
A Composable Simulation Environment to Support the

Design of Mechatronic Systems

Antonio Diaz-Calderon

Submitted in Partial Fulfillment
of the Requirements

for the degree of
Doctor of Philosophy

in Electrical and Computer Engineering

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

June 2000.

Copyright © 2000 by Antonio Diaz-Calderon. All rights reserved.

This research was supported in part by DARPA under contract ONR # N00014-96-1-0854, by the National
Institute of Standards and Technology, by the NSF under grant # CISE/IIS/KDI 9873005, by the
Pennsylvania Infrastructure Technology Alliance, by the National Council of Science and Technology of
Mexico (CONACyT), and by the Institute for Complex Engineered Systems at Carnegie Mellon University.
The views and conslusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the funding agencies.



i

Abstract

A Composable Simulation Environment to Support the Design of Mechatronic Systems

by

Antonio Diaz-Calderon

Doctor of Philosophy in Electrical and Computer Engineering

Carnegie Mellon University

Professor Pradeep K. Khosla, Chair

Multi-disciplinary simulation is an important tool in the design of mechatronic systems.
The demand for less expensive products that can be introduced quickly to respond to mar-
ket demands requires that these products be designed with minimal prototyping, relying
on simulation instead to verify design requirements.

The use of physical prototypes for design verification is a very costly and time-consuming
process. As a result, there is an important trend towards design verification and analysis in
virtual, simulated environments. However, creating simulations for complex mechatronic
systems can be quite a challenging task itself. This issue becomes more complicated when
the design process is considered. In this case, simulation models must allow the designer
to work with high-level concepts that can be specialized at later stages in the design pro-
cess. To be able to support a simulation-based design paradigm, new simulation tools are
required. Such simulation tools should allow designers and analysts to combine models
from different disciplines into integrated system-level models, allow models of sub-sys-
tems to evolve throughout the design process (from conceptual design to detailed design),
and allow designers and analysts with expertise in different disciplines to collaborate in an
open design environment.

Multi-disciplinary and evolutionary simulation models are based on our port-based mod-
eling paradigm. In our modeling paradigm, systems are described from a systems engi-
neering point of view where subsystems interact with their environment through energy
exchange. We describe systems as self-contained entities, whose interactions with the
environment are independent of the internal behavior of the system. The port-based mod-
eling paradigm is based on two concepts: ports and connections. Ports represent localized
points on the boundary of the system where energy exchange between the system and the
environment takes place. A connection between two ports represents the energy exchange
between two subsystems.



ii

Based on our port-based modeling paradigm, we build system simulations through com-
position of individual modeling entities; we call this approach composable simulation. In
composable simulation, CAD models of system components are augmented with simula-
tion models describing the component's dynamic behavior in different energy domains. By
composable simulation we mean the ability to generate system-level simulations automat-
ically by simply organizing the system components in a CAD system. A system compo-
nent can be either a physical component (electrical motor, gearbox, etc.) or an information
technology component (embedded controller or other software component). Each of these
system components has one or more simulation models associated with it describing its
dynamics in multiple energy domains, across energy domains, and possibly at multiple
levels of accuracy (with varying computational requirements). When these system compo-
nents are combined into a complete system, our framework automatically combines a
selection of the associated component models into a system-level simulation.

To support the evolutionary aspect of the design process, we introduce a new modeling
paradigm called reconfigurable models. Reconfigurable models are an extension to our
port-based models. In a reconfigurable model, the interface of the model and the imple-
mentation of its behavior are considered to be two separate, but dependent concepts. By
considering these two concepts independently, it is possible to associate different imple-
mentations to a single interface, achieving structural modification of models in addition to
the traditional changes in parameter values.

A reconfigurable model is based on two principles: composition and instantiation. The
composition principle denotes the mechanism by which the formal behavior of the compo-
nent is described in terms of interfaces of subcomponents and their interactions. The sec-
ond principle—the principle of instantiation—describes the mechanism by which the
interface of a model is bound to its implementation

A reconfigurable model represents the modeling space of a system component. Elements
of this space are models that vary from abstract (conceptual) to concrete (fully deter-
mined), thereby supporting the evolutionary nature of the design process. They allow the
designer to work with high-level concepts that can be specialized at later stages in the
design process.



iii

Table of contents

1. Introduction 1
1.1. Motivation 1
1.2. Objectives and Approach 3
1.3. Related research 7

Software architectures and object-oriented design 7
Port-based objects 8
Mathematical modeling 9
Heterogeneous modeling 15
Structural knowledge representation 16

1.4. Contributions 17
Intellectual contributions 17
Implementational contributions 20

1.5. Research road map 21

2. Composition of Simulation Software 24
2.1. Introduction 24
2.2. System architecture 25

Component model 28

2.3. Scheduling the execution of component models 30
Classification of component models 31
Task scheduling 33

2.4. Simulation kernel 36
Kernel object model 37
Inter-process communication 39
Task execution model 41

2.5. Module definition language 44
Module 45
Interface 47
Connections 48
Initializations 49

2.6. Summary 51

3. Linear Graph-Based Modeling of Mechatronic Systems 52
3.1. Introduction 52
3.2. Dynamic system elements 54

Generalized variables, power and energy 54
Two-terminal elements 56



iv

Multi-terminal components 61
Linear graph representation of n-terminal elements 64

3.3. Low-power component modeling 68
3.4. Port-based multi-domain modeling of mechatronic systems 70
3.5. Summary 73

4. Synthesis of the system graph for mechatronic systems 75
4.1. Introduction 75
4.2. Synthesis of the system graph for non-mechanical energy domains 78
4.3. Synthesis of the system graph for 3D Mechanics. 81

3D mechanisms 82
Synthesis of the mechanical system graph 87

4.4. Summary 94

5. Automatic Generation of System-level Dynamic Equations
95

5.1. Introduction 95
5.2. Algebraic properties of linear graphs 96
5.3. Selection of the normal tree 99

Extension to Roe’s method 105
Selection of the normal tree: minimum cost spanning tree 107

5.4. Synthesis of system level dynamic equations 109
5.5. BLT form 110
5.6. Example: positioning system 113
5.7. Summary 121

6. Reconfigurable models of mechatronic systems 122
6.1. Introduction 122

Related work 123
What is a reconfigurable model? 124

6.2. Port-based multi-domain modeling of mechatronic systems 127
Equation-based modeling 128
Meta knowledge 130
Current support for port-based modeling 131
Reconfigurable component models 132
Parameter handling 136

6.3. Component structure 136
6.4. Model libraries 138
6.5. Component modeling markup language 141

Why XML? 141
The markup language 142



v

6.6. Summary 144

7. Case study—Mechatronic design of a missile seeker 147
7.1. Introduction 147
7.2. The device 150
7.3. Iteration I 151

Customer needs 151
Specifications 151
Engineering requirements 154
Family of solutions 155
Behavior evaluation 157

7.4. Iteration II 159
Engineering requirements 159
Observed behavior 159
Behavior evaluation 162

7.5. Iteration III 162
Family of solutions 162
Observed behavior 163
Behavior evaluation 163

7.6. Lessons learned 164
7.7. Summary 165

8. Conclusions 167
8.1. Contributions 167

Intellectual contributions 168
Implementation contributions 170

8.2. Future directions 171
8.3. Conclusions 176

Appendix A. Linear Graph Theory 177
8.4. Introduction 177
8.5. Basic definitions of linear graphs 178
8.6. Matrix representations of linear graphs 181
8.7. The algebraic structure associated with a linear graph 184

Appendix B. MDL Grammar 189

Appendix C. C-language interface component specification
192

8.8. C-language interface specification for software components 192



vi

8.9. C API implementation 197

Appendix D. Composable Simulation Markup Language 203

Bibliography 212



vii

List of figures

Figure 1-1. Hierarchical encapsulation and reconfigurability of models. 6
Figure 1-2. Abstractions of actual behavior. 10
Figure 1-3. Research road map. 21
Figure 1-4. High-level description of a mechatronic system. 22

Figure 2-1. Model abstraction levels 27
Figure 2-2. Component 28
Figure 2-3. Inverse dynamics component 29
Figure 2-4. Executable abstraction of a component 30
Figure 2-5. Generic template for an implementation 31
Figure 2-6. Configuration of the missile seeker 34
Figure 2-7. Constraint graph of the missile seeker 35
Figure 2-8. Topological order of the software components for the seeker 36
Figure 2-9. Object model. 38
Figure 2-10. Inter-process communication architecture. 40
Figure 2-11. Shared memory schema. 41
Figure 2-12. Task states. 42
Figure 2-13. Signal diagram. 43
Figure 2-14. Flowchart of a single integration step 45
Figure 2-15. Module instantiation 46
Figure 2-16. Valid connection schemes 48

Figure 3-1. Two-terminal element. 54
Figure 3-2. Tetrahedron of state for two-terminal elements. 56
Figure 3-3. Terminal graph for couplers 61
Figure 3-4. Displacement measurement of a rigid body in space with respect to a

reference frame. 65
Figure 3-5. n-terminal component 66
Figure 3-6. Terminal graph identifying the variables in a multi-domain component.

67
Figure 3-7. Terminal graph of signal-controlled driver. 68
Figure 3-8. Reading values from a terminal graph 69
Figure 3-9. A positioning system. 69
Figure 3-10. Model of an engineering system. 71
Figure 3-11. Hierarchical model structure 73



viii

Figure 4-1. Modeling layers of a mechatronic system. 76
Figure 4-2. System data flow diagram. 77
Figure 4-3. Schematic diagram of the electrical components of the missile seeker

79
Figure 4-4. Topological operations to a connected electrical system graph 80
Figure 4-5. Joint description 84
Figure 4-6. Spring-damper-actuator element 86
Figure 4-7. Missile seeker 91
Figure 4-8. Extended mechanical system graph. 93
Figure 4-9. Reduced mechanical system graph 94

Figure 5-1. Assignment of elements in a multiterminal component. 104
Figure 5-2. Illustration of a BLT form. 111
Figure 5-3. Software component. 112
Figure 5-4. Single iteration to evaluate the system equations 113
Figure 5-5. Positioning system 114
Figure 5-6. System graph for the positioning system. 115

Figure 6-1. Energy-based block diagram of an electric motor. 125
Figure 6-2. Port-based model 128
Figure 6-3. Segmentation of the domain based on different operating regions 131
Figure 6-4. A reconfigurable system model. 133
Figure 6-5. Component model structure based on an AND-OR tree 137
Figure 6-6. Component library browser. 140

Figure 7-1. Flow of design information model. Adapted from [125, 136] 148
Figure 7-2. Seeker 150
Figure 7-4. Customer needs. 151
Figure 7-3. Seeker design structure based on an AND-OR tree 152
Figure 7-5. Initial kinematic model. 154
Figure 7-6. Geometric model of the seeker design. 155
Figure 7-7. Conceptual design of the missile seeker. 156
Figure 7-8. Positioning system 156
Figure 7-9. Model selection tool 157
Figure 7-10. Iteration I: Input voltages and generated torques of the selected motors

using the estimated loads. 158
Figure 7-11. Seeker dimensions. 160
Figure 7-12. Iteration II: Input voltages and generated torques for the selected

motors using refined models for the motors and the seeker. 161
Figure 7-13. Discrete controller with PWM amplifier. 164



ix

Figure 7-14. Iteration III: Tracking errors for yaw and pitch using a discrete
controller. 165

Figure 7-15. The composable modeling and simulation environment. 166

Figure A-1. A directed linear graph 178
Figure A-2. A connected graph with a tree T indicated by bold edges 180
Figure A-3. An electrical network and its associated linear graph. 184

Figure C-1. Missile seeker system 195



1

Chapter 1 Introduction

1.1 Motivation

Due to the fierce competition in the current global economy, it is critical for successful

companies to react quickly to changing trends in the marketplace: new technologies,

changes in customer demands, fluctuations in the cost of basic materials and commodities,

etc. Because design is such an important component in the development of new products

[151], reduced design cycle time will provide a distinct competitive advantage.

Until recently, design verification required building a physical prototype of the design arti-

fact—a costly and time-consuming process even when rapid prototyping equipment is

used. With the advent of inexpensive high-speed computing, it has become feasible to

verify a design in a virtual environment, based on functional simulations of the design arti-

fact. Such virtual prototyping has the potential to provide significant reductions in the

design cycle time, under the assumption, of course, that it is less expensive and time-con-

suming to create a simulation model than a physical mock-up. However, creating high



2

fidelity simulations for complex mechatronic systems can be quite a challenging task itself.

To maximize the benefits of virtual prototyping, it is important that simulations can be cre-

ated effortlessly and at any stage of the design cycle. This thesis proposes a simulation

framework based on the concepts of port-based objects and composition that simplifies the

creation of virtual prototypes.

The research described here focuses on mechatronic systems. Mechatronics can be defined

as “a technology which combines mechanics, electronics and information technology to

form both functional interaction and spatial integration in components, modules, products

and systems” [19]. Examples of mechatronic systems are anti-lock braking systems, auto-

matic guided vehicles, and consumer products like CD-players.

The design approach for today's complex multi-disciplinary systems has changed dramati-

cally. Traditionally, multi-disciplinary system design has employed a sequential design-by-

discipline approach [123]. For example, the design of an electromechanical system is often

accomplished in three steps beginning with the mechanical design, followed by the power

and microelectronics, and finally the design and implementation of the control algorithm.

The main drawback of the design-by-discipline approach is that fixing the design at various

points in the sequence imposes artificial constraints that needlessly restrict the design

space: inter-domain coupling is neglected. A mechatronic approach (one where the inter-

domain coupling is considerably large), on the other hand, is based on a concurrent, instead

of sequential, approach to discipline design, resulting in products with more synergy

between sub-systems. The mechatronic design approach results in a tight integration of

subsystems with significant functional interaction as well as spatial integration between the

different disciplines.

Typical benefits from the mechatronic design approach appear when the domain bound-

aries in a design are not fixed. By exploiting inter-domain coupling and considering trade-

offs between solutions in different domains it may be possible to achieve a performance-

to-cost ratio that cannot be obtained using classical approaches (i.e., design-by-discipline).

Since the mechatronic design approach is multidisciplinary, we need a multidisciplinary

simulation paradigm to support virtual prototyping. To approach this need, in this thesis,



3

we propose a modeling paradigm based on port-based objects. Simulation tools based on

this modeling paradigm should combine port-based models from different disciplines into

integrated system-level models.

To provide simulation support throughout the design process, models in this modeling par-

adigm should be evolvable and shareable. An evolvable port-based model is one that cap-

tures the behavior of a physical component at different levels of detail, and provides

mechanisms for its reconfiguration. As a result, the designer can create simulations of the

design at different stages in the design process, while changing the behavior of the models

as the design process evolves. Port-based models need to be shareable to support the mul-

tidisciplinary aspects of the design process. A shared port-based model is reused in differ-

ent contexts by different design teams. In this way, designers can collaborate in a design

environment by working in different subsystems and sharing their designs.

We believe that the framework developed in this thesis for composable simulation

addresses these requirements by integrating simulation tightly with the design environment

(i.e. CAD software) and allowing the designer to create the simulations directly with min-

imal intervention of simulation experts.

