|i2(1)
111000-10 i5(t)
_100_10_100i4(t)_ _
0-1-1-1-10 0 0| =0 Equation A-12
0000101 1|V
00000 1 0-1s®
i-(t)
00
and
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Vl(t)
Vz(t)
11010 0 0 0]|Vs(®
101100 0 0]|Vvalt) - 0
00011-10-1]|vg(t)
10000-11-1 V(1)
V4 (1)
Va()

Equation A-13

The coefficient matrices in the previous equations can be recognized as the augmented inci-
dence matrix and the fundamental circuit matrix respectively of the directed graph shown
in Figure A-3. This observation is general and it is applicable to any system for which a
directed linear graph can be obtained (i.e., the network problem [17]). Thisfact leadsto the
definition of the two Kirchhoff theorems that state that the sum of currents leaving a node

equals zero and the sum of voltages around aloop equals zero. This can be written as:

Ai(t) = 0 Equation A-14
Where A isthe incidence matrix of the directed graph and i(t) = [il(t) () ... ie(tﬂ
where ij(t) is associated with edge j. Similarly,

Bv =0 Equation A-15
Where B is the fundamental circuit matrix of the directed graph with respect to some tree
Toand v(t) = [vy(t) vy(t) .. ve(t)| Wherev;(t) isassociated with edge;. For theexam-
ple above, thetree T = (1, 4, 6, 8).

We know that the incidence matrix is a singular matrix for which we can remove arow to
obtain the reduced incidence matrix A, which isfull rank. Thus, in a connected graph with
v vertices, there are exactly v—1 linearly independent Kirchhoff’s current equations. In
generdl, if the graph contains p connected components, thereare v— p linearly independent
Kirchhoff’s current equations. Similarly, there are e—v + p linearly independent Kirch-

hoff’ s voltage equations for a network of p connected components.

Theorem A-I.If T isany tree of a connected graph, the voltage functions of the chords of
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T can be expressed as linear combinations of the voltage functions of the branches of T,
and the current functions of the branches of T can be expressed as linear combinations of
the current functions of the chords of T [121].

Proof. To provethefirst part of the theorem, let us assume that the columns of B are prop-
erly arranged such that they include the chords of the defining cotree asthelast e—v+ 1

columns, and the vector v isarranged accordingly:

[B U} Vo(t) =0 Equation A-16
T v

Expanding Equation A-16 we obtain  B,v,(t) +v(t) = O, which can be solved for
v(1):

V(1) = =Bv(t) Equation A-17
This shows that the chord voltages can be expressed as linear combinations of the branch
voltages.

For the second part of the proof, we recognize that the cut-set matrix Q of v—1 cut-sets
and rank v—1 defines aset of equations Qi(t) = 0, which are equivalent® to the Kirch-
hoff’s current equations Ai(t) = 0. If the columns of Q are properly arranged to include

the branches of the defining tree asthefirst v— 1 columns, and the vector i is arranged

accordingly we have
[U Qf} fb(t) =0 Equation A-18
io(t)
Expanding Equation A-18 weobtain j (t) + Qi (t) = O, whichcanbesolvedfor iy(t):

ip(t) = =Qyi(t) Equation A-19

This equation defines the branch currents as linear combinations of the chord currents. -

1. Two systemsof linear equations are equivaent if they have the same solution.
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Equations (A-17) arereferred to as fundamental circuit equations and equations (A-19) are

referred to as fundamental cut-set equations.
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Appendix B MDL Grammar

In this appendix, we present the grammatical rulesthat define the high-level language used

to describe component models and configurations.

nodul e_def ::= nodule identifier nodul e_qualifier
nmodul e_body endnodul e ;

nodul e_qualifier ::=is | isa configuration wth

nmodul e_body interface_def
body_def |

interface_def body_def

interface interface_constituent ;

interface_def ::
interface _constituent ::=

si zes_decl| |

interface_constituent ; sizes_decl

body_def

subnmodul es body_decl ;
connecti ons body_connections ;
initialization body_initializations ;
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body_decl ::= body_itemdecl |
body_decl ; body_item decl

body_connections ::=
body_connecti on_decl |
body_connections ; body_connecti on_decl

body initializations ::=
body_i nit_decl |
body_initializations ; body_init_decl

body _itemdecl::= nane_list isa nodul e_decl
nmodul e_decl ::= nodule identifier

body_connection_decl:: =

in [ nunber ] @identifier . in [ nunber ] |
out [ nunber ]| @identifier . out [ nunber ] |
identifier . in [ nunmber ] @in [ nunber ] |
identifier . out [ nunber ] @out [ nunber ] |
identifier . in [ nunmber | @

identifier . out [ nunber ] |
identifier . out [ nunber | @

identifier . in [ nunmber ]

body_init_decl::= setstate ( init_statenent_args ) |
setparam ( init_statenent_args )

init_statenent_args ::=identifier , array_def
si zes_decl ::= declare ( field_decl , bool_or_dim)
field_decl = inputs | outputs |

states | dft

bool _or_dim true | false | num

[ expr_list ] |
{ array_el enent _def }

array_def

array_el enment _def ::=
array_el ement |
array_el enent _def , array_el enent

[ expr_list ]

array_el ement ::

expr_list i= expr |
expr_list , expr
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expr 1= num|
expr + expr
expr - expr
expr * expr
expr |/ expr
- expr |
expr ™ expr |
( expr )

nanme_| i st := identifier |
nanme_list , identifier
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Appendix C C-language
Interface component
specification