1.2 Objectives and Approach

The goals of this thesis are the following:

1. Develop a simulation framework in which system-level simulation models can be com-

posed from sub-system models in different disciplines.

2. Formalize a multi-domain modeling paradigm for mechatronic systems: a representa-

tion of the models that allows the system model to evolve with the design process,

increasing in detail as the design process progresses.

3. Develop the infrastructure to integrate simulation models with the design environment

so that consistency between the artifacts and their corresponding models is automati-

cally maintained at all times.



4

4. Evaluate these technological concepts by developing a prototype computer aided engi-

neering design environment.

In this thesis we approach the design of mechatronic systems as follows:

• We regard artifacts from a systems point of view, i.e., as a structure of interrelated ele-

ments that are embedded in an environment.

• We concentrate on aspects that relate to the energetic behavior of the systems. It is

through energy exchange that functional interactions between subsystems take place.

• We study systems that realize their functionality using mainly electronic and mechani-

cal parts, and information technology components (such as controllers). However, the

methodology presented in this thesis is by no means limited to these three energy

domains.

To attain our goals we have developed a multi-domain modeling paradigm based on the

composition of port-based objects. These objects represent system models that have well-

defined interaction points (i.e., ports). Ports represent points on the system where energy

flow is present. Consequently, a port-based object that has ports in different energy

domains models multi-domain systems.

Defining interactions between port-based objects creates system-level representations.

These interactions are defined by connecting ports of different objects having the same

energy domain. Once a complete system-level representation is given, it is translated into

a low-level system representation based on a linear graph [143], from which a set of differ-

ential algebraic equations is derived.

In addition to a modeling paradigm, other issues need to be addressed to complete the goals

of this thesis, including:

Composability of port-based simulation models. We regard artifacts from a systems

point of view. This means that in our framework for composable simulation, system com-

ponents (including information technology components) have well-defined interaction

points (i.e., ports) and well-defined behavior (i.e., differential equations). When these com-



5

ponents are combined into a complete system, their behaviors should also be combined into

a system-level behavior that includes the behavior derived from the interaction between

system components. This approach is different from the approach taken in traditional sim-

ulation environments such as SimuLink (Matlab) in that we support composition of system-

level components as opposed to composition of simulation models. Composition of system

components does not map directly into composition of the simulation models; the system-

level simulation model is not simply a concatenation of individual component models.

Sometimes, additional simulation components need to be introduced in order to describe

the interactions between components (e.g. friction between gears). These additional models

vary with the physical layout of the components and the type of interactions between them.

Other times, multiple physical models are combined into one simulation component.

The port-based modeling paradigm captures the multi-domain characteristics of mecha-

tronic systems. That is, it captures their functional interactions and spatial integration into

a complete system-level simulation model.

Model reconfiguration. Reconfigurability of simulation models provides the flexibility to

allow different representations for the same modeling concept. That is, a modeling concept

can be represented in the form of an analytical expression relating inputs and outputs, a

software method, or as a structural arrangement of submodels (Figure 1-1). We extended

the port-based modeling paradigm to support reconfigurable models.

Low-level system representation. The underlying mechanism to represent mathematical

models of port-based objects is based on linear graphs [143]. We call these graphs system

graphs. A system graph is a linear graph that represents the energy flow through the system.

It is based on two types of measurements: across and through measurements. The across

and through variables for each energy domain are chosen such that the power of the corre-

sponding component is equal to their product. The mathematical relations between these

variables are called terminal equations; they define the component's physical characteris-

tics.



6

Model refinement. Ideally, at any time during the design cycle, a simulation would be

available that requires minimal computational resources, but still is sufficiently rich to

verify whether certain design criteria are met. This requires that simulation models be

refined as one progresses through the design task. At the conceptual design stage, high-

level functional models can be used to evaluate some initial design trade-offs. As physical

components are selected to implement the required function, the high-level simulation

model can be refined by replacing functional models with component models. At the same

time, model refinement is achieved by increasing the level of detail of individual compo-

nent models and their interactions (Figure 1-1). For example, one could start with a simple

kinematic simulation of a mechanism, then add dynamics, and include control algorithms.

One can refine the model further by considering interactions in different energy domains,

such as electromagnetic and thermal domains. Finally, a model can be refined by increasing

the number of degrees of freedom; this can be accomplished by modeling mechanical com-

ponents as flexible rather than rigid, or including parasitic capacitance in an electrical

model. Each level of refinement requires significant changes to the overall simulation

model. Particularly cumbersome are the refinements that result in a modified simulation

topology.

Figure 1-1. Hierarchical encapsulation and reconfigurability of models.

…

Terminal
Equations

Hierarchical Refinement

Equations

Reconfiguration

…

Terminal
Equations

Hierarchical Refinement

Equations

Reconfiguration



7

We approach the problem of model refinement through reconfigurable models. Reconfig-

urable models provide the mechanisms to perform parameter configuration as well as struc-

tural configuration of models. The structural configuration mechanism is useful when the

refinement involves changes in the basic topology of the system model.

Model description. The concept of composable simulation becomes even more useful as

component models become more readily available (e.g., manufacturers may one day

include simulation models with the components they sell), and when they can be reused,

shared, and exchanged between users. To facilitate such exchange, we capture the complete

component model in XML (extensible markup language), a web-compatible, computer-

interpretable format.

1.3 Related research

In this section, we will consider the most relevant branches of research that have contrib-

uted to the work presented in this thesis. These include software architectures, software

engineering, port-based objects, and mathematical modeling. Additional references will be

given in subsequent chapters.

1.3.1 Software architectures and object-oriented design

Software architecture is a specification of a class of systems. It consists of a set of specifi-

cations called interfaces [6, 74], a set of connection rules [7, 8] that define valid communi-

cation channels between the interfaces, and a set of formal constraints that define legal or

illegal patterns of communication. Each element in the architecture is divided into two

major parts:

Interface: a description of the component’s features including its input/output relationship

with the environment.

Implementation: a procedural description of the component’s interface.

This separation promotes re-usability and assemblability of architectural components. The

set of connection rules defines the topology of the connection graph of the architecture. The

connection graph is a graph in which the nodes represent the interfaces to the elements in



8

the configuration, and the edges represent the communication channels defined by the com-

munication rules. The interfaces specify the components of the system, and the connections

and constraints define how the components may interact.

A significant amount of work aimed at formalizing the properties and interactions between

elements in the architecture has been performed in this area [2, 6, 7, 8, 72, 73, 74, 75, 122].

In our context, the concepts defined in this area of research are relevant to the definition of

our modeling paradigm: the power of reconfigurable models is achieved through the

expression of the model by its interface and related implementations.

A technique to encapsulate the interface and implementation of a software architecture is

object-oriented design. The use of objects is a popular method for designing reusable soft-

ware. An object is defined as a software entity which encapsulates data and behavior.

Object-oriented design defines the interrelation and interaction between objects. The inter-

relation of objects is defined (through inheritance) using the concepts of class, superclass

and subclass [1, 115]. A class is intended to describe the structure of all the objects gener-

ated from the class. Like any class, a subclass describes the structure of a set of objects.

However, it does so incrementally by describing extensions and changes to its direct super-

class. Data from a superclass is implicitly replicated in a subclass, and new data may be

added. Methods from a superclass may be either replicated in a subclass, by default, or

explicitly overridden by similarly named and typed methods.

Inheritance is the sharing of data and methods between a class and its subclasses. However,

it is not always the case that inheritance equates to subclassing [1]. This observation is used

in our work of reconfigurable models and forms the basis for the organization of compo-

nents presented in Chapter 6.

1.3.2 Port-based objects

A port-based object is a modeling abstraction that combines the object-based design with

port-automaton design [132, 133, 134]. Stewart [133] defines object-based design as a tech-

nology that only defines the encapsulation of data and access to that data. A port-automaton



9

[133] is a concurrent process where an output response is computed as a function of an

input response.

A port-based object is defined as an object that includes ports for communication with its

environment [133]. As with any standard object, a port-based object has a state and the

object is characterized by its own behavior. The internal details of the object are hidden

from other objects in the environment; only the ports of the object are visible to other

objects. In this model, each port-based object has zero or more input ports and zero or more

output ports. Input and output ports are used for communication between objects in the

environment. Communication between objects is established by connecting an output port

of an object to an input port of another object.

The port-based modeling paradigm captures signal flow in the system. However, mecha-

tronic systems include, in addition to signal flow, energy flow; i.e., energy-based systems.

Therefore we extended the port-based modeling paradigm to model the energy flow of the

system.

1.3.3 Mathematical modeling

1.3.3.1 Qualitative and quantitative modeling

In the mathematical modeling of physical systems, two different approaches exist: qualita-

tive modeling and quantitative modeling [21]. Qualitative modeling [14, 48, 54, 55, 56, 65,

66, 102, 137, 152] is an artificial intelligence-based approach in which domain knowledge

provides the necessary information for generative or selective modeling. In contrast, quan-

titative modeling is based on differential algebraic equations that must be analytically or

numerically solved to determine the behavior of the system.

Qualitative simulation and quantitative simulation are both abstractions of actual behavior

(Figure 1-2). In quantitative simulation, differential equations describe a physical system

in terms of a set of state variables and constraints on those state variables. The solution to

the equations may be a function representing the behavior of the system over time. Quali-

tative simulation describes a physical system in terms of qualitative constraints between

qualitative states. Kuipers [65] defines the qualitative state of a function f at t as a pair



10

where qval is either a point , which is called landmark value, if ;

or an interval if , and qdir is a label that indicates the direction of

the derivative of f at t. The qualitative behavior of the function f in the closed interval

is the sequence of qualitative states of f.

Qualitative simulation has been applied to the problem of automatic model synthesis [3, 4,

15, 49, 50, 58, 77, 88, 89]. In this context, simulations are composed based on the knowl-

edge of the state of the system which is maintained on Truth Maintenance Systems [28, 29,

30]. These systems maintain a knowledge-base of the current state of the world. Their goal

is to maintain a consistent set of assumptions and facts that are relevant to the problem.

1.3.3.2 Graph-based and equation-based modeling

Within quantitative modeling, we can identify two broad modeling paradigms, namely,

graph-based and equation-based. Equation-based approaches are generally based in a mod-

eling language that describes the structure of the system. Based on the type of equations

that describe the system, we can classify the systems being modeled as discrete or contin-

uous. Modeling languages that provide constructs to describe both types of systems are

called hybrid modeling languages [13, 21].

Within the graph-based approach there are two ways to specify a continuous time system,

the conservative law model and the signal-flow model. The conservative law model defines

Figure 1-2. Abstractions of actual behavior [65].

Physical
system

Differential
equations

Qualitative
constraints

Actual
behavior

numerical or analytic solution

qualitative simulation Behavioral

(quantitative simulation)

description

fi : ℜ ℜ→

(qualitative)

(behavior)

qval qdir,〈 〉 lj f t( ) lj=

lj lj 1+,( ) f t( ) lj lj 1+,( )∈

a b[ , ]



11

a system by specifying relations between two complementary variables, and by specifying

algebraic constraints between them, which correspond to the Kirchhoffian network laws. In

contrast, the signal-flow model (or non-conservative) signals represent system variables

that flow along lines connecting elements. Elements represent mappings (linear or non-lin-

ear) between a specified set of input signals and a specified set of output signals. This type

of modeling is also called block diagram modeling.

There are two main approaches to describe a conservative law model, linear graphs and

bond graphs. The relationship between physical systems and linear graphs was first recog-

nized by Trent [143] and by Brannin [17]. Roe [109], Koenig [63] and Seshu [121] apply

the theory of linear graphs to the systems theory and provide important results that can be

directly related to the two basic laws in circuit theory: Kirchhoff’s voltage and current laws.

Linear graph theory has been used in the analysis of rigid body dynamics [10, 69, 80, 81,

82, 83, 94,106, 107, 108, 124] and in the analysis of other engineering systems that include

interaction between different energy domains [40, 86].

Besides linear graphs, bond graphs [16, 36, 61, 76, 97, 112, 113] have also been used for

system modeling. Bond graphs are energy-based system descriptions in which energy ele-

ments are connected by energy-conserving junction structures. Similar to our approach,

bond graphs define a minimal set of generalized elements that can be used to model system

behavior across energy domains. Connections between elements are made through power

bonds which represent the power flow in the system.

Bond graphs have been used in design of mechatronic systems. In this context the bond

graph is used to define a language to describe designs [52, 53, 104, 129]. The bond graph

helps to define design rules that can be applied by an expert system. These rules create and

modify the design by manipulating the topology of the graph.

Although bond graphs (with appropriate extensions [67, 110, 144]) can be used to represent

mechatronic systems, we have chosen linear graphs because they can be more easily

adapted to model 3D rigid body mechanics. Furthermore, linear system graphs reflect the

topology of the physical system directly, making it easier for non-specialists to create

system descriptions.



12

1.3.3.3 Commercial simulation packages

In the commercial world, there are a number of simulation packages specifically designed

for particular application areas. In the area of CAE there exist several packages for rigid

body dynamics [120] including ADAMS [84, 91, 92, 93], DADS [70, 90], and Mesa Verde

[155, 156, 157]. Within the same area of CAE, although not in the commercial world, we

can also include the work by Baraff in the simulation of rigid bodies [11, 12]. The main

characteristic of these systems is that the equations of motion are generated numerically

from the geometric description of the mechanism. Some (i.e., ADAMS and DADS) can be

integrated with CAD packages such that the geometry of the mechanism is directly derived

from the CAD model.

A second group of commercial simulation packages provides support for general systems

modeling and simulation. We can identify three main approaches: (1) block-diagrams, (2)

object-oriented modeling and (3) bond graphs. Systems using the first approach include

EASY5 [139] and Matlab/Simulink [140]. Both systems are based on an interactive envi-

ronment for modeling where the user defines the system as a network of interconnected

blocks. EASY5, however, takes the modeling approach a step further in which the system

is modeled by defining the interactions between components instead of between simulation

blocks as with the block-diagram approach. The main characteristic that distinguishes these

systems from the rest is that they use procedural rather than equation-based modeling. In

procedural modeling, the model is represented by a collection of functions that, given a set

of inputs, compute the respective outputs. In other words, this is a causal modeling para-

digm. Equation-based modeling, on the other hand, represents the models by non-causal

equations.

Recently, a large number of modeling languages has emerged that provide reuse through

object orientation [9, 19, 41, 47, 60, 100, 118]. These languages are all derived from the

original simulation language called “the continuous system simulation language (CSSL)

[135]”. The object-oriented approach facilitates model reuse and simplifies maintenance.

Using these modeling languages, software executables can be generated automatically

from individual sub-models and the interactions between them. Although our port-based

modeling paradigm bears some resemblance to the object-oriented modeling languages



13

described so far, it presents an important characteristic that sets it apart from these lan-

guages: the modularization of the object into interface and implementation allows our port-

based models to span the model space (i.e., the space of alternative models) for a particular

model. Consequently, we can select models at different levels of detail and augment the

configuration mechanisms to admit changes in system topology.

Object oriented multi-domain modeling languages use the second approach, and we can

include Dymola [21, 22, 23, 24, 41, 43, 45, 95], Omola [9], Sidops+ [19], ASCEND [100,

101], NMF [87, 117, 118, 119], Modelica [46, 47, 57, 78], and VHDL-AMS [25, 60].

Dymola is an object-oriented language and a program for modeling large systems. Reuse

of modeling knowledge is supported by use of libraries containing model classes and

through inheritance. Dymola also supports the new object-oriented modeling language

Modelica. All modeling languages represent the model dynamics in non-causal form which

provides greater modeling flexibility by not forcing the modeler to use predefined input/

output relationships when defining model dynamics.

Finally, systems using the third approach—bond graph modeling—include ENPORT

[114], CAMP-G [20], and 20-sim [26]. These systems provide component libraries of bond

graph components, and graphical user interfaces optimized to the creation of bond graph

models.

1.3.3.4 Model refinement and model abstraction

Some preliminary results also exist in the areas of model refinement and model abstraction.

For instance, there exist two different approaches to the generation of bond graph models.

A first approach uses the system's bandwidth as a measure for the level of refinement [51,

71, 111, 129, 148, 149, 153, 154]. Starting from a simple model, additional degrees-of-free-

dom are introduced, increasing the frequency contents of the model, until the required

bandwidth has been achieved; this corresponds to model refinement. Model abstraction, on

the other hand, is used in energy-based methods. These methods analyze the power [111]

and energy [71, 129, 148, 149, 153, 154] profiles of all the bonds in the model. If the energy

or power level of a bond drops below a certain threshold, it is assumed that the contribution



14

of that bond can be neglected. By selectively removing bonds in this fashion, complex

models can be abstracted to their basic dynamic characteristics.

1.3.3.5 Automated support for mathematical modeling

The last area of research directly related to the work presented in this thesis is the work in

the area of automated support for the design of mechatronic systems. This area includes the

work presented in [18, 19, 141, 142, 145, 146, 147]. In these works, the authors present how

modeling paradigms affect the support for simulation during conceptual design. All the

approaches use bond graphs as an intermediate model representation. Coming from differ-

ent directions, the work presented in this thesis and the work presented in [145, 146] share

several characteristics from the point of view of reconfigurable models. In [146] the author

defines a similar partitioning of the models into interface and implementation and elabo-

rates on those concepts to create a framework to support hierarchical refinement and recon-

figuration. However, our work on reconfigurable models and the work presented in [146]

differ in the following aspects. The work presented in [146] uses a bond graph formalism

to represent the dynamics of the systems. This limits its applicability to physical systems

that can be represented by a set of scalar values. As we mentioned before, bond graphs, with

appropriate extensions, can be used to model systems that have vector-valued state vari-

ables; however, these extensions are cumbersome and not provided in their software envi-

ronment that synthesizes the dynamic equations. On the other hand, we use a linear graph

formalism, which may include vector-valued states, to represent the dynamics of a system.

Another difference between our work and the work in [146] is that although their approach

modularizes the model into type and specification (interface and implementation), the spec-

ification of the model includes its type. This kind of modularization forces us to define the

instance of a model to be its specification. Consequently, if multiple instances of a model

need to be included in a model library, such as for instance when they may differ in param-

eter values or in structure, new types must be defined for each choice of specification, and

each separate instance must be stored in a library of models. In contrast, we do not require

the interface to be part of the implementation. This modularization allowed us to define the

concept of binding of an implementation to an interface such that an interface describes a

family of component models. In this way, only one interface needs to be stored in the



15

library and multiple implementations can be bound to the interface. Instances of a recon-

figurable model are given by the binding of an implementation to an interface, which

reduces the type redundancy presented in [146].

Finally, parameter handling is not well defined in [146]. For each new set of parameter def-

initions, we are required to define a new type, and the propagation of the parameters to

inner submodels is not explicit. Our reconfigurable models provide an explicit mechanism

for parameter propagation and do not require the definition of a new interface for each set

of parameters.

1.3.4 Heterogeneous modeling

Heterogeneous modeling incorporates different modeling paradigms—such as discrete

event, continuous time, finite state machines, and others—into a single simulation model.

In this respect, Ptolemy II, a software environment for heterogeneous concurrent modeling

developed at the University of California at Berkeley, provides the machinery to represent

and combine different modeling paradigms [68]. Ptolemy II provides several modeling par-

adigms, including continuous time, discrete events, finite state machines, and others. The

fundamental assumption taken in Ptolemy II is that all these modeling paradigms can be

expressed using the block-and-arrow diagram. Under this premise, models are represented

by directed graphs where the nodes are entities and the arcs are relations.

Of all modeling paradigms provided in Ptolemy II, the three modeling paradigms men-

tioned are the most relevant to our work. The others are targeted to modeling system behav-

ior at different levels of abstraction. For example, the communicating sequential processes

(CSP) modeling paradigm can model problems involving resource management, and the

process networks modeling paradigm is targeted to modeling signal processing systems

where infinite streams of data samples are incrementally transformed by a collection of pro-

cesses executing in parallel.

The continuous time modeling paradigm is based on the signal-flow model. Thus, models

of physical systems capture signal flow between simulation components (such as Sim-

ulink). This is in contrast to the approach to modeling physical systems in this thesis, which



16

is based on the observation that any two subsystems interact through energy exchange. Our

port-based modeling paradigm, which is based on the conservative laws to represent

energy-based systems, includes an extension to interact with signal-flow models.

The simulation engine in the continuous time modeling paradigm in Ptolemy II has many

commonalities with the simulation engine developed in the early stages of this research.

The reason is that the continuous time model and the modeling paradigm used in the soft-

ware-based simulation environment (Chapter 2) are described by the signal-flow model.

Since the signal-flow model considers every element as a function that maps its inputs to

its outputs, the simulation engine provides ways of obtaining an evaluation order of the ele-

ments in a signal path. The scheduler used in Ptolemy II to achieve that ordering is similar

to the scheduler developed for our simulation environment for software components (see

Chapter 2).

In addition to specify the system as a signal-flow model, the continuous time modeling par-

adigm is designed to interoperate with other Ptolemy modeling paradigms. These are the

discrete event modeling paradigm, to achieve mixed signal modeling, and the finite state

machine modeling paradigm. The latter is used to describe models that are valid on well

defined operating regions.

The port-based modeling paradigm also supports the mixed signal modeling paradigm.

However, we rely on the target language (to which our port-based reconfigurable models

are translated) for the syntactical constructs to define the events in a model (Chapter 6). In

addition, our port-based models provide modeling constructs to define operating regions

for which different models are valid. We call this meta knowledge and introduce the con-

cept in Chapter 6.

1.3.5 Structural knowledge representation

Structural knowledge representation deals with the problem of defining appropriate repre-

sentations to describe the structure of models. In Chapter 6, we define a reconfigurable

model, which is a modeling paradigm that allows changes in structure as well as parameter

configuration. To describe the structural knowledge embedded in a reconfigurable model



17

we defined a representation based on an AND-OR tree. A similar tree-based representation,

called system entity structure (SES) [159], is a structural knowledge representation scheme

that systematically organizes a family of possible structures of a system. Such a family

characterizes decomposition, coupling, and taxonomic relationships among entities.

The difference between our AND-OR tree representation and the SES is that the SES cap-

tures system architecture alternatives, while the component structure describes modeling

alternatives for a single component in the system. To capture system architecture alterna-

tives, the SES defines a set of labels that specify both coupling information and selection

constraints imposed on the elements of the system.

1.4 Contributions

Due to the nature of the work developed in this dissertation, we have categorized the con-

tributions into two major areas: intellectual and implementational contributions. Intellec-

tual contributions include new ideas, and new algorithms, while implementational

contributions include new framework and representational structures. The intellectual con-

tributions of this work include composable simulation, port-based multi-domain modeling

of mechatronic systems, and reconfigurable models. The main implementational contribu-

tion is the multidisciplinary modeling and simulation environment.

1.4.1 Intellectual contributions

1.4.1.1 Composable simulation

In this thesis, we developed the idea of composable simulation. By composable simulation

we mean the ability to generate system-level simulations automatically by simply organiz-

ing the system components in a CAD system.

A system component can be either a physical component (electrical motor, gearbox, etc.)

or an information technology component (embedded controller or other software compo-

nent). Each of these system components has one or more simulation models associated with

it describing its dynamics in multiple energy domains, across energy domains, and possibly

at multiple levels of accuracy (with varying computational requirements). When these



18

system components are combined into a complete system, our framework automatically

combines a selection of the associated component models into a system-level simulation.

The user interaction occurs thus at the level of composition of system components rather

than simulation components as in most traditional simulation environments (Matlab/Sim-

ulink, Easy5, etc.). These traditional simulation environments do not consider the mapping

from system components to simulation models. This mapping is not one-to-one. The

system-level simulation model is not simply a concatenation of individual component mod-

els, but may require combining multiple system components into one simulation model (to

avoid algebraic loops or index problems [98, 99]). Or, conversely, it may require multiple

simulation components for a single physical component (describing its behavior in multiple

energy domains, for instance). Raising the level of user interaction to composition of

system components rather than composition of simulation models will result in a signifi-

cant reduction of effort in creating and modifying system-level simulations and will reduce

the simulation and modeling expertise required of the user.

Our framework for composable simulation will therefore enable designers and control

engineers to verify their physical designs and control software with much less effort and

time than is required in current simulation environments, as described in the following sec-

tions.

Our concept of composable simulation is implemented using port-based modeling and

reconfigurable models.

1.4.1.2 Port-based multi-domain modeling of mechatronic systems

We developed a novel modeling paradigm based on port-based objects [133]. The port-

based object approach allows us to model system components by describing their behavior

and their interaction with the environment. Interaction paths capture energy flow (for

energy-based systems) or signal flow (for non-energy based systems). In this way, we can

describe a system as a graph where nodes represent high-level system components and

edges represent their interactions.



19

Port-based objects can be compound or primitive. Compound port-based objects define the

behavior of a system as a structural arrangement of subsystems (also modeled as port-based

objects), while primitive port-based objects are defined by the constitutive equations

describing the behavior of the object.

The port-based modeling paradigm is the basis for our multidisciplinary modeling and sim-

ulation environment, as well as for our concept of reconfigurable models. A port-based

object is transformed into a hybrid mathematical representation based on linear graphs and

block diagrams. This underlying representation provides the tools required to synthesize

the set of differential algebraic equations that describe the behavior of the system

(Section 1.4.2.1). A reconfigurable model (Section 1.4.1.3) is an extension of the port-

based objects in that the interface is separated from the implementation of the behavior of

the component.

1.4.1.3 Reconfigurable models

We formalized the concept of a reconfigurable system model. Reconfigurable models are

a powerful abstraction that allows the designer to change the simulation models dynami-

cally. The modeling paradigm of reconfigurable models is based on the separation of the

properties that are necessary to classify the subsystem and those that are not. Necessary and

non-necessary properties are collected into two groups, called interface and implementa-

tion respectively.

Using the concept of subtyping, we organize the component interfaces into a semantic net-

work. An important virtue of this network is that by traversing it (upward or downward) we

define two operations: refinement and generalization. Reconfigurability is achieved when

an implementation is bound to an interface. Therefore, this network completely defines the

basic operations that are required to support reconfigurable models, namely, specialization,

generalization, and reconfiguration.

We developed a component model structure to describe the modeling space of a reconfig-

urable component model. The structure is based on an AND-OR tree [105]: modeling alter-

natives are captured in the OR arcs, while individual alternative models are captured by



20

means of the AND arcs. Based on this structure we developed models of concrete compo-

nents. These models are characterized by an induced tree on the AND-OR tree. The collec-

tion of reconfigurable models represented by this component structure are stored in a

library of components.

1.4.2 Implementational contributions

1.4.2.1 Multidisciplinary modeling and simulation environment

We developed a novel multidisciplinary modeling paradigm that combines energy-based

and non-energy based systems into a single modeling representation. The formalism used

to represent a multidomain system is based on linear graphs [143]. We extended this for-

malism and created a hybrid representation for mechatronic systems. In this representation,

energy-based systems are modeled using the linear graph formalism, and non-energy-based

systems are modeled using block diagrams. We have combined the two formalisms into a

hybrid representation that allows the description of both types of systems. New elements

were defined to seamlessly interface the two formalisms.

We developed algorithms to automatically synthesize the linear graphs for all energy

domains involved, including the mechanical energy domain (geometry). In this respect, the

algorithms that synthesize the linear graph for the mechanical energy domain take care to

simplify the graph in order to minimize the possibility of obtaining both high-index alge-

braic differential equations and fully constrained mechanisms by removing redundant kine-

matic joints (i.e., joints that have been identified to have coincident joint axes).

We formalized the causality problem as that of finding a minimum cost spanning tree on

the linear graph. This provided a convenient way for finding causal directions for all the

equations in the system. To incorporate the equations derived from the non-conservative

system, we defined an extension of the classic Block Lower Triangular algorithm to find a

feasible order of evaluation of the DAEs.



21

1.5 Research road map

Two problems are addressed in this research: composable simulation and simulation sup-

port for the design process. Although we addressed each problem independently, in the end

the two approaches merge at a common point, as is illustrated in Figure 1-3. Initially, we

implemented a purely software-based composition environment. Due to the nature of the

underlying equations, this approach rapidly reached its limits. Nevertheless, the lessons

learned from this attempt are valuable. The most valuable lesson learned was the under-

Problem:
Composable

simulation

Problem:
Simulation support in

design

Software-based
modeling

Chapter 2

Equation-based
modeling

Chapter 3

Reconfigurable
modeling paradigm

Chapter 6

Synthesis system
graph

Chapter 4

Synthesis DAE
Chapter 5

Hybrid simulation modeling
Chapter 3 and Chapter 5

Model selection
Chapter 6

Figure 1-3. Research road map.



22

standing of the interactions between components and, specifically, how these components

may interact in a hybrid simulation environment, one which includes a mixture of equation-

based models and software components.

Based on the limitations we encountered with the previous approach, we focused on equa-

tion-based modeling. In this modeling paradigm, the models are given as equations rather

than as procedures as is the case with a software component. A new modeling paradigm,

namely port-based modeling, was developed. This modeling paradigm does not define a

fixed causality for the equations involved but leaves the task of determining it to the simu-

lation environment once the complete topology of the system is known. We adopted the

method of the system graph to represent the underlying topology of the system based on

energy flow. This system graph is derived from a high-level component graph composed

of port-based object models as illustrated in Figure 1-4. In this graph, the high-level system

topology is defined in terms of high-level system components and interactions. This graph

is used to synthesize the graph of the system.

Figure 1-4. High-level description of a mechatronic system.



23

Once the system graph was readily available, we used it to derive the differential-algebraic

equations that describe the behavior of the system, including references to software com-

ponents.

To address the issue of providing simulation support to design tasks, we focused our atten-

tion on extending the port-based modeling paradigm to provide model selection capabilities

as well as to provide the ability to dynamically reconfigure the model by means of recon-

figurable models. Reconfigurable models are translated into the linear graph representa-

tion. At this point, the two paths leading from the two general problems shown in Figure 1-

3 are merged. In this case, once a reconfigurable model is translated into a linear graph, the

methods derived in this thesis are applied to synthesize the set of differential-algebraic

equations that define the behavior of the system. This approach to modeling allows the

designer to test different candidate designs.

We illustrate the use of our framework with a design scenario presented in Chapter 7.