C.1 C-language interface specification for software
components

The C-language interface specification for software components provides an application
programming interface (API) to the kernel model. The API provides a collection of stan-
dard methods, which are implemented as C functions. The methods in this API are classi-
fied in two mayor groups: methods called by the smulation kernel in response to the state
of the module, and methods called by the implementation of the design entity to access its
internal data structures maintained by the kernel. Methods called by the kernel include:
sbsDerivatives, sbsQut puts, sbslinitializeSi zes and sbsTerm nat e
(Listing C-2). Two additional methods are shown Listing C-2, namely, DECLARE_CLASS
and ssGet FcnPar ans. These methods are used to register a new kernel module, and to

define aliases to the module’ s parameters. Methods called by the implementation of the
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Listing C-2. Template for implementing a design entity

#incl ude “sbs. h”
DECLARE_CLASS( cl ass_nane)
#defi ne paraneter_1ssGet FcnParam( S, 0) [ 0]

static void
sbsDeri vatives(doubl e t, const double* x, const double* u,
doubl e* dx, sbsTask* S) {

}

static void
sbsQut puts(doubl e t, const double* x, const double* u,
doubl e* y, sbsTask* S) {

}

static void sbslinitializeSi zes(sbsTask* S) {

}

static void sbsTerm nate(sbsTask* S) {

}

design entity include methods to declare and query the sizes and values of its input, output

and states vectors, and access operations for work aress.

DECLARE _CLASS( nodul e) —This macro is used to register nrodul e the new classin
the kernel and prepare all internal data structures to handle the new class. It auto-
matically forward declares all of the class functions (e.g., sbsQut put s) and gen-
erates the necessary code to initialize the internal virtual function table used by the
kernel to fetch the appropriate class method.

ssCet FcnPar ans( sbsTask*, i nt)—Thismacroiscalledto accessthe parameters
of amodule that has been previously defined in a configuration. The first argument
isapointer to an sbsTask structure that represents the module class and the sec-
ond parameter is an index in the parameter array defined in the MDL specification.
The macro returns alist of array elements where the 0-th element is the first array

inthe list; the first element is the second array etc.

sbsDeri vati ves() —Oncethe task is spawned thisfunction is called by the kernel to

compute the derivatives of the design entity. The functionis called every major and
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minor integration step.

sbsQut put s() —Similarly to the shsDerivatives function, this function is called by the
kernel to compute the outputs of the module implementing the design entity. The

function is called every major and minor integration step.

sbsinitializeSi zes()—Thisfunction is called once at the moment when the task
is spawned in the kernel to set up all the sizes of all internal data structures used to
keep the state of the instance of the class. These include the number of continuous
and discrete states, the number of inputs and outputs, and the sizes of the work ar-

eas.

sbsTer m nat e() —Thisfunction is called once at the end of the integration. It may be
used to save information that is stored in the internal buffers associated with the
classinstance onto secondary storage. It may also be used to free space allocated to
local work vectors assigned to the classinstance asarequestinthesbsli ni ti al -

i zeSi zes function.

The implementation code of a design entity isreentrant; therefore, these methods must not
define any local storage. If they do, then all instanceswill use the same storage causing data
corruption and unpredictable results. For this reason, each instance of a class has indepen-
dent storage work areasthat areinitialized and accessed through a set of macros. There are
three work areas that can be used for this purpose: real work vector, integer work vector,
and pointer work vector. The macros used in the initialization of the length of these work
areas havethe form ssSet Nun?Wor k() where‘?’ can take any of the following values:

R, I, or Pfor real, integer or pointer type vectors.

Two operations are defined on these work areas, namely, read and write. These operations
are implemented by a set of macros, which have the general forms ssGet ?Wor k and
ssSet ?Wbr k. Theformer isused to read values from the work area, and the later is used
to write values to the work area. Similarly to the initialization macros, the *?’ can take

valuesR, I, or P.
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Figure C-1. Missile seeker system

An example of the use of APl and the MDL language is presented next. With reference to
Figure C-1 Listing C-3 shows the MDL specification for the missile seeker, while Listing
C-4 shows the implementation of software component DC using the API defined in this

appendix.