24

Chapter 2 Composition of
Simulation
Software

2.1 Introduction

In this chapter, we describe a simulation framework aimed at providing simulation support

for non-energy-based systems. In this framework, simulations can be composed by defin-

ing interactions between component models that represent signal flow between models.

The framework proposes a new modeling approach based on the theory of software archi-

tectures [6, 74] and on port-based objects [133], in which a component is viewed as an

entity with an interface and an implementation. The interface defines the interaction points

of the component with its environment, while the implementation defines the behavior of

the component. This approach to modeling forms the basic ideas for our port-based mod-

eling paradigm and the reconfigurable models presented later in this thesis.

One of the goals of composable simulation is to support the rapid assembly of simulation

programs. In this respect, we developed a software framework based on a description of a

software component called subsystem interface (sbs). The subsystem interface provides a



25

low-level uniform definition of a simulation software module; that is, it provides the appli-

cation programming interface (API) required to embed software components in the simu-

lation environment. Software modules are described in the environment by a model

description language that captures the hierarchical definition of a module in terms of ports

and composition of other submodules.

From the experimental results, we observed two problems. The first is the occurrence of

algebraic loops. In this case, we have opted for their detection; however, no effort is made

to try to solve them. Algebraic loops in two or more software components imply tight cou-

pling between the underlying equations. To solve this kind of system, we would need to use

a nonlinear solver or an iterative algorithm to break the algebraic loop (i.e., tearing) [42,

44]. Non-linear solvers require knowledge of the derivatives of the software component,

which in general are not available. These methods are very costly and they do not always

converge to a solution.

The second problem we observed was related to the granularity of the software compo-

nents. We found that the granularity of the software components directly affects the perfor-

mance of computing a solution for the system. This problem is closely related to the

previous one because we can improve the efficiency of the computation of a solution by

including the equations of the software components that create the algebraic loop into a

single component. In this way, we are reducing the granularity of the components, and

hence we can implement an efficient nonlinear solver that solves the set of simultaneous

equations. This can be done if the equations of software components involved in the alge-

braic loop are combined, reducing them to a single software component.

2.2 System architecture

In this architecture, the representation of a component model consists of two parts: the

interface and the implementation. The interface represents a portion of a design that has

well-defined interaction points and performs a well-defined function. The implementation

of the model represents the behavior of the component and is described by a software mod-

ule. The module can be described as the structural arrangement of interfaces or as a single



26

procedural module. The structural arrangement of submodules defines the configuration of

the component.

To support composability of simulation software modules, we propose a software architec-

ture based on three abstraction levels [31]: conceptual level, component level, and process

level. The highest level of abstraction in the architecture (conceptual level) defines the

system using a conceptual graph. A conceptual graph is a directed graph in which nodes

represent components of the system and edges represent their interactions. Edges leaving

from a node represent output ports of the subsystem; incoming edges to a node represent

input ports.

The second level of abstraction of the architecture is the component level. This level pro-

vides an abstract representation of the behavior of the component, which is described by an

interface that includes the input and output ports of the component. At this level, the con-

ceptual graph is mapped into a simulation software architecture. The resulting architecture

is the main representation of the semantics of the system; i.e., a network of interfaces and

interactions among components. The third level of abstraction in the architecture, the pro-

cess level, provides the algorithmic representation of the behavior of the component. At this

level, the software architecture is instantiated and executed. Instantiating an architecture

requires finding processes that match the features listed in the interface of each component.

Execution of the architecture may require calls to external libraries such as Matlab, ACIS

or Odepack/Linpack. The process level deals with the communication and synchronization

of processes included in the architecture and ensures data consistency. Based on these

abstraction levels, component models can be hierarchically composed. Hierarchical com-

position allows the composition of component models into a compound model; this com-

pound model captures the structural arrangement of the models.

To illustrate these concepts, consider the system shown in Figure 2-1. A control system is

defined by a conceptual graph. The model of this system is hierachically built. This is

shown by expanding actuator component, which is composed by three subcomponents:

amplifier, motor, and coupling. The description of these subsystems are given at the con-

ceptual level. The component level defines the interfaces of each of the components that



27

compose the design. In this case, the interface of the DC motor is shown in the component

level. Every interface in the component level needs to be instantiated. This process is

achieved by associating an implementation of the behavior of the component to the inter-

Sensor

Controller
Process

Actuator

Amplifier

Motor

Coupling

C
on

ce
pt

ua
ll

ev
el

C
om

po
ne

nt
le

ve
l

P
ro

ce
ss

le
ve

l

YesNo

Ports: J1, J2
Domain: J1(electric), J2(mechanic)
Function: J1.requires(voltage) ->

J2.provides(torque) ||
J2.requires(torque) ->

J1.provides(voltage)
Constraints: J1.max < Vin, J2.max < torquein

Figure 2-1. Model abstraction levels



28

face. The behavior of the component is described in the process level, which gives an algo-

rithmic interpretation of the desired behavior.

2.2.1 Component model

A component is the generalization of a port-based object [132, 133, 134] and it consists of

two separate parts: an interface through which it interacts with other design entities, as

illustrated in Figure 2-2, and an implementation that either encapsulates an executable pro-

totype of the behavior of the component, or hierarchically defines it as a configuration of

other components.

The interface defines the information that completely characterizes the software compo-

nent, such as input/output ports and their corresponding energy domains; the functions the

interface provides to other design entities or the functions it requires from other design enti-

ties; and constraints on behavior of the component.

For instance, the interface definition for a DC motor/generator component might look like

this:

Ports : J1, J2
Domain : J1(electric), J2(rotational)
Functions : J1.requires(current) -> J2.provides(torque) ||

J2.requires(torque) -> J1.provides(current)
Constraints : J1.max < Im, J2.max < Torquem

The interface of a component may be satisfied by more than one implementation. For

example, the interface definition for the mechanical system of a missile seeker may specify

as input ports the torques applied to the system, and as output ports the angular accelera-

tions of the system produced by the given torques (Figure 2-3). There are two alternatives

to choose from in selecting the implementation for this interface: one using the Newton-

Euler iterations, the other using the Lagrange-Euler method. Both implementations con-

.. component
input
ports

output
ports. ...

Figure 2-2. Component



29

form to the interface but provide different mechanisms to compute the desired results. This

feature can be used in many ways; for example, to dynamically reconfigure the simulation,

to produce finer simulation results, or to test different implementation approaches.

A configuration is recursively defined to be composed of either sub-configurations or com-

ponents or both. This definition supports the hierarchical nature of a mechatronic system.

A configuration, like a component, consists of two parts: interface and implementation. The

interface of a configuration will export only those features visible at the sub-system level.

The implementation of the configuration will be defined by the network of sub-configura-

tions and design entities described in the definition of the configuration. Since the structural

arrangement of components defines a configuration, a configuration is legal only if every

input port is connected to one output port and all the communication constraints are satis-

fied. An output port may be connected to multiple input ports, but an input port may only

be connected to a single output port.

An instance of a configuration of a system is created when all the interfaces in the config-

uration are assigned conforming implementations [73]. An implementation conforms to an

interface if it contains all features specified by the interface. In [73], the authors define three

conformance criteria that we adopt to define semantically correct systems:

Interface conformance: Each implementation in the system must conform to its interface.

This means that the implementation has to match the interface definition semanti-

cally; otherwise, the implementation cannot be used in the given context.

Decomposition: Each particular instance of a configuration is decomposed in a number of

implementations; these implementations must conform to the interfaces of the con-

figuration. This means that for each interface there must be at least one conform im-

plementation.

inverse
dynamics θ·· 2

θ·· 1

τ2

τ1

Figure 2-3. Inverse dynamics component



30

Communication integrity: The system’s components interact only as specified by the

configuration.

Components in the implementation of a configuration have a well-defined scope. This

means that messages sent locally in a configuration cannot reach components outside the

boundaries of that configuration; only those features indicated in the interface are exported

and therefore can be used by other configurations.

Since an interface may have more than one conforming implementation, it is valid to

replace the complete network attached to the implementation of a configuration with a dif-

ferent network or with a single component. The new implementation may capture the

behavior of the component at any level of detail, as long as it maintains the basic function-

ality specified by its interface.

2.3 Scheduling the execution of component models

Component models are executed when their implementation is loaded into the system.

However, implementations cannot run at just any time; rather, they must follow a pre-

defined pattern of execution. This results in a scheduling problem. To devise a solution to

Figure 2-4. Executable abstraction of a component

Component model

Implementation
(derivative, output)

Process

output

Executable
image

derivative

Abstract

Concrete
task



31

this problem, we propose a conceptual organization of the component that reflects transfor-

mation from an abstract concept to an actual executable as illustrated in Figure 2-4.

In this model, the implementation of a component provides two operators, the derivative

operator and the output operator as illustrated in Figure 2-5. The derivative operator com-

putes the derivatives of the state variables, while the output operator computes the output

variables of the component. Once an implementation is loaded into the system, a process

which represents the executable image of the implementation is created. Since each process

has two operators, we associate the execution of each operator within a process to a task,

or a thread of execution of an implementation’s operator (represented by the curly line in

Figure 2-4).

By explicitly specifying the derivative and output operators, the scheduling problem is

reduced to finding the schedule for the output tasks without considering the derivative

tasks. Once the output tasks have been evaluated, the input variables to each component are

ready and the derivative tasks can be evaluated in any order.

To obtain a correct schedule of the tasks spawned by an implementation, we first classify

the component according to its output operator, and then present a scheduling algorithm

based on a constraint graph that captures the interconnections between components.

2.3.1 Classification of component models

The implementation of a component is an abstract representation of its behavior. In general,

the models are described by a set of differential algebraic equations that represent the

dynamics of the system. These equations contain the following information:

x
states

u
(inputs)

y
(outputs)

Figure 2-5. Generic template for an implementation

y fo t x u, ,( )=

x· fd t x u, ,( )=



32

• A set of continuous variables denoted x.

• A set of equations depending on x.

• A set of assignments where variables in x are assigned to continuous functions:

.

In traditional simulation environments or even in object-oriented simulation environments,

the model descriptions are transformed into a single block of equations. However, before

the equations can be solved, they undergo a series of transformations that put them in suit-

able form to be used in numerical algorithms. The goal here is to find an ordering of the set

of equations for which a solution can be found. This ordering produces a correct model with

the following elements:

• dynamic state variables x and their first derivatives

• a set of algebraic state variables z

• a set of auxiliary variables v

• a set of dynamic equations sorted in computational order.

In general, we can write the equations that result from the above transformations as follows:

Equation 2-1

where u is the vector of inputs to the component model and y is the vector of outputs of the

component.

In Equation 2-1 some equations are explicit assignments to state derivatives, while other

are assignments to algebraic variables. Based on the form of the output equations we

classify a component model as follows: if the output variables are explicit functions of

the input vector u, we call it a direct feed-through component. On the other hand, if the

output variables are not an explicit function of the input vector u, we call it an integral

component. If at least one output variable is an explicit function of the inputs, the compo-

x: xi gi w( )=

x·

x·i fi
d

x x· z v u, , , ,( )=

vi gi x x· z v, , ,( )=

yi fi
o x x· z v u, , , ,( )=

yi

yi

yi



33

nent would belong to the direct feed-through class. This classification influences the com-

putation order established for a configuration since that is dependent on the execution order

of the internal components, which is in turn dependent on their classification.

2.3.2 Task scheduling

Tasks of a configuration are organized in a constraint graph. A constraint graph is a bipar-

tite graph in which the nodes are divided into two sets: one representing port variables and

the other representing the tasks to be scheduled. Edges in the constraint graph connect

nodes of opposite sets, and there are no edges connecting nodes within the same set. Edges

in the constraint graph are directed according to the precedence relationships derived from

the connections given in the configuration.

For a configuration with n design entities, the bipartite graph will include task nodes;

i.e., one node for each task spawned by the implementation. Once the constraint graph is

defined, the schedule is found by topological sorting [62] the nodes in the graph.

To illustrate these concepts, consider the description of a missile seeker shown in Figure 2-

6. This configuration consists of the following software components:

1. a gimbal mechanism,

2. coupling elements for pitch and yaw

3. actuators (DC motors) for pitch and yaw, and

4. PID controllers

The connections in the configuration have a defined directionality. That is, the connection

of output port-0 of module C1 with input port-0 of module G defines a flow of information

from C1 to G.

2n



34

Each module in the configuration is classified as follows:

Given the information provided by the configuration and following the classification of the

software modules given in Table 2-1, the constraint graph is constructed as illustrated in

Figure 2-7. A special characteristic of this graph is that every task has a port variable as a

successor and as its predecessor. This means that if a variable is the predecessor of a task,

the task’s outputs are explicit functions of its inputs. Successor port variables are the result

of the output operation of the component.

The order in which the output and derivative operations are executed is given by a partial

ordering on the constraint graph. This partial order, as we already pointed out, is obtained

Table 2-1. Classification of modules in the missile seeker

Module Class

Gimbal (G) integral

Couplers (C1, C2) feed-through

DC motors (DC1, DC2) integral

PID controllers (PID1, PID2) feed-through

0

1

2

3

0

0

1

2

3

0

1 0

1

0
C2

DC2
PID2

G

0

0

1

0

1

0
2

3

0

1 0

1

0
C1

DC1
PID1

0

Figure 2-6. Configuration of the missile seeker

G: gimbal
Ci: coupling elements
DCi: actuators
PIDi: PID controllers



35

by topological sorting of the constraint graph. The result is shown in Figure 2-8. Since the

gimbal and DC motor modules are classified as integral, their outputs do not depend on

their inputs. Thus we can schedule the output operations to be executed immediately since

all the information they need is already available. The execution of the output operators

produces the port variables . These variables are inputs to the PID controllers

and to the couplers. Since we have classified them as feed-through modules, their output

operators make explicit use of their inputs. In addition, from the constraint graph, we see

that the derivative operators also use the same variables. Since all the information required

by these modules is available at their inputs, they are assigned the next place in the sched-

ule. The execution of these modules generates the port variables . The inputs to

the derivative operators of the gimbal and DC motors are ready; therefore, the algorithm

schedules them next, resulting in a correct execution schedule.

The schedule generated by the algorithm has an interesting property. We note that the levels

in the tree in Figure 2-8 are grouped by node classes; i.e., even-numbered levels include

tasks only while odd-numbered levels include port variables only. This property can be

exploited to implement a parallel execution of all tasks in even-numbered levels. For exam-

Task

Port
variable

Figure 2-7. Constraint graph of the missile seeker

a5 a7 a1 a3, , ,

Ea1
v1 v2, ,



36

ple, all tasks in level 0 (DC1_O, DC2_O, G_O) can be executed in parallel. Once the tasks

in this level are completed, tasks at level 2 can be executed in parallel and so on. Another

execution schema that can be obtained by exploiting this property is that instead of waiting

for all tasks to finish in an even numbered level, as soon as one task finishes we may start

executing tasks at higher levels provided all the port variables are defined. These methods

of execution can greatly improve the speed of a simulation by taking advantage of the com-

puting power of networked computers.

2.4 Simulation kernel

The simulation kernel controls the simulation by executing the schedule computed for a

given configuration. It implements the solver of ordinary differential equations that keeps

track of the simulation time and integrates the system of equations given implicitly in the

software components. Two different approaches were taken to implement the simulation

kernel.

The first approach, based on CORBA, was a distributed simulation kernel. The ability to

run simulations in a distributed environment allows one to take advantage of the computa-

tional power of networked computers. However, to reduce communications overhead, care

Task

Port
variable

Figure 2-8. Topological order of the software components for the seeker

Level 0

Level 1

Level 2

Level 3

Level 4



37

should be taken to avoid unnecessary fragmentation of the simulation. Only large simula-

tion components warrant execution on a separate workstation.

Drawing from the experience obtained in the development of the CORBA-based simulation

kernel, and to virtually eliminate the problem of communications overhead, we developed

a second simulation kernel. This kernel utilizes the multithreading capabilities of the host

operating system to run the simulation components in separate threads. If in addition the

simulation kernel is run in a multi-processor computer, each thread can be run in a separate

processor, which minimizes the computation time of the overall simulation.

Several issues must be resolved to efficiently execute the composition of simulation com-

ponents in the framework; namely, development of inter-process communication mecha-

nisms, and integration of numerical integration algorithms in the simulation kernel. We will

address these issues in the following sections.

2.4.1 Kernel object model

The first step in defining the simulation kernel is to define the underlying abstractions that

will capture the description of configurations in the framework. For this purpose, we

present an object model that describes the object-oriented architecture of the simulation

kernel.

The object model [115, 116], shown in Figure 2-9, defines the module as the fundamental

abstraction. A module can be a primitive module or a compound module (configuration).

Primitive modules cannot be decomposed into submodules, and for that reason they form

the basic building blocks of the system. Compound modules (configurations) are aggrega-

tions of primitive modules and/or other compound models.

Configurations and primitive objects have two objects in common: the ovar object and the

interface object. The ovar object implements the inter-process communication mechanism

between objects in the system. The interface object contains the port definitions as well as

properties relevant for the software component such as the direct feed-through and number

of internal states.



38

Figure 2-9. Object model.

In the object model, the interface object is shared between a configuration and a primitive

because when a configuration is used in a larger configuration it is considered as if it were

a single software component. The simulation kernel takes care of the scheduling of all inter-

nal software components so that when the output operator of the module is executed in the

parent configuration, all internal operators are executed before the outputs of this operator

are presented to the environment. That is, the parent configuration will expect to see the

component’s outputs after its execution elapses. The number of internal states is used to

determine the number of elements in the ovar object.

Two more objects compose a configuration object: plan and body objects. The plan object

represents the evaluation schedule of the components in the configuration. It represents the

Configuration Primitive

name

Module

Plan Body OVAR Interface

AttributesBodyItem

ConnectionSubmodel

2+
{ordered}

2

Port



39

topological sort of the components in the configuration based on the direct feed-through

field and the directionality of the ports. The body object allows the hierarchical definition

of a configuration by means of the submodel object, and defines the topology of the con-

figuration by means of the connection object. In Figure 2-9 a submodel object is an aggre-

gation of modules. This allows a configuration to be hierarchically defined in terms of

primitives and their configurations. Finally, the connection object is an aggregation of

exactly two ports.

2.4.2 Inter-process communication

Inter-process communication is achieved through the ovar object. This object implements

shared memory schema where modules are assigned different memory segments from

which they can access their data. The shared memory segment is divided up into virtual seg-

ments each having a well-defined lexical scope. The lexical scope of a memory segment

spans the module in which it is defined. In other words, a module cannot write out values

outside its lexical scope.

Conceptually this is shown in Figure 2-10. The ovar object contains two segments, namely,

the input segment and the output segment. The output segment is shared among all modules

in the configuration. This results in a single memory segment used in the topmost configu-

ration, which is the one that implements the shared memory. The input segment in each

ovar object defines a mapping between inputs and output ports of different components.

This can be seen from the observation that for each input to a module there will be a corre-

sponding output of another module. Storing the indices of the output array in the input seg-

ment (for those outputs connected to the inputs) completely defines the inputs to the

module.

To illustrate this, consider the configuration shown in Figure 2-11. In this configuration,

modules B and C are the outputs of the top level configuration which has no inputs while

modules A and D have no inputs.To access the second input to module C, we access its

input segment to find that it contains the index 8 in the entry number 2. This index points

to the global shared output memory segment which in the address 8 contains the input to



40

module C coming from module D. In this communication model, the hierarchical structure

of the configuration is flattened. This, however, does not prevent us from hierarchically

defining the configuration. It is only the communication model which is required to be flat

to improve performance.

The final issue to address is data consistency. Recall that the schedule first computes the

outputs of all non-algebraic modules. This produces a partial set of updated output variables

at the current time. Since the schedule guarantees that no algebraic module will be executed

before its inputs are ready, it is not possible to compute an output from an outdated input.

Therefore, we can conclude that the schedule guarantees that the modules will work with

consistent information throughout the simulation run.

OVAR

Figure 2-10. Inter-process communication architecture.

OVAR

OVAR

OVAR

module
A1

...
OVAR

module
Aj

...
OVAR

module

B1

...
OVAR

module

Bk

OVAR

OVAR

OVAR

module
M1

...
OVAR

module
Mj

...
OVAR

module

P1

...
OVAR

module

Pk

OVAR

module
Wk

... ...

Semantic boundary

Output segment

Input segment



41

2.4.3 Task execution model

Before the kernel can execute a task, it has to be properly initialized. In order to accomplish

this, every task has an associated state which indicates its status in the simulation process.

2.4.3.1 Tasks states

We associate each task with a context. The context of a task specifies its current state,

which can be one of the following: running, ready, suspended, dormant (Figure 2-12). A

running task is the one that is actually executing. A task can enter the running state from a

ready state upon receiving a cycle signal. The task will run until it finishes its computation,

after which it returns to the ready state. Tasks in the ready state are those which are ready

to run but not running. A task enters the ready state if it was executing and its cycle ended.

Figure 2-11. Shared memory schema.

A

D

B

C

0

1

2
3

0
1

0

1

0
1

2
3
4

0

1

0

0

1

2

module
Amodule
D

module
C

module
A

0 4 0 1 0 0 1

0 1 2 3 4 5 6 7 8 9

1 2 3

module
B

1 3 3 4 8 9

Output segmentInput segment

0 1 20 1 3

a)

b)



42

If it was in the suspended state, then it can enter the ready state if an event that initializes

it occurs. Tasks that are created but not scheduled to run are put in the suspended state.

Finally, the dormant state describes a task that exists but is unavailable to the simulation

kernel.

As indicated in Figure 2-12, a task can change states as a result of any of the signals create,

cycle, delete, and resume. When a task receives a signal, it reacts by executing one of its

services, which are part of the low-level implementation of the task (Figure 2-13).

The signals create and delete are special in that they are handled by the host operating

system and not by the module. When a task receives a create signal, it is the operating

system of the host machine that provides the functionality to load the task. When the sim-

ulation has ended, the tasks loaded into the kernel are released along with all the resources

allocated to them (i.e., memory). This occurs when the tasks receive a delete signal from

the operating system. After the delete signal is received, the task goes to the dormant state.

The two other signals, cycle and resume, generate events that the module has to handle. The

handlers for these events are implemented as two services: init and cycle. The init service

initializes the module allocating the resources it will use as indicated in the interface object.

The cycle service performs the evaluation of the output and derivative tasks of the process,

which communicate with other processes in the kernel through the ovar object. The numer-

ical integration algorithm running in the kernel, as indicated in the following section, con-

trols this service.

Figure 2-12. Task states.

Running

Ready

SuspendedDormant create

cycle

resumedelete



43

2.4.3.2 Numerical integration

This section describes the interaction between the numerical integration algorithms and the

task-scheduling algorithm presented in Section 2.3.

Consider the following system of equations:

Equation 2-2

Assume y is a vector where yi is the i-th state variable. Furthermore, consider also the

second order Runge-Kutta formulas:

Figure 2-13. Signal diagram.

RunningReady

Suspended

Dormant

create

cycle

resume

delete

init

cycle

y fo t x u, ,( )=

x· fd t x u, ,( )=

out-vars>

>in-vars

>in-vars

>in-vars

task state

signal

service

task

ovar object

memory operation
>in-vars: read
out-vars<: write

y· f t y,( )=



44

Equation 2-3

where the constant vectors k1 and k2 are of same dimension as vector y.

The integration formulas evaluate the derivative functions at different points as indicated

in Equation 2-3. Every evaluation of f must correspond to the evaluation of the schedule for

the configuration since the integrator sees the configuration as a single function. Based on

this, the numerical integration method implemented in the kernel first evaluates the output

functions and then the derivative functions, as prescribed in the schedule, for every major

and minor integration step (Figure 2-14).

2.5 Module definition language

We defined a high-level language to describe component models and configurations. In the

design of our language, we need to choose a set of high-level concepts from the domains

we are dealing with, give them a suitable syntactic form, and give them precise meaning in

terms of some underlying mechanism. Such a language must provide notations and tools to

describe component models and their interactions to form complete configurations. It must

handle large-scale, high-level interfaces, and it must support the adaptation of these inter-

faces to specific implementations. Three properties characterize what an ideal module def-

inition language (MDL) should provide: composition, reusability, and analysis [122].

Composition: Dictates that it should be possible to describe a system as an aggregation of

design entities and their connections. This allows design entities to be combined

into larger systems.

Reusability: It should be possible to reuse design entities in different system descriptions.

Analysis: It should be possible to perform a rich analysis of system descriptions. This is

equivalent to verifying the correctness of the connections in the system.

k1 hf tn yn,( )=

k2 hf tn
1
2
---h+ yn

1
2
---k1+, 

 =

yn 1+ yn k2 O h
3( )+ +=



45

Even though the language was intended to implement the complete functionality of the

component, it presents some limitations on the descriptive power of the component. In this

language, the types of ports are all assumed real valued quantities. No effort was made to

associate energy domains to the ports as indicated before. In addition, an interface has only

one implementation. Binding the binary code that executes the implementation to the inter-

face description creates the default match between the implementation and the interface.

The language was not developed further because in our experiments we observed that the

approach taken was not the best suited for the kind of problems we were interested in solv-

ing. In the rest of this thesis, we present a modeling paradigm that will overcome these dif-

ficulties.

2.5.1 Module

A module is an abstract definition of the behavior of a family of components. It defines the

logical points of interconnection between the component and its environment. Any number

of module instances can be obtained from a single module description. A module can have

any number of attributes of the following types:

• other module definitions called component modules

• connections

• ports

• initial values on the port variables

Compute outputs
f0 t x u, ,( )

Compute derivatives
fd t x u, ,( )

Figure 2-14. Flowchart of a single integration step

major/minor
integration step



46

A module is defined by the following grammatical construct:

module_def ::= module identifier module_qualifier
module_body endmodule ;

module_body ::= interface_def |
body_def |
interface_def body_def

body_def ::= submodules body_decl ;
connections body_connections ;
initialization body_initializations ;

The module’s body has two parts: the definition of the module interface and the definition

of the module’s body which includes submodules, connections and initializations. The non-

terminal symbol module_qualifier in the module definition rule serves the purpose of iden-

tifying the module as defining a configuration or a primitive component. In this respect, it

is semantically incorrect to define a module body for a primitive module because it is

assumed that a primitive has no other information except its interface. The primitive

module must be initialized in the configuration that is instantiating the module.

Hierarchical structures are constructed by local module definitions through the submodule

construct. The embedding of a module into a configuration carries the following semantics:

a module A with an embedded module B implies that every instance of A has an instance of

B (Figure 2-15).

This instantiation model meets the reusability property required in the definition of the

MDL. Since we can instantiate a module a number of times, given different module param-

module
A

module
B

has

instance
A

instance
B

has

instance-ofinstance-of

Figure 2-15. Module instantiation



47

eters, the instantiation process will take care of the configuration of the module according

to the definition given in the configuration containing the module.

2.5.2 Interface

The interface of a module defines the communication channels between the module and its

environment. It is defined by the following grammatical rule:

interface_def ::= interface interface_constituent ;

An interface block contains a number of declarations that specify the number of input and

output ports the length of the state vector. In addition, it identifies the module as integral or

direct feed-through.

Ports are the logical point of interaction between the component and the environment. A

port has a defined causality identified by two keywords: inputs and outputs. An input cau-

sality value means that the environment in which the module is embedded computes the

value of the port. An output causality value means that the module owning the port com-

putes the value of the port. To illustrate these modeling constructs, consider the following

fragment.

Listing 2-6. The definition of a primitive module

In the example, the module gimbal is defined. This definition declares that the module

gimbal has two inputs, four output ports and four states. Since the output operator of the

gimbal module does not depend on its inputs, the module is classified as integral (i.e., has

a direct feed-through value of false).

module gimbal is
interface

declare(inputs, 2);
declare(outputs, 4);
declare(states, 4);
declare(dft, false);

endmodule;



48

2.6.3 Connections

A connection defines a symmetric relation between two ports. A connection is semantically

correct only if the involved ports have identical structures and if they are connectable: two

ports are connectable if their causality is consistent.

Not all connection schemes are valid. We can classify connections in two types: type I con-

nections, which involve ports owned by modules that belong to the same configuration;

type II connections, which involve a port owned by a module embedded in a configuration

and a port owned by the configuration (Figure 2-16).

Given this classification, the semantic meaning of a connection can be interpreted as fol-

lows:

A connection implicitly defines a constraint equation between the variables associated with

the two ports.

Table 2-2. Semantic meaning of connections in a configuration

Ports Type I Type II

x<in> y<in> — y := x

x<in> y<out> x := y —

x<out> y<in> y := x —

x<out> y<out> — x := y

T
1

T
2

T
3

T
1

T
2

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

T
4T

1
T

2

Configuration

A

B

C

D

E
Type I

Type II

Type I
Type I

Type I

Type IType II
Type II

Figure 2-16. Valid connection schemes



49

2.6.4 Initializations

The initialization block of a module serves the purpose of providing the parameters relevant

to the execution of the submodules. This results in code reusability; only one instance of

the executable code is loaded into the kernel, but it is used with different parameters. An

initialization is defined using the following rule:

body_init_decl::= setstate ( init_statement_args ) |
setparam ( init_statement_args )

init_statement_args ::=identifier , array_def

An example of a complete module specification is given in Listing 2-7 on page 50.