Listing C-3. System-level definition of the missile seeker.

nodul e system i sa configuration with
subnodul es
seeker _misa nodul e seeker;
ctel, cte2, zero isa nodul e constant;

connecti ons
ctel.out[0] @seeker_min[O0];
cte2.out[ 0] @seeker_min[2];
zero.out[ 0] @seeker_min[1];
zero.out[ 0] @seeker_min[3];

initialization
setParan(ctel, [O0.14]);
set Paran(cte2, [-0.14]);
set Paran(zero, [0]);
endnodul e;
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Listing C-4. C--language implementation of software component G,

/* Modul e: dcnotor.c
Comments: | npl enentation of the dcnotor device interface*/

#i ncl ude <stdi o. h>
#i ncl ude "sbs. h"

DECLARE_CLASS( dcnot or)

#define Jm ssGetFcnParam(S, 0)[ 0]
#defi ne bm ssGetFcnParanm(S, 0)[ 1]
#defi ne Km ssGetFcnParam(S, 0)[ 2]
#define K1 ssGetFcnParanm(S, 0)[ 3]
#define n ssCGet FcnParam( S, 0) [ 4]

static void sbsDerivatives(

doubl e t, /* current sinmulation tine */
const double* x, /* the states vector */
const double* u, /* the input vector */
doubl e* dx, /* the derivatives vector */
sbsTask* S /* the sbs struct for this block */

) |
double tau_m= Km* K1 * u[O0];
dx[ 0] = x[1];
dx[1] = (tau_m- bm=* x[1] - (u[l] / n)) / JIm

}

static void sbsQut put s(
doubl e t, [* current sinmulation tine */
const doubl e* x, /* the states vector */
const doubl e* wu, /* the input vector */
doubl e* vy, /* the output vector */
sbsTask* S [* the sbs struct for this block */

{
*y = x[0];

}

static void sbsinitializeSi zes(sbsTask* S) {
ssSet NuntCont St ates(S, 2); ssSet NumDi scStates(S, 0);
ssSet Num nputs(S, 2); ssSetNunfQutputs(S, 1);
ssSet NunRWOr k('S, 0); ssSet Numl Work(S, 0);
ssSet NunPWor k(' S, 0);

}

static void sbsTerm nate(sbsTask* S) { }
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C.5 C API implementation

This section presents the C application programming interface provided to develop simu-

lation software modules.
/* File: sbs.h

* Comment s:

* Data structures and access nethods for sbs-tasks

* Any nodel is an sbs-task. The sbsTask contains all entry points
* to the sbs-task (e.g., sbsQutputs) as well as any data

* associated with the sbhs-task

*/

#i fndef _SBS H
#define SBS H

#defi ne _QUOTELl(name) #name
#defi ne _QUOTE(nane) _QUOTELl(nane)

#defi ne DECLARE_CLASS(cl assnane) sbsTask _sbsd ass_##cl assnane; \
static sbsTask* S = & sbsCl ass_##cl assnane; \
voi d sbsDerivatives(), shsQutputs(); \
void sbslnitializeSi zes(), sbsTerm nate(); \
static char _sbsfcnName[] ="SIMKIT shs-task \"" _QUOTE(cl assnane)
At
void _sbslnitializeC assFcnPoi nters_##cl assname() \
{\
ssSet Model Narme(_S, _sbsfcnNane); \
ssSetsbslnitializeSi zes(_S,sbslnitializeSizes); \
ssSet sbsQut puts(_S, shsQut puts); \
ssSet sbsDerivatives(_S, shsDerivatives); \
ssSet sbsTerm nate(_S, sbsTerm nate); \

}

typedef struct sbsTask_tag sbsTask;

/-k
* sbsFcnModel Met hods:
* sbsinitializeMbdel - Initialize sbsTask sizes array
* sbsQut put s - Fill output vector
* sbsDerivat es -  Compute the derivatives
* sbsTerm nate -  End of nodel housekeepi ng
*

/

struct _sbsFcnModel Met hods {
void (*sbslnitializeSizes) (sbsTask* S)
void (*sbsTerm nate)(sbsTask* S)
void (*sbsQut puts)(double t, const double* x, const double* u,
doubl e* y, sbsTask* S)
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voi d (*sbsDeri vati ves) (doubl e t, const doubl e* x, const doubl e* u,
doubl e* dx, sbsTask* S);

b

struct _sbsSizes {
int nunCont States; /* nunber of continuous states */

i
int nunDi scStates; /* nunber of discrete states */
i
i

nt numQut put s; /* nunber of outputs */
nt numl nput s; /* nunber of inputs */
[* ------ Work vectors -------- */
int num Wor k; /* size of integer work vector */
i nt nunRWor k; /* size of double work vector */
i nt nunPWor k; /* size of pointer work vector */
3
struct _sbsStates {
doubl e* U; /* input vector */
doubl e* Y; /* out put vector */
doubl e* X; /* State vector */
doubl e* dX; [/* derivative vector */
3
struct _sbsFcnParans {
i nt count; /* nunmber of function paraneters passed in */
const doubl e** parans; /* the function paraneters */
3
struct _sbsWrk {
int* i Wrk; /* integer work vector */
doubl e* rWork; /* real work vector */
voi d** pWork; /* pointer work vector */
i nt* mapVect or; /* pointer to the global array that maps
inputs to outputs */
3
struct shsTask_tag {
const char* nodel Nane; /* Nanme of the nodel */
struct _sbsSizes sizes; /[* sizes */
struct _sbsFcnParans fcnParans; /*function parameters passed i n*/
struct _sbsStates states; /* state and derivative vectors */
struct _sbsWrk work; /* various work areas */
struct {

struct _sbsFcnModel Met hods sbsFcn; /* nodel nethods */
} nodel Met hods;

} 1

/ * ::::::::::::::::::::::::::::::::::::::*
* spbsTask Get and Set Access nethods *
* ::::::::::::::::::::::::::::::::::::::* /



i ne ssCet NunCont St ates(S) \

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

____________________ S- >nodel Nane

i ne ssCet Model Nanme(S) \

(S) - >nodel Namre

i ne ssSet Mbdel Nanme(S, name) \

(S) - >nodel Nane = (nane)

(S)->sizes. nunCont St at es

i ne ssSet NunCont St at es( S, nCont St at es) \
(S)->sizes. nunCont St ates = (nCont St at es)

ne ssGet NunDi scStates(S) \
(S)->sizes.nunDi scSt ates

ne ssSet NunmDi scStates(S, nDi scStates) \
(S)->sizes.nunDiscStates = (nDi scStates)

ne ssGet Nunifot al St ates(S) \

/*  (int)

(ssGet NunCont St ates(S) + ssGet NunDi scStates(S)) /*

ne ssGet NunQut puts(S) \
(S)->sizes. nunmCut put s
ne ssSet NunmQut put s( S, nQut puts) \

(S)->sizes. nunutputs = (nQutputs)

ne ssGet Num nput s(S) \
(S)->si zes. nun nput s
ne ssSet Num nput s( S, nl nputs) \

(S)->sizes.num nputs = (nlnputs)

ne ssGet NunRWrk(sS) \
(S)->sizes. nunRWor k
ne ssSet NunRWir k( S, nRwWrk) \
(S)->sizes. nunRWrk = (nRWrk)

ne ssGet Num Work(S) \
(S)->sizes. num Wor k
ne ssSet Num Wor k(' S, nl Work) \
(S)->sizes. num Work = (nlWrk)

ne ssGet NumPWork(sS) \
(S)->sizes. nunPWor k
ne ssSet NunPWor k(' S, nPWork) \
(S)->sizes. nunPWrk = (nPWrk)

------------- S->fcnParans ------------

i ne ssCGet FcnPar ansCount (S) \
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#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

(S)->fcnParans. count [* (int) */
ne ssSet FcnPar ansCount (S, n) \
(S)->fcnParans. count = (n)

ne ssGet FcnParanmsPtr(S) \
(S)->fcnParans. parans /* (double **) */
ne ssSet FcnParansPtr (S, ptr) \
(S)->fcnParans. parans = (ptr)

ne ssGet FcnParan(S, i ndex) \
(S)->fcnParans. par ans[ i ndex] /* (double*) */
ne ssSet FcnParam( S, i ndex, mat) \
(S)->fcnPar ans. parans[i ndex] = (mat)

———————————————————— S->states ------------moioa oo

ne ssGetU's) \

(S)->states. U /* (double *) */

ne ssSet U(S, u) \
(S)->states. U

(u)

ne ssGet Y(S) \
(S)->states. Y /* (double *) */
ne ssSet Y(S,y) \

(S)->states. Y

(y)

ne ssGet X(S) \
(S)->states. X /* (double *) */
ne ssSet X(S, x) \

(S)->states. X

(x)

ne ssGetdX(S) \
(S)->states. dX /* (double *) */
ne ssSet dX(S, dx) \
(S)->states.dX = (dx)

ne ssGetlWork(s) \

(S) - >wor k. i Wor k [*  (int *) */
ne ssSet I Work(S,iwork) \

(S)->work.iwrk = (iwork)

ne ssGet | Wor kVval ue(S, iworkldx) \
(S)->wor k. i WrKk[iworkldx] [* (int) */
ne ssSet | Wor kVal ue(S, i wor kI dx, i wor kVal ue) \
(S)->work.iwWrk[iworkldx] = (iworkVal ue)

ne ssGet Rork(s) \
(S)->wor k. rWrk /* (double *) */
ne ssSet RWork(S, rwork) \

(S)->work.rwrk = (rwork)
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#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

ne ssGet RWor kVal ue(S, rwor ki dx) \
(S)->wor k. rWor k[ rwor kil dx] /* (doubl e)
ne ssSet RWor kVval ue( S, rwor kI dx, rwor kVal ue) \
(S)->work. rwWork[rworkldx] = (rworkVal ue)

ne ssGet PWork(sS) \
(S) - >wor k. pWor k [* (void **)
ne ssSet PWor k( S, pwork) \