50

Listing 2-7. Example of the definition of a configuration

module seeker isa configuration with
interface

declare(inputs, 4);
declare(outputs, 2);
declare(dft, true);

submodules
g isa module gimbal;
pid_y, pid_p isa module pid;
c1, c2 isa module coupling;
dc_p, dc_y isa module dcmotor;

connections
g.in[0] @ c1.out[0]; g.in[1] @ c2.out[0];
g.out[0] @ c1.in[1]; g.out[2] @ c2.in[1];
g.out[0] @ pid_p.in[0]; g.out[2] @ pid_y.in[0];
g.out[1] @ pid_p.in[1]; g.out[3] @ pid_y.in[1];
g.out[0] @ out[0]; g.out[2] @ out[1];

dc_p.in[1] @ c1.out[0]; dc_p.out[0] @ c1.in[0];
dc_y.in[1] @ c2.out[0]; dc_y.out[0] @ c2.in[0];

pid_p.out[0] @ dc_p.in[0]; pid_y.out[0] @ dc_y.in[0];
pid_p.in[2] @ in[0]; pid_y.in[2] @ in[2];
pid_p.in[3] @ in[1]; pid_y.in[3] @ in[3];

initialization
setState(g, [0.0, 0.0, 0.0, 0.0]);
setParam(g, {[1.041e-6, 1.118e-6, 1.660e-6],

[2.647e-7, 2.634e-7, 1.975e-7],
[2.079e-3, -1.266e-3, -8.206e-3, 54.21e-3],
[1.573, 0.81108]});

setState(pid_y, [-0.14]);
setParam(pid_y, [45, 0.01, 0.5]);
setState(pid_p, [0.14]);
setParam(pid_p, [30, 0.01, 0.6]);
setState(dc_p, [0.0, 0.0]);
setParam(dc_p, [4.05e-7, 7.9e-3, 8.13e-4, 100, 10]);
setState(dc_y, [0.0, 0.0]);
setParam(dc_y, [4.05e-7, 7.9e-3, 8e-5, 400, 10]);
setParam(c1, [1000, 10]);
setParam(c2, [500, 10]);

endmodule;



51

2.8 Summary

In this chapter, we described the software engineering abstractions used to develop com-

posable simulations of software components. Based on these software abstractions, we

described the system architecture of a computational tool for rapidly creating simulations

for mechatronic systems.

The abstractions are based on a three-level hierarchy: conceptual level, component level

and process level. Each abstraction level represents a different aspect of the model, and the

three collectively support composability of simulation software modules. Similar to a phys-

ical design where subcomponents come together to form large more complex components,

the simulation software components can be made up of smaller, simpler components by

combining them into a configuration.

We identified properties that are shared by configurations and component models: interface

and implementation. The fact that they share these properties allows the use of configura-

tions in larger configurations as if the configuration were an individual software compo-

nent. The advantages provided by this characteristic are twofold: first, we have a

mechanism to hierarchically compose simulation models. This is useful when dynamic

reconfiguration of simulation software is required to achieve refinement, and therefore dif-

ferent levels of granularity, in the simulation. Second, we can exchange back and forth

between the use of a component or the use of a complete configuration both having the

same interface, thereby possibly reducing simulation time.

Composability of software components is a powerful mechanism that provides hierarchical

composition of simulation models. Furthermore, it allows one to build the simulation of a

complex system that integrates mechanics with electronics and information technology

modules.



52

Chapter 3 Linear Graph-
Based Modeling of
Mechatronic
Systems

3.1 Introduction

Mathematical models of components identified in a physical system serve as building

blocks in the analysis and design of such system. These mathematical models in general

should cross energy domain boundaries to capture the complex interactions between differ-

ent energy processes taking place in the system.

A modeling paradigm to model the behavior of mechatronic systems needs to be able to

capture the complex inter-domain interactions that occur in the system. There exist differ-

ent methodologies that can be used to model such systems, including, object-oriented mod-

eling and graph-based modeling methods. In this thesis, we have taken the graph-based

approach. More specifically, we model mechatronic systems by means of a linear graph

that captures the energy flow of the system.



53

The linear graph approach is based on the fact that for any physical system we can find two

variables, namely, across and through variables that capture the energy flow through the

system. These two variables were first proposed by Trent [143] as a way of relating two

measurements, taken between the terminals of a physical component, to a mathematical

representation of the system. This representation captures the energy flow in the system

since the selection of across and through variables is made such that their product gives the

power flowing through the component. We call these kinds of systems, conservative sys-

tems [60] because the flow of energy is constrained by two sets of equations, one that spec-

ifies that the sum of through variables entering a node is zero, and the other that specifies

that the sum of across variables around a loop of edges is zero. These equations are Kirch-

hoff’s network equations of conservative systems.

In addition to conservative systems, mechatronic systems include non-conservative sys-

tems. These systems do not satisfy Kirchhoff’s networks laws. The signal domain of a

mechatronic system is a non-conservative system.

This chapter defines the two complementary variables for a wide range of physical compo-

nents and presents the fundamental building blocks used to represent mechatronic systems,

including conservative and non-conservative systems. We propose a hybrid representation

based on a combination of linear graphs and block diagrams to capture the different aspects

of the system.

It is important to emphasize here that the modeling concepts presented in this chapter will

only be applied to energy domains other than the mechanical energy domain. Although the

concepts presented here apply to mechanical models in which the dynamic variables are

scalar variables, the process is quite different when planar and spatial mechanisms are

included in the analysis. Since the topic of rigid body dynamics is out of the scope of this

work, we build on the work by Dr. McPhee in the Motion Research Group at the Depart-

ment of Systems Engineering at the University of Waterloo to deal with the mechanical

domain for complete spatial (3D) rigid and flexible body dynamics [69, 80, 81, 82, 83,

124].



54

The material presented in Section 3.2 is a review of the work by Roe [109] and Trent [143]

in Systems Theory. In Section 3.3, we extend this approach to model non-energetic systems

by using a hybrid representation based on linear graphs and block diagrams.

3.2 Dynamic system elements

In this section, we will summarize system elements and generalize their properties in terms

of energy storage, dissipation and transformation. A uniform terminology and symbolism

applicable to all the physical systems involved in a mechatronic system will be developed.

In addition, we will introduce the concepts of energy sources, which can supply energy to

dynamic systems, transformers, and gyrators. Proper use of these idealized lumped ele-

ments permits any physical system to be modeled.

3.2.1 Generalized variables, power and energy

A variable is a measurable characteristic of a system that may change with time. In this

modeling approach, a system element is described by a relationship between two variables,

a through variable, which has the same value at the two terminals or ends of the element,

and an across variable, which is specified in terms of a relative value between the terminals

(Figure 3-1). These variables are called terminal variables. We will use the symbols f, and

v to indicate any physical through and across variables, respectively.

These two variables may be expressed as the time derivative of the integrated through vari-

able h, and the integrated across variable x, respectively.

Figure 3-1. Two-terminal element.

Element
v2 v1

f f

Terminals f

f
v2

v1

v21 <

E
le

m
e

nt

1

2

v21,f

Terminal graph

or



55

Equation 3-1

Table 3-1 lists the through and across variables f and v and their respective integrals h and

x for the various physical systems.

The power flow into an element or system through two points (1) and (2) which have a

common through variable f and an across variable difference is generally

Equation 3-2

and the energy W transferred is the time integral of the power. Thus, during time interval

,

Equation 3-3

Table 3-1. Through and across variables for physical systems

Type of sys-
tem

Through
variable, f

Integrated through
variable, h

Across vari-
able, v

Integrated across
variable, x

Mechanical
translational

Force, F Translational
momentum, P

Velocity dif-
ference,

Displacement differ-
ence,

Mechanical
rotational

Torque, T Angular momen-
tum, h

Angular
velocity dif-
ference,

Angular displace-
ment difference,

Electrical Current, i Charge, q Voltage dif-
ference,

Flux linkage,

Hydraulic Fluid flow, Q Volume, V Pressure dif-
ference,

Pressure momen-
tum,

Thermal Heat flow, q Heat energy, E Temperature
difference,

Not generally used

f
td

dh
=

v
td

dx
=

v21 x21

Ω21 Θ21

v21

λ21

P21 Γ21

θ21

℘

v21

℘ fv21=

ta tb→

Wab ℘ td
ta

tb

∫ fv21 td
ta

tb

∫= =



56

The only exception to the relations given in Equation 3-2 and Equation 3-3 is that in a ther-

mal system power is the through variable itself and energy is the integrated through variable

or the amount of heat transferred.

3.2.2 Two-terminal elements

An element or a system composed internally of many elements, which is described as

shown in Figure 3-1 by the relation between a single through variable f and a single across

variable difference , is called a two-terminal element or system. Since energy can flow

into or out of this system only by virtue of f and (their product in most cases), the

system is often called a single energy-port. Since the behavior of the element is given by a

relationship between the terminal variables f and , the energy flow to or from the two-

terminal element is determined by either terminal variable. Three types of elements can be

identified: energy storage (delay and accumulator), dissipative, and source elements [143].

The generalized relations between the through and across variables for the delay, accumu-

lator and dissipative elements may be summarized with of a tetrahedron of state [61, 112],

where the across and through storage variables determine the state of the element (Figure

3-2).

v21

v21

v21

Figure 3-2. Tetrahedron of state for two-terminal elements.

R

I

C

f

h

v

x

td∫

td∫



57

3.2.2.1 Delay energy storage elements: generalized inductance

Generalized inductances are described by a single-valued relationship between the through

variable (f) and the integrated across variable (x). For such an element we can write this

relationship as follows:

Equation 3-4

where when . If the element is ideal (i.e., linear), we can write Equation 3-

4 as , or if L is constant,

Equation 3-5

where L is called the generalized inductance. For ideal springs, L is the reciprocal stiffness

or compliance; for ideal inductances, L is the inductance; and for ideal hydraulic elements,

L is the inertance.

The energy W supplied to a delay element defined by Equation 3-4 is

Equation 3-6

The energy function is a function of the terminal equation and the final value of the through

variable. Energy is thus stored by virtue of the through variable, and these elements are

called delay energy storage elements. Table 3-2 summarizes the delay energy storage ele-

ments.

Table 3-2. Summary of delay energy storage system elements.

Physical ele-
ment

Terminal equa-
tion

Energy function Ideal terminal
equation

Ideal energy

Transla-
tional spring

Rotational
spring

x21 g f( )=

x21 0= f 0=

x21 Lf=

v21 td

dx21 L
td

df
= =

W fv21 td
ta

tb

∫ f x21d
0

f

∫= =

x21 g F( )=
W F x21d

0

F

∫= v21
1
k
---

td
dF

= W
1
2
---F

2

k
------=

Θ21 g T( )=
W T Θ21d

0

T

∫= Ω21
1
K
----

td
dT

= W
1
2
---T

2

K
-----=



58

3.2.2.2 Accumulator energy storage elements: generalized capacitance

Translational and rotary masses, as well as electrical, hydraulic, and thermal capacitances

are defined by a single-valued function of the form:

Equation 3-7

where h is the integrated through variable and is defined as zero when is zero. In all

cases except the electrical capacitance, the elements described by Equation 3-7 must have

one terminal attached to a constant across variable so that ; i.e., a reference

point.

For any ideal capacitance,

Equation 3-8

and, if C is constant,

Equation 3-9

where C is the generalized capacitance. For ideal masses, C is the mass or moment of iner-

tia. For ideal electrical, hydraulic and thermal capacitance, C is the electrical, hydraulic or

thermal capacitance, respectively.

The energy supplied to a generalized capacitance is

Equation 3-10

Electrical
inductance

Hydraulic
inertance

Table 3-2. Summary of delay energy storage system elements.

Physical ele-
ment

Terminal equa-
tion

Energy function Ideal terminal
equation

Ideal energy

λ21 g i( )=
W i λ21d

0

i

∫= v21 L
td

di
= W

1
2
---Li

2
=

Γ21 g Q( )=
W Q Γ21d

0

Q

∫= P21 I
td

dQ
= W

1
2
---IQ

2
=

h g v21( )=

v21

dv1 dt⁄ 0=

h Cv21=

f
td

dh
C

td

dv21= =

W v21f td
ta

tb

∫ v21 hd
0

v21

∫= =



59

Energy is, therefore, stored as a function of and this type of element is called accumu-

lator energy storage element. Table 3-3 summarizes the accumulator elements.

3.2.2.3 Energy dissipator element: generalized resistance

Translational and rotational dampers, and electrical, hydraulic and thermal resistances are

defined by the single-valued function:

Equation 3-11

where the function g is such that when and the signs of f and are always

the same. An element that meets the requirements of Equation 3-11 is called a generalized

resistance. If the resistance is ideal,

Equation 3-12

where R is the generalized resistance of the element. The resistance of ideal translational

and rotational dampers is the reciprocal of the damping coefficients. the electrical, hydrau-

lic, and thermal elements have their resistances equal to R.

The power supplied to a generalized resistance is:

Equation 3-13

Table 3-3. Summary of accumulator energy storage system elements.

Physical ele-
ment

Terminal equa-
tion

Energy function Ideal terminal
equation

Ideal energy

Transla-
tional mass

Inertia

Electrical
capacitance

Hydraulic
capacitance

v21

p g v2( )=
W v2 pd

0

v2

∫= F m
td

dv2=
W

1
2
---m2

2
=

h g Ω2( )=
W Ω2 hd

0

Ω2

∫= T J
td

dΩ2= W
1
2
---JΩ2

2
=

q g v21( )=
W v21 qd

0

v21

∫= i C
td

dv21= W
1
2
---Cv21

2
=

V g P2( )=
W P2 Vd

0

P2

∫= Q Cf td

dP2= W
1
2
---CfP2

2
=

f g v21( )=

f 0= v21 0= v21

f
1
R
---v21=

℘

℘ fv21 v21g v21( )= =



60

Since the signs of f and are always alike, is always positive and power always flows

into the resistance. Hence, the generalized resistance dissipates energy, and it is called

energy dissipator element. Table 3-4 shows the energy dissipator elements for the mechan-

ical, electrical, hydraulic, and thermal systems.

3.2.2.4 Energy sources

By source we mean a device capable of delivering energy continuously to a system. Two

types of idealized sources are considered, one in which the across variable is a prescribed

function of time, and one in which the through variable is a prescribed function of time. The

first type of idealized source is called an across source and the second is called a through

source:

Equation 3-14

Although sources are usually used to supply energy to a system, the source may also absorb

energy. When the source is absorbing energy, the sign of the conjugate variable for a source

(f for an across source or for a through source) is the same as that of the variable defin-

ing the source. For any source, the flow of power into the source is . If f and

are of opposite sign (the source supplies energy). Although can also be neg-

ative for energy storage elements (energy is being removed from the element), only sources

can supply power and energy continuously over an extended period of time.

Table 3-4. Summary of energy dissipator system elements: .

Physical ele-
ment

Terminal equa-
tion

Power function Ideal terminal
equation

Ideal power

Translational
damper

Rotational
damper

Electrical
resistance

Hydraulic
resistance

v21 ℘

℘ 0≥

F g v21( )= ℘ Fv21= F bv21= ℘ bv21
2

=

T g Ω21( )= ℘ TΩ21= T BΩ21= ℘ BΩ21
2

=

i g v21( )= ℘ iv21=
i

1
R
---v21= ℘ 1

R
---v21

2
=

Q f P21( )= ℘ QP21=
Q

1
Rf

-----P21= ℘ 1
Rf

-----P21=

v21 gv t( )=

f gf t( )=

v21

℘ fv21 0>=

v21 ℘ 0< ℘



61

3.2.3 Multi-terminal components

Multi-terminal components, called couplers, arise in system modeling to capture interac-

tions between two energy domains, or to provide transformations between terminal vari-

ables of the same energy domain.

The terminal equation for a coupler specifies whether it is obtained from a hybrid parameter

model or not. Hybrid parameter couplers are called direct couplers because in their ideal

form they impose constraints on dynamic variables of the same type. That is, constraints

between across variables alone or constraints between through variables alone. Non-hybrid

parameter couplers are called inverse couplers because in their ideal form they impose con-

straints between variables of different types [143]. Figure 3-3 shows the terminal graph for

direct or inverse couplers.