(S)->work. pwork = (pwork)

ne ssGet PWor kVal ue( S, pwor kil dx) \
(S) ->wor k. pWor k[ pwor kil dx] [* (void¥)
ne ssSet PWor kVval ue( S, pwor ki dx, pwor kVal ue) \
(S) ->wor k. pWor k[ pwor kl dx] = (pwor kVal ue)

ne ssGet mapVv(Ss) \
(S) ->wor k. mapVect or [* (int *)
ne ssSet mapV(S, nvec) \
(S)->wor k. mapVector = (nmVec)

——————————————— S->nodel Met hods. sbsFen --------------------
ne ssSetsbslnitializeSizes(S,initSizes) \
(S) - >nodel Met hods. shsFcn. sbsinitializeSi zes =\
(void (*)(sbsTask*)) (initSizes)
ne fcnlnitializeSi zes(S) \
(*(S)->mdel Met hods. sbsFcn. sbsinitializeSi zes) (S)

ne ssSet sbsQut puts(S, out puts) \
(S) - >nodel Met hods. shsFcn. sbsQut puts =\
(void (*)(double, const double*, \
const doubl e*, double*, sbsTask*)) (outputs)
ne fcnQutputs(t, x, u, y, S \
(*(S)->nmodel Met hods. sbsFcn. sbsQut puts) (t, x, u,y,S)

ne ssSet shsDerivatives(S, derivs) \
(S) - >nodel Met hods. shsFcn. shsDerivatives =\
(void (*)(double, const double*, \
const doubl e*, double*, sbsTask*)) (derivs)
ne fcnDerivatives(t, x, u, dx, S \
(*(S) ->nodel Met hods. sbsFcn. sbsDerivatives) (t, x, u, dx, S)

ne ssSet sbhsTerm nat e(S, housekeepi ng) \
(S) - >nodel Met hods. sbsFcn. sbsTerm nate =\
(void (*)(sbsTask*)) (housekeeping)
ne fcnTerm nate(S) \
(*(S)->nodel Met hods. sbsFcn. sbsTerm nate) (S)

ne ssCopyModel Met hods(T,S) \
(T) - >nodel Met hods. sbsFcn. sbsinitializeSizes =\
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(S) - >nodel Met hods. shsFcn. sbsinitializeSizes; \
(T) - >nodel Met hods. sbsFcn. sbsTerm nate =\

(S) - >nodel Met hods. shsFcn. shsTerm nate; \
(T) - >nodel Met hods. sbsFcn. shsQut puts =\

(S) - >nmodel Met hods. sbsFcn. sbsQut puts; \
(T) - >nodel Met hods. sbsFcn. shsDerivatives =\

(S) - >nmodel Met hods. sbsFcn. sbsDeri vati ves

#endi f

/* Eof: sbs.h */
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Appendix D Composable
Simulation Markup
L anguage

<?xm encodi ng="US- ASCl | " ?>

<!__-k-k*****-k-k****-k-k****-k-k-k****-k-k****-k-k***************************
*x Carnegi e Mellon University *x
** Institute for Conpl ex Engi neered Systens *x
* * * %
*x Antoni o Di az-Cal deron & Chris Paredis *x
*x Conposabl e Si nul ati on Markup Landuage DTD *x
* May, 2000 **
* * * %

R R I I S S R S S S S R Rk Sk b S

-->

<I
<l

<l
<l
<l
<l
<l

ENTI TY % vhdl - ans- nbde " | NCLUDE" >

ENTI TY

% non-vhdl - ans- node " | GNORE" >

-- Names definitions -->
% | DENT "NMIOKEN'> <! -- an identifier -->
% URL "CDATA"> <!-- an URL -->

ENTI TY
ENTI TY
ENTI TY
ENTI TY

% CONNECTOR " CDATA"> <! --
% EXPRESSI ON " CDATA"> <! --
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an expression -->



<
<

<
<

<!
<l
<!

<

<

<!

<

<

<!

1]

<

<!

<

1]

<

<!

<!

bi

<l
<l

<

ENTI TY % definition "(interface | inplenentation | rec

ENTI TY % _conmon_decl arati ons "si gnal
sub-t

| con

stant | typ

ype | variable |

ENTI TY % _entity_header "generics?, boundary?">
ENTITY % entity_declarative_item "% conmon_decl arations; ">
ENTITY % entity_statenents "assertions">
ENTITY % entity_neta_know edge "semantics?, inplenment

ENTI TY % _ebody "(%.entity_header;,

(% entity declarative_item)*,
% entity_statenments; ?,
% entity_neta_know edge;) ">

ENTI TY % _architecture_decl arative_part

"branch-quantity | free-quantity

spectral -quantity | noise-quantity |
% common_decl arati ons; ">
ENTITY % _abody "((% architecture_declarative_part;)*,

term nal | conponent | function |

concurrent -statenents,

ENTI TY % _primstatenents "process |
ENTI TY % _conp_statenents "connect">

[ %on- vhdl - ans- node; |

break |

equation |

ord)">
e |
package" >

ations?">

descri ption?)">

assert">

ENTI TY % _concurrent_statements "((%pri mstatenents;)+ |
% conp_statenents; +) ">