3.2.3.1 Direct couplers (transformer)

Terminal equations for direct couplers are of the form:

Equation 3-15

Matrix H is assumed to be invertible so that one can find a new model where the roles of

the across and through variables are exchanged. If we let and

we obtain the model of an ideal direct coupler. That is, the coefficient matrix for an ideal

coupler is skew-symmetric so that no power is stored in the element:

v2

v1

v4

v3

ha, fa, va, xa fb, vb, xb, hb

Figure 3-3. Terminal graph for couplers

v21 = va, x21 = xa, v43 = vb, x43 = xb

va

fb

haa hab

hba hbb

fa

vb

=

haa hbb 0= = hba hab–=



62

Equation 3-16

Examples of direct couplers are shown in Table 3-5. With the exception of the electrical

transformer, transformers in other energy domains must have the terminals 1 and 3 (show

in Figure 3-3) common (this requirement does not apply to direct couplers that model

energy transducers).

Table 3-5. Example of physical elements represented by generalized direct couplers. These models are
based on those presented by Roe [109].

Name Terminal equations

Gear train (transformer)

where is the gear ratio.

Lever (transformer)

where is the lever ratio.

Electric transformer

where is the turns ratio.

DC motor (electrome-
chanical transducer)

where ke and km are the electrical and motor
constants respectively.

℘ fa vb

va

fb

fa vb

0 hab

h– ab 0

fa

vb

0≡= =

Ω41

Ta

0
Nb

Na

------

Nb

Na

------– 0

Tb

Ω21

=

Nb Na⁄

v41

Fa

0
rb

ra

----

rb

ra

----– 0

Fb

v21

=

rb ra⁄

v43

ia

0
Nb

Na

------

Nb

Na

------– 0

ib

v21

=

Nb Na⁄

v21

Tb

Ra La td
d

+ ke

km– Bb Jb td
d

+

ia

Ω43

=



63

3.2.3.2 Inverse couplers (gyrator)

Terminal equations for inverse couplers are of the form:

Equation 3-17

This is a generalization of a two terminal dissipative component. This form of the inverse

coupler terminal equations is called impedance form since it represents a dissipative com-

ponent where the independent variables are through variables. If the model is inverted, we

obtain the second form of an inverse coupler: the conductance form.

Equation 3-18

Where . If the coefficient matrix of an inverse coupler is also skew-symmetric,

we have the ideal inverse coupler form and no power is stored in the element:

Equation 3-19

These models represent non-ideal characteristics of their corresponding system compo-

nents. However, we can make some simplifications to find the idealized model, which will

be of one of the previous two classes: direct or inverse ideal coupler. For example, if in the

model of the gear train we neglect the damping coefficient and the inertia effects we obtain

the ideal direct coupler. Similarly, if we neglect the leakage, damping and mass in the

model for the hydraulic piston we obtain the ideal inverse coupler.

An example of an inverse coupler is the hydraulic piston:

Equation 3-20

where A is the area of the piston.

va

vb

qaa qab

qba qbb

fa

fb

=

fa

fb

gaa gab

gba gbb

va

vb

=

G Q 1–=

℘ fa fb

va

vb

fa fb

0 qab

q– ab 0

fa

fb

0≡= =

Fa

Qb

0 A

A– 0

v21

P43

=



64

3.2.4 Linear graph representation of n-terminal elements

A two-terminal component that is connected to two terminals, A and B, in a given system,

can be represented as a directed edge between two vertices, a and b, in a graph. In general,

the graph representation of the component is a directed edge that joins two terminal points.

This graph representation is called terminal graph of the component, and associated with

this terminal graph are the component’s terminal variables. This is illustrated in Figure 3-1.

Often, there will be a one-to-one correspondence between the terminal graph of a two-ter-

minal component and the physical object; however, this does not always have to be the

case. Consider the position of the center of mass of a rigid body. To obtain meaningful mea-

surements, we require a reference point with respect to which we will measure the position

of the center of mass. If we consider the position of the body in 3-dimensional space, we

need three measurements to determine its position unambiguously, for instance, the x-posi-

tion, the y-position, and the z-position, relative to the reference point. Each measurement is

given by an instrument located between two terminals; one terminal is associated with the

rigid body and the other terminal with a fixed reference. If we also include the orientation

of the rigid body, three more measurements are needed. Therefore, the rigid body should

not be treated as a single component; rather it should be treated as if it were six distinct

components, each having its own terminal graph. This means that there is a clear distinction

between simulation component and system components: a simulation component is a mod-

eling abstraction used to characterize a dynamic property of a system component and thus

it is related to a terminal graph. If we admit the variables associated with the terminal

graphs to be elements of we can represent the rigid body as a single two-terminal com-

ponent having vector-valued across and through variables (Figure 3-4), however we must

not forget the fact that we need six measurements to determine the position and orientation

of the object.

Another aspect of interest in modeling physical systems is that of non-ideal properties. For

instance, one might be interested in modeling the passive (resistive) effects occurring in a

transformer while it is coupling two electric networks. In such situations, one treats the

ℜ 6



65

device as being two components, separating in this way the coupling function from the pas-

sive function. A similar decomposition arises when a physical inductor is treated as two

components, an ideal inductor with a resistor in series. In this case, the physical device is

not described by a single terminal graph but rather by a collection of terminal graphs each

modeling a particular aspect of the device.

Interactions between components in different energy domains cannot be described with a

two-terminal element. It is necessary to introduce elements that have more than two termi-

nals; i.e., n-terminal elements. Within this category, we find the transducer elements pre-

viously defined. The system graph associated with an n-terminal element will be derived

from measurements taken between pairs of terminals. However, as is shown by Roe [109],

we only need across measurements to completely determine the across variables

between any pair of terminals. This number corresponds to the number of branches in a tree

selected in the graph of the n-terminal element. The graph of an n-terminal element is

derived from connecting every terminal in the component to every other terminal in the

component. The terminal graph of an n-terminal element is the tree T of edges con-

necting the n vertices corresponding to the n terminals of the system component. To illus-

trate this case consider the electric transformer (a 3-terminal system component) shown in

Figure 3-5. The graph of the component includes an edge from node 2 to node 4. However,

only two across measurements will completely determine the device giving a terminal

graph with two edges.

A

B

x

y

z

a

b

Figure 3-4. Displacement measurement of a rigid body in space with respect to a reference frame.

vba

Ωba

Fba

Tba

,

v F Ω T ℜ 3∈, , ,

n 1–

n 1–



66

As is the case with two-terminal components, the edges in a terminal graph of an n-terminal

component will be associated with measurements taken between terminal pairs in the phys-

ical system. The number m of independent across and through measurements required to

completely characterize the component has an upper bound:

Equation 3-21

The inequality in Equation 3-21 holds if the component has any of the following two prop-

erties [143]:

1. For all t, an across instrument placed between a pair of terminals gives a null reading, in

which case the two terminals can be treated as one.

2. An instrument attached to two points shows that these are dynamically independent; in

which case, an instrument needs not be attached at these two points.

In the case where multiple energy domains are associated with a given physical object, a

set of terminals is associated with each energy domain. Once the sets of terminals are cho-

sen, the complementary variables (across and through variables) of each energy domain are

identified on the terminal graph associated with each energy domain (Figure 3-6)

In summary, there exists an isomorphism between linear graphs and physical systems. For

a system composed of m subsystems, the system graph is the union of all terminal graphs

for all the components of the system in one-to-one correspondence with their interconnec-

tion.

2 4

1

2 4

1

Figure 3-5. n-terminal component

m n 1–≤



67

The topological properties of any graph are captured in two matrices, namely, the incidence

and the circuit matrices. For a system graph, these matrices provide the basis to define two

theorems of systems theory that define the conservative properties of a system [109].

Theorem I. The oriented sum of through variables associated with the edges incident on

a given vertex is zero at any instant of time:

Equation 3-22

where matrix A is the incidence matrix of the system graph.

Theorem II.The oriented sum of the across variables associated with the edges in a given

circuit is zero at any instant of time.

Equation 3-23

where matrix B is the circuit matrix of the system graph.

The proofs of these two theorems can be found in [109].

Given these two theorems, we can restate Theorem A-I to account for our definition of

across and through variables as follows:

a c

Electrical
terminals

Mechanical
terminals

Electro-mechanical
component

A

C

B

D

E

b

d

e

Figure 3-6. Terminal graph identifying the variables in a multi-domain component.

Ay 0=

Bx 0=



68

Theorem III. If T is an arbitrarily selected tree of a system graph, the across variables of

the chords of T can be expressed as linear combinations of the across variables of the

branches of T, and the through variables of the branches of T can be expressed as linear

combinations of the through variables of the chords of T.

The proof of this theorem is similar to that of Theorem A-I and it follows from Equation A-

6 and Equation A-7 in Appendix A.

3.3 Low-power component modeling

In order to include information technology components as well as other types of low-power

devices in the system graph, it is necessary to extend the system graph representation to

include signals. A signal represents the value of some system variable as a function of time.

To introduce signals in the system graph we define the concept of variable elements. A

variable element is an element that can have one or more input signals that modify its

response. The simplest variable element is the signal-controlled across or through driver.

In this case, either the across or through variable associated with the terminal graph will be

completely defined by the signal; i.e., or . Where x and y

represent across and through variables, respectively.

Similarly, a variable passive element is also signal-controlled, but here, the input signal is

modulating one of the element parameters (Figure 3-7). Output signals are obtained from

the system graph as “measurements” of system variables (Figure 3-8).

In the context of mechatronics, it is important to have a system representation that is capa-

ble of handling signal elements. Mechatronic systems include information technology com-

x t( ) f s t( )( )= y t( ) h s t( )( )=

a

b

x,y f(s(t))

Figure 3-7. Terminal graph of signal-controlled driver.



69

ponents for which there is no energy flow and that therefore cannot be represented by a

terminal graph. As an example, consider an embedded controller. The control algorithms

are provided as algorithmic components that must interact with the rest of the system but

do not generate or transfer any measurable power.

To illustrate this, consider a portion of a positioning system composed of an angular posi-

tion sensor, a regulator, and a current source (Figure 3-9). The regulator obtains the signal

input from the position sensor to provide an output signal used to modulate the current

source.

In summary, signals can only arrive at an edge of a terminal graph and they can only be

read from abstract nodes associated with that edge. In this way, no ambiguities can arise

when augmenting the system graph with a block diagram describing the interaction of low

power components and we have a better representation to derive a set of system equations.

The synthesis of system equations proceeds by considering only the system-graph portion

of the entire model. This way the algorithms presented in Chapter 5 can determine a suit-

able causality assignment. Once the system equations are derived, the equations derived

a

b

x y

Figure 3-8. Reading values from a terminal graph

regulator i(t)

a

b

c

d

θ t( )

Figure 3-9. A positioning system. The system graph shows the interaction between the signal block and
the terminal graph.



70

from the block-diagram are incorporated in the set of equations and a sorting algorithm is

performed to find a correct computational order of evaluation of the system equations

derived from the system graph and the computational blocks specified in the block diagram.

3.4 Port-based multi-domain modeling of mechatronic
systems

In this section, we present the modeling paradigm used to describe mechatronic systems for

which the behavior is given by a linear graph. In this approach, which is based on object-

oriented modeling concepts, system models are defined by interfaces, and interactions

between components are modeled by connections between components' interaction points.

The objective of this modeling layer is to encapsulate all behavioral information (the linear

graph) into a single entity that can be used to build larger systems.

Simulation models of mechatronic systems must be able to capture interactions between

components in different energy domains. In this respect, we regard components from a sys-

tems point of view, i.e., as a structure of interrelated elements that are embedded in an envi-

ronment. Taking a systems approach to modeling mechatronic systems fits well with our

concept of composability—namely, as the synthesis of simulations through the definition

of the constituent components and their interactions.

In our modeling paradigm, subsystems interact with each other through ports [31, 35]. Ports

represent localized points on the boundary of the system where energy exchange between

the system and the environment takes place. At a port, energy flows in and out of the sys-

tem. Consequently, there is a port for each interaction point, and each port will belong to

an energy domain. The energy flow through a port is represented by means of the general-

ized across and a through variables (see Equation 3-1 on page 55). For example, consider

an electric transformer with four terminals. Each terminal represents a port through which

electrical energy flows in and out of the transformer. In this example, the ports belong to

the electrical energy domain; this captures the flow of power in terms of the voltages and

currents on the two sides of the transformer.



71

Connections between ports represent the interactions between different components. A

connection between two ports represents the energy exchange between two subsystems and

imposes algebraic constraints on the port variables involved in the connection. In general,

these constraints take two forms: one form enforces the equality of the across variables, and

the second enforces the sum of the through variables to be zero;these are the Kirchhoff net-

work constraints.

Physical interactions that represent energy exchange have no predefined direction. There-

fore, we capture a physical interaction with undirected connections representing non-causal

interactions. This approach to modeling reflects the physical interactions more accurately

and relieves the modeler of specifying the input/output relations, as would be required in a

modeling environment such as Simulink.

Besides ports and connections that model energy flow, we also consider signals and signal

ports. No energy flows through the signal ports, and the interaction between signal ports is

causal. That is, signal ports have a predefined input-output direction that constrains the

signal flow between components. Signal and signal ports capture a system based on a block

diagram description similar to Simulink.

The system’s ports are collectively grouped into an interface, which defines the interaction

points of the system with the environment. In this way, we can describe systems as self-

contained entities, whose interactions with the environment can be described independently

of the internal behavior of the system, as illustrated in Figure 3-10.

System

Environment

Figure 3-10. Model of an engineering system. Energy ports are represented by non-directed lines while
signal ports are represented by arrows.



72

The port-based modeling paradigm can describe component interactions in any energy

domain as long as the interaction is not distributed but lumped. Consider for example a flex-

ible beam. A finite element model may describe the behavior of the beam. However, pre-

suming that the interaction points of the beam are localized at the two ends, we can describe

its interaction with the environment with two ports located at the two ends. Thus, our mod-

eling paradigm is limited to interactions that are localized at a finite number of points on

the boundary of the system.

As illustrated in Figure 3-11, the port-based modeling paradigm also supports a hierarchi-

cal model structure. The hierarchy can have any number of levels; however, in order to

transform it into an adequate simulation model, the hierarchy must be terminated with

primitive systems, or systems that cannot be divided into smaller subsystems. Compound



73

systems on the other hand are composed by connecting primitive models or compound

models at a lower level in the hierarchy.

3.5 Summary

In this chapter, we defined the fundamental building blocks for modeling mechatronic sys-

tems. The approach is based on graph-theoretic concepts and is applicable to any physical

system for which we can find two types of variables: across variables and through vari-

ables. The graph-theoretic modeling paradigm was extended to include signal domain com-

Figure 3-11. Hierarchical model structure



74

ponents. As a result, we defined a hybrid modeling approach combining linear graphs and

block diagrams with signal-controlled elements.

The system graph defines the topology of the energy flow of the system and in order to have

a complete model we include the terminal equations of the components. Terminal equations

model physical characteristics of the device and it was argued that a physical device may

have more than one terminal equation which in turn is associated with an edge of the ter-

minal graph of the component.

A last note on the terminal equations, they are non-causal relationships between terminal

variables. This fact provides greater modeling flexibility since the task of assigning the

causal form is not part of the modeler responsibilities. The causal form is derived from the

topological properties of the system graph, which improves on model reuse and reduces

possible modeling errors.