>

[ Wvhdl - ams- node; [
-- <IENTITY % _concurrent_statenments

(% primstatenents; |

% conp_statenents;)+"> -->

ENTI TY % _concurrent _statenments " (#PCDATA |

>

% primstatenments; |
% conp_statenents;)*">

-- Valid natures provided by the nodeling environnment
ENTI TY % NATURES " (el ectrical | magnetic |

thermal | nechanical | translational
el ectrical _vector)">

ENTITY % mach-limt "big | small | bi
gint">

| rota

gi nt |

ELEVMENT docunent (require*, (((library | pa

(%definition;)*) |
ATTLI ST document
versi on CDATA #REQUI RED
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fluidic |
tional |

-->

-big | -small | -

ckage) *,

conponent *)) >

_kkkhkkhkkhkhk Ak hkhk Ak hkkkkkx D O C U M E N T **********************__>



<
<!

<l
<l
<

<l
<l
<l

<l
<
<!

<!
<l
<!

<

1]

<l
<

<!
<!

<!
<!
<

<l
<
<

is library (true | false) "fal se">

ELEMENT require EMPTY>
ATTLI ST require
url CDATA #REQUI RED>

ELEMENT |i brary EMPTY>
ATTLI ST library
nane NMIOKEN #REQUI RED>

_kkkkkhkhkkhkhkhkkhkk Ak Ak hkkhkkk L I B R A R Y khkkhkkkhkkhkkhkhkkhhkhhkhhkkhkhkhkhkhkkhk_

ELEMENT package EMPTY>
ATTLI ST package
name NMIOKEN #REQUI RED>

_kkkkkhkhkkhkhkhkkhkk Ak Ak hkkhkkk P A C K A G E khkkhkkkhkkhkkhkhkkhkhkhkhkhhkhkhkhkhkhkkhk_

ELEMENT interface % ebody; >

ATTLI ST i nterface

i dent 9% DENT; #REQUI RED

abstract (true | false) "fal se”
super-type (NMICKEN | null) "null™
sub-types (NMIOKENS | null) "null">

kkhkkhkkhkkhkhkhkkhhkkhhkhhkhhkhkkk*k I NT E R F AC E R IR I I S S S

[ 1 GNORE[
__okkkkkhkkkkhkkhkhkkhk kK COMP ON E N T - I N S T A N C E kkhkkhkkkkkkhkkkkkk_
ELEMENT component -i nstance
(par anet er - bi ndi ng*, bound-i npl enent ati on) >
ATTLI ST component -i nstance
i dent 9 DENT; #REQUI RED
i nst ance- of % DENT; #REQUI RED>
>

E R R b b b I G E N E R I C S khkkhkkkhkkhkkhkkhkhkhhkhhkkhhkhkhkhkkhk_

ELEMENT generics (paraneter)+>

ELEMENT boundary (termnal | quantity | interface-signal)+>

ELEMENT term nal EMPTY>

ATTLI ST termn nal

name % DENT; #REQUI RED

nature-type YNATURES; "electrical">

__okkkkhkkhkkhkkhkhkhkhkhkhkhkkkkk Q U A N T I T Y khkkhkkkhkkhkkhkkhkhkhhkhhkhkhkhkhkhkkhk_

ELEMENT quantity EMPTY>

ATTLI ST quantity

name % DENT; #REQUI RED

nature-type (real | NMIOKEN) "real™
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range (true | false) "fal se”
direction (in | out) #REQU RED
def aul t %EXPRESSI ON; #| MPLI ED
row | CDATA #| MPLI ED

row h CDATA #| MPLI ED>

<!__******************* I NTERFACE SI GNAL***********__>
<! ELEMENT i nterface-signal EMPTY>
<I ATTLI ST i nterface-signal
name % DENT; #REQUI RED
nat ure-type CDATA #REQUI RED
range (true | false) "fal se”
signal -kind (in | out | inout | buffer) #l MPLIED
guarded (true | false) "false"
defaul t %EXPRESSI ON; #| MPLI ED
row | CDATA #| MPLI ED
row h CDATA #| MPLI ED>

<|__******************* ASSERTI ONS*********************__>

ELEMENT assertions (assert)+>

<

<
<!

ELEMENT assert EMPTY>

ATTLI ST assert

| abel NMIOKEN #| MPLI ED

post poned (true | false) "fal se"
condi ti on CDATA #REQUI RED

report CDATA #l MPLI ED

severity CDATA #| MPLI ED>

<!__******************** SEMANTI CS**********************__>
<I ELEMENT semantics (qprop | assunption | pprop)+>
<! __kkkkkhkkkkhkkhkhkkhkhkhkkhkkhkkhkhkkhkhkkk Q P R O P **********************__>
<I ELEMENT qgprop EMPTY>
<I ATTLI ST gprop
sign (pos | neg | none) "pos"
QL CDATA #REQUI RED
@ CDATA #REQUI RED>
<!__******************** ASSUMPTI ON********************__>
<! ELEMENT assunpti on EMPTY>
<I ATTLI ST assunption

def CDATA #REQUI RED>

<| __kkkkkhkk Ak hkhk Ak Ak kA kA hk kK P P R O P **********************__>

ELEMENT pprop (#PCDATA) >

<

<!__***************** I MPLEMENTATI ONS**************__>
<I ELEMENT i npl enment ati ons (specification)+>
<! ELEMENT speci ficati on EMPTY>
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<! ATTLI ST specification

<!-
<!

<

<

<!

<
<
<

<

<!
<!
<!

<!

<

<!

<

nane NMIOKEN #REQUI RED
url %JRL; #REQUI RED
default (true | false) "false">

_kkkhkkhkkhkhkhkkhkkhkk Ak hkkkkk R E C O R D kkhkkkhkkhkhkkhkhkhhkkhhkhhkkhhkhkhkhkk_ _

ELEMENT record (paraneter) +>
ATTLI ST record
i dent 9 DENT; #REQUI RED>

_kkkkhkhkkkhkhkhkhkkhkkkk kK DESCRI PTI ON*******************_

ELEMENT descri pti on (#PCDATA) >

EIR I S S S I O I MPLEMENTATI ON***************_
ELEMENT i npl enent ati on % abody; >

ATTLI ST i npl ement ati on

i dent 9 DENT; #REQUI RED

of -interface 9% DENT; #REQUI RED

compound (true | false) "fal se”

configure (true | false) "false"

is-default (true | false) "fal se"

vrm  CDATA #l| MPLI ED>

ELEMENT concurrent-statenents % concurrent _statenents; >

__okkkkkkhkkhkhkhkhkhkhkhkhkhkkk QUANTI TI ES*********************_

ELEMENT free-quantity EMPTY>
ATTLI ST free-quantity

nat ure-type NMIOKEN #REQUI RED

i dent % DENT; #REQUI RED

range (true | false) "fal se”

def aul t %EXPRESSI ON; #| MPLI ED

mn (NMIOKEN | %rach-limt;) "-big"
max (NMIOKEN | %rach-limt;) "big"
row | NMIOKEN #| MPLI ED

rowh NMIOKEN #| MPLI ED

col -1 NMICKEN #l| MPLI ED

col -h NMICKEN #l MPLI ED

semanti cs NMIOKEN #| MPLI ED>

ELEMENT spectral - quantity EMPTY>
ATTLI ST spectral -quantity

i dent 9 DENT; #REQUI RED

nat ure-type NMIOKEN #REQUI RED
magni t ude NMITOKEN #REQUI RED
phase NMIOKEN #REQUI RED>

ELEMENT noi se-quantity EMPTY>
ATTLI ST noi se-quantity
i dent 9 DENT; #REQUI RED
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<
<

<

<!

<

<!
<!
<!

<
<

<lI

nat ure-type NMIOKEN #REQU RED
definition CDATA #REQU RED>

ELEMENT branch-quantity EMPTY>
ATTLI ST branch-quantity

across-vars NMIOKENS #| MPLI ED
t hrough- vars NMIOKENS #| MPLI ED
pl us-term nal CDATA #REQUI RED
m nus-term nal CDATA #l MPLI ED>

_kkkhkkhkhkkhkhkhkhkhkhkhkkhkkkk kK C O N S T A N T **********************__>

ELEMENT constant EMPTY>

ATTLI ST const ant

i dent 9% DENT; #REQUI RED

nat ure-type NMIOKEN #REQUI RED
range (true | false) "fal se”
defaul t %EXPRESSI ON; #| MPLI ED

mn (NMIOKEN | %rach-limt;) "-big"
max (NMIOKEN | %rach-limt;) "big"
row | CDATA #I MPLI ED

row h CDATA #| MPLI ED

col -1 CDATA #l MPLI ED

col - h CDATA #l MPLI ED

semanti cs NMIOKEN #REQUI RED>

_kkkhkkhkkhkhkhkhk Ak hkkhkhkkk kK V A R I A B L E **********************__>

ELEMENT vari abl e EMPTY>

ATTLI ST vari abl e

i dent 9% DENT; #REQUI RED

nat ure-type NMIOKEN #REQUI RED
range (true | false) "fal se”
defaul t %EXPRESSI ON; #l MPLI ED
shared (true | false) "fal se"

mn (NMIOKEN | %rach-limt;) "-big"
max (NMIOKEN | %rach-limt;) "big"
row | CDATA #| MPLI ED

row h CDATA #| MPLI ED

col -1 CDATA #l MPLI ED

col - h CDATA #| MPLI ED>

R I b b R S I G N A L ****************************__>

ELEMENT si gnal EMPTY>

ATTLI ST si gna

nane 9% DENT; #REQUI RED

nat ure-type CDATA #REQUI RED

range (true | false) "fal se”

signal -kind (register | bus) #l MPLIED
defaul t %EXPRESSI ON; #l MPLI ED

row | CDATA #| MPLI ED

row h CDATA #| MPLI ED>
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<| __kkkkkhkkkhkhkhkhkhkhkk kA hkkhkkk T Y P E **********************__>

<I ELEMENT type EMPTY>
<I ATTLI ST type

<!
<!

<

<
<

<

<!
<!

<
<

<
<

<!
<!

<

<!

<!

<

name % DENT; #REQU RED
type-definition CDATA #REQUI RED>

_kkkkkhkhkkhkhkhkhk Ak Ak hkkkk kK S U B - T Y P E khkkhkkkhkkkhkkhkkhkhkkhhkhhkhkhkhkhkhkkhk_

ELEMENT sub-type EMPTY>

ATTLI ST sub-type

nane 9% DENT; #REQUI RED

subt ype-i ndi cati on CDATA #REQUI RED>

kkhkkhkkhkkhkhkhkkhhkhhkhhkhhkhkkk*k COMP ON E NT khkkhkkkkhkkhkhkhkhkhkhkhhkhkhkhkhkhkkhk_

ELEMENT conponent ( paranet er-bi ndi ng*,
bound-i npl enent ati on?,
candi dat e-i npl ement ati on*,
position?)>

ATTLI ST conponent

final (true | false) "fal se"

name % DENT; #REQUI RED

i nterface-name % DENT; #REQUI RED

vrm  CDATA #l| MPLI ED

url CDATA #REQUI RED>

ELEMENT par anet er - bi ndi ng EMPTY>
ATTLI ST par anet er - bi ndi ng
formal - part % DENT; #REQUI RED
actual - part CDATA #REQUI RED>

ELEMENT bound-i npl ementati on (conponent *) >
ATTLI ST bound-i npl enent ati on
i mpl enent ati on- name % DENT; #REQUI RED>

ELEMENT candi dat e-i npl ement ati on (conponent *) >
ATTLI ST candi date-i npl ement ati on

is-default (true | false) "fal se”

i mpl enent ati on- nanme % DENT; #REQUI RED>

ELEMENT function (function-args, function-body)>
ATTLI ST function

nane 9% DENT; #REQUI RED

return-type NMIOKEN #REQUI RED>

ELEMENT function-args (fornal-arg)+>
ELEMENT formal -arg EMPTY>

ATTLI ST formal -arg

name % DENT; #REQUI RED
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nat ure-type NMIOKEN #REQUI RED
range (true | false) "fal se”
defaul t %EXPRESSI ON; #l MPLI ED
row | CDATA #| MPLI ED

row h CDATA #| MPLI ED

col -1 CDATA #l MPLI ED

col - h CDATA #| MPLI ED>

<! ELEMENT f uncti on-body (#PCDATA) >

<| __kkkkkkkhkhkhkhkhkhkhkhkhkkhkkhkkk P R O C E S S **********************__>

ELEMENT process (#PCDATA) >
ATTLI ST process
| abel NMIOKEN #| MPLI ED>

<!
<

<| R I I b S B R E A K **********************__>

ELEMENT break (#PCDATA) >
ATTLI ST break
| abel NMIOKEN #| MPLI ED>

<
<

<|__********************* EQUATI ON**********************__>

ELEMENT equati on (#PCDATA) >
ATTLI ST equati on
| abel NMIOKEN #| MPLI ED>

<l
<

<| __kkkkkkkhkhkhkk Ak Ak kA kA hk kK C O N N E C T **********************__>

<! ELEMENT connect EMPTY>

<I ATTLI ST connect
term nal - A %CONNECTOR; #REQUI RED
term nal - B %CONNECTOR; #REQUI RED>

<| __kkkkkhkkhkhkhkhkhkhkhkhkhkkhkkk T RA N S F OR M**********************__>

<! ELEMENT position EMPTY>
<! ATTLI ST position

X NMTOKEN " 0"

y NMIOKEN " 0"

z NMTOKEN " 0"

roll NMIOKEN " 0"

pi tch NMIOKEN " 0"

yaw NMIOKEN " 0" >

<| __okkkkkkhk kA hkhkhkhkhkhkkkk PA RA ME T E R**********************__>

<! ELEMENT par anmet er EMPTY>
<I ATTLI ST par anet er
nat ure-type CDATA #REQUI RED
ident 9 DENT; #REQUI RED
range (true | false) "fal se”
defaul t %EXPRESSI ON; #l MPLI ED
mn (NMIOKEN | %rach-limt;) "-big"
max (NMIOKEN | %rach-limt;) "big"
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row | CDATA #| MPLI ED
row h CDATA #| MPLI ED
col -1 CDATA #| MPLI ED
col - h CDATA #| MPLI ED
semanti cs NMIOKEN #| MPLI ED>

<l-- EOF csm .dtd -->
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