The mathematical model described by the linear-graph approach is encapsulated into a

port-based object to provide a self contained entity that allows its composition into a larger

system.



75

Chapter 4 Synthesis of the
system graph for
mechatronic
systems

4.1 Introduction

In this chapter, we define the approach to synthesize the system graph of a mechatronic sys-

tem. The approach takes two steps, which can be performed concurrently. On one side, the

system graph for the non-mechanical part of the system is built, and on the other side, the

mechanical system graph is built.

The system graph for a mechatronic system is constructed with the help of a system editor

that is tightly integrated with a CAD system. The approach to building a system in the

system editor is called schematic-diagraming. In this approach, the modeling is done at the

component level and the interactions between components are defined by connections

between terminals.

As is shown in Figure 4-1, the system editor is based on the concept of modeling layers each

of which represents a different energy domain of the system. The modeling layer for the



76

mechanical energy domain is implemented in a CAD system. When a component is brought

into the system editor, the models that make up its entire description are included in their

respective modeling layers.

The user identifies the interactions between components by defining the connections

between the terminals of the components. Interactions are classified as: 1) mechanical

interactions, 2) terminal connections, and 3) edge associations. Terminal connections and

edge associations arise from the interconnection of elements in non-mechanical modeling

layers. On the other hand, mechanical interactions such as rigid connections, prismatic

joints or revolute joints arise from the interconnection of two rigid bodies.

The diagram illustrated in Figure 4-2 shows the different stages and the flow of information

required in order to arrive at a set of algebraic differential equations that define the behavior

of the system. This chapter covers the topmost nodes in the diagram, namely, the synthesis

of the system graph. The rest of the flow diagram will be covered in Chapter 5.

After the design is defined in the system editor, the topology and geometry of the system is

derived from the high-level description given in the system editor, which provides as out-

puts the system topology and its geometry. The analysis occurs in two parts: the analysis of

the mechanical domain, and the analysis of the non-mechanical energy domains. In the

mechanical domain, the analysis starts by extracting the kinematic and geometric informa-

tion from the CAD model. This information is used in the generation of the mechanical

mechanic

therm
al

hydraulic
algorith

mic

m
od

el
in

g
di

m
en

si
on

s
Mechatronic
model

Figure 4-1. Modeling layers of a mechatronic system.



77

System
Editor

Reduction to
StateSpace Form

Causality
Assignment

Mechanic
System Graph

Synthesis

Geometric &
Kinematic
Analysis

System Graph
Synthesis

Equation
Sorting

Dynaflex

Simulation
Kernel

Visualization

State
Augmentation

Model
Fragments

geometry
system

topology

system graph
kinematic &

geometric properties

dynamic equations
3D system graph

ODE
equations
of motion

block diagram
equations

DAE

BLT form

simulation
output

model
fragments

Figure 4-2. System data flow diagram.



78

system graph. The output of this process is passed on to Dynaflex [124] to generate the

equations of motion of the mechanism. The analysis of the non-mechanical energy domains

starts by deriving the system graph from the topological information provided by the

system editor. The system graph is used to write the terminal equations in causal form,

which are reduced to a state space form. This set of equations is combined with the equa-

tions derived from Dynaflex and with the equations derived from the signal domain. This

new set of equations is transformed to a set of differential algebraic equations, which is

sorted to find a computationally correct order of evaluation [34].

The output of the sorting process is a system of equations in Block Lower Triangular (BLT)

form [39]. In this implementation the equations in BLT form are translated into ASCEND

language [100, 101], which is the target simulation language.

The output of the ASCEND simulation is sent to the visualization process. In this process

two different approaches are provided: 1) an animated view of the motion of the mechanism

or 2) a graph of the state variables versus time.

4.2 Synthesis of the system graph for non-mechanical
energy domains

Terminal connections represent the interaction between components within the non-

mechanical energy domains. Interactions are non-causal, which means that the terminals

involved in the connection do not have a predefined direction. A terminal connection

between two terminals indicates that both terminals are mapped to a single node in the

system graph.

As defined in Chapter 3, the mathematical model of a component consists of two parts: the

terminal equations (behavior) and the terminal graph (topology). The process of generating

the system graph is a two-step process [32, 33]. First, the terminal graphs of the individual

components are instantiated to create a disconnected graph with nc components, where nc

is the number of terminal graphs in the system. Second, the information provided by the

terminal connections is used to reduce the graph to a non-connected graph with

components, where nE is the number of energy domains involved in the design.

nE nc<



79

We define a topological operator merge(u, v)—given two vertices u and v, merge combines

the two vertices into a single vertex such that the edges adjacent to u and v now share the

same vertex—as follows. LetG be the system graph defined by where V is the

set of vertices and E is the set of edges represented as ordered sets . Then,

Equation 4-1

where the operator replaces the occurrence of vertex v by u in the ordered pair e.

The generation of the system graph is a transformation operation that reduces a non-con-

nected graph with nc components to a non-connected graph with nE components by a suc-

cessive application of the merge operator on the terminal graphs of the components.

To illustrate this, consider the design of the electric system of a missile seeker shown in

Figure 4-3. The components included in this design are signal amplifiers and actuators

(yaw and pitch). The initial system graph consists of terminal graphs. Terminal

connections derived from the system description are used to perform successive applica-

tions of the merge operation to reduce the electrical system graph to a connected graph with

. For instance, the electrical system of the pitch-motor and the amp-voltage-

source are connected through connections (a, c) and (b, d) which result in two merge oper-

ations as indicated in Figure 4-4.

A similar process occurs with the other two electric components leaving an electric system

graph with two components. However, the terminal connection between the amp-voltage-

G V E,( )=

u v,{ }

merge u v,( )
u v,{ } V∈ V V v{ },–←⇒

e E∈( )∀ v e∈ e e uv⊕←⇒,
∼

v⊕

nc 4=

nE nc< 1=

pitch-motor

amp-voltage-source

yaw-motor

amp-voltage-source_1

a

b

c

d

e

f

g

h

Figure 4-3. Schematic diagram of the electrical components of the missile seeker



80

sources defines the common ground, which merges the ground nodes of the two compo-

nents reducing the electrical system graph to a connected graph with a single component.

Edge associations arise from the energy exchange between different energy domains. They

occur when system variables in the terminal equations of a component are associated with

other edges in the terminal graph. For example, consider the terminal equation of the elec-

trical edge of a DC motor.

Equation 4-2

Variable is a system variable that is associated with an edge (in the mechanical system

graph) that is not part of the electrical domain. These types of variables are called exoge-

nous since they are assumed to be known within that portion of the model. The definition

nd

e1 e2 e3 e4

nc na

nb

ne ng

nf nhmerge(nc, na)

merge(nd, nb)

merge(ne, ng)

merge(nf, nh)

nd

e1

e2

nc

e3

e4

ne

merge(nd, nf)

Figure 4-4. Topological operations to a connected electrical system graph

v t( ) Kmθ· t( ) R L
td

d i t( )+ +=

θ· t( )



81

of exogenous variables within a terminal equation establishes an association between edges

in the system graph.

4.3 Synthesis of the system graph for 3D Mechanics.

The difference between the system graph for non-mechanical energy domains and the

system graph for the mechanical domain lies in the dimensionality of the terminal variables.

Variables in the mechanical domain are elements of whereas variables in the

system graph are elements of (i.e., scalars).

Once the system graph for the mechanical domain is generated, the dynamic equations of

the 3D mechanics of the system are derived using a sub-module (Dynaflex), which is spe-

cifically designed for the analysis of three-dimensional constrained mechanical systems

[124]. Dynaflex is a research system developed at the University of Waterloo based on a

graph-theoretic approach in which the connectivity of the bodies in the mechanism and the

forces acting on them are represented by a linear graph (mechanical system graph).

Dynaflex is based on the same principles as those used in the derivation of the system equa-

tions for non-mechanical energy domains, and therefore it can be seamlessly integrated

with our approach.

Our approach is general enough to accept different mechanism analysis tools; however, the

only restriction is that it must provide dynamic equations in symbolic form. This is because

these equations are combined with the remaining system equations, which are derived from

the other non-mechanical energy domains (see Figure 4-2).

Similar to the basic modeling elements we defined in Chapter 3, Dynaflex provides a set of

modeling elements for mechanical systems, including, body elements, arm elements (posi-

tion vectors), motion and force drivers, spring-damper-actuator elements, and joint ele-

ments [124]. This classification of elements is used in a way analogous to that presented in

Chapter 5 to find the normal tree of the system graph. Once the mechanical system graph

has been defined—as indicated later in Section 4.3.2—penalty costs are assigned to the

edges of the system graph based on the type of element they model. This weighted graph is

used to find a tree that will define the causality of the terminal equations associated with

ℜ 3
SO 3( )×

ℜ



82

the edges in the mechanical system graph. This tree is found by applying the minimum cost

spanning tree algorithm to the weighted graph.

4.3.1 3D mechanisms

In this section we present a summary of the features that are available in Dynaflex, and that

we use to describe our mechanical models.

A 3D mechanism is defined as a finite number of bodies (rigid or non-rigid) connected in

an arbitrary fashion by mechanical joints that limit the relative motion between pairs of

bodies. Multibody systems contain a number of fundamental elements, which can be clas-

sified as follows:

• Rigid bodies.

• Joints that provide kinematic constraints.

• Forces: springs, dampers, actuators.

In the following subsections, we describe the types of kinematic constraints and external

forces that can be included in the mechanism (i.e., elements defined by Dynaflex) as well

as their linear graph representation. The material presented herein is for completeness only.

Its presentation will make it easier to understand Dynaflex’ representation of 3D mecha-

nisms and the algorithms to automatically derive this representation from the CAD model

(Section 4.3.2).

4.3.1.1 Kinematic constraints

To define the kinematic joints in the system uniquely, we assume that the mechanism does

not have fully constrained joints (i.e., they are not rigidly connected). If this were not the

case, then the bodies that are involved in the joint should be combined into a single rigid

body to avoid structural singularities or index problems in the resulting equations of

motion.

For a 3D mechanism with an open kinematic chain, if n is the number of bodies we will

find that there will be exactly articulated joints. With this in mind, we must make a

number of choices to appropriately specify the kinematics of a joint.

n 1–



83

1. Choice of body fixed reference frame—for each body i a body fixed refer-

ence frame must be chosen. On bodies the origin of the reference frame

must coincide with the center of mass of the body, while for the ground body

any point can be chosen as origin.

2. Choice of reference bodies—in general, the choice is arbitrary. However, we must

decide for each joint, which of the two coupled bodies is considered as the reference

body and which one is the body in motion relative to the reference body in order to find

an orientation for the edge that represents the joint in the system graph (see vector ci in

Figure 4-5).

3. Choice of articulation points—for each joint j an articulation point on each

of the corresponding bodies is defined. To isolate the effects of reaction forces on each

connected body, the joint is broken up as illustrated in Figure 4-5, where ri and rj are

two edges in the terminal graph of the joint. Their terminal equations define position

vectors in a local reference frame that identify the position of the articulation points .

Edge ci represents the joint. This edge is directed towards the body whose motion is

relative to the reference body. The terminal equations associated with edge ci are

grouped into the (rc, Fc) set of equations. The set contains the terminal

equations for relative displacement and angular velocity of the joint. The set

contains constraint forrce/torque terminal equations.

Every kinematic joint imposes forces and/or torques as well as kinematic limits on the rel-

ative motion of the connected bodies. The nature of these forces and torques provides a

classification scheme of different kinematic joints [69] among which we include the fol-

lowing.

Revolute joint. The revolute joint allows no relative displacement between the connection

points but imposes a rotational constraint such that rotation can occur only about one axis:

Equation 4-3

i 0…n=( )

i 1…n=

n 0=( )

j 1…n=( )

Ak

rc x ω,( )=

Fc F T,( )=

x 0= T û⋅ 0=

ω φ· û=



84

Where is the unit vector along the axis of rotation, and is the angular displacement

about that axis.

Prismatic joint. The prismatic joint allows no relative rotation between connected bodies

but permits relative translation along a fixed vector on one of the bodies. The terminal equa-

tions are the following:

Equation 4-4

where is a unit vector along the sliding axis, is the angular velocity associated with

the joint and s is the translational displacement of the moving body relative to the reference

body.

x

y

z

(i) (j)

(i)
(j) Fi Ti

Fj

Tj

(i) (j)

x

y

z

x

y

z

CGi

CGj

x

y

z

x

y

z

ri
rj

Ai Aj

ci = (rc, Fc)

(a)

(b)

(c)

Figure 4-5. Joint description

û φ

r sû= F û⋅ 0=

ω 0=

û ω



85

Fixed joint. The fixed joint allows neither relative rotation nor relative translation of the

connection points. This joint specifies a rigid connection between two bodies:

Equation 4-5

4.3.1.2 Forces

In Dynaflex, two types of forces are identified: those acting on a joint or on a body from an

inertial reference frame (called force driver element) and those acting between bodies (rep-

resented by spring-damper-actuator elements).

The first type of force driver, called position driver, is represented by a vector departing

from the origin of the inertial reference frame and directed towards the point of application

of the force. The second type of force driver, or joint driver, is represented by spring-

damper-actuator elements located parallel to the joint’s degree of freedom. The definition

of a joint force driver element acting parallel to a joint specifies three spring-damper-actu-

ator elements, one for each degree of freedom the joint might have.

Forces acting between bodies are represented by spring-damper-actuator elements. Gener-

ally these elements appear together as shown in Figure 4-6, thus they are incorporated in a

single spring-damper-actuator element having the following equations:

Let in Figure 4-6 be two edges of the terminal graph of the element. The ter-

minal equations associated with edges rk represent the positions of the attachment points

in the inertial reference frame. The length of the spring-damper-actuator element can

be written as:

Equation 4-6

and the time rate of change of length is then

Equation 4-7

The force vector of the spring-damper-actuator is given by

x 0=

ω 0=

rk k i j,{ }∈,

Pk

l rj ri–=

l·
rj ri–( ) r·j r·i–( )⋅

rj ri–
-----------------------------------------=



86

Equation 4-8

where k, d, F are the spring constant, damping coefficient and actuator force respectively,

is the undeformed spring length and is the unit vector that defines the direction of

the element in space.

Similarly to the translational spring-damper-actuator element, torsional spring-damper-

actuator elements may be defined between adjacent bodies that are connected by a revolute

joint. For such element the net torque can be written as

Equation 4-9

Where kr, dr, Τ are the spring constant, damping coefficient and actuator torque respec-

tively, is the undeformed spring angular displacement and is the unit vector that

defines the direction of the element in space.

4.3.1.3 Kinematic analysis of the 3D mechanism

The system graph of the mechanical system captures the topology of the mechanism. How-

ever, to have a complete model, geometric and inertial information must be added to the

topology. Work related to kinematic and geometric analysis [126] allows us to automati-

cally determine the instantaneous kinematic relationships between components in the

mechanism. This geometric analysis further provides information about the origin of the

x

y

z

(i) (j)

x

y

z

x

y

z

CGi

CGj

ri

rj

Pi Pj

dn

kn

Fn

Figure 4-6. Spring-damper-actuator element

F k l l0–( ) dl· F t( )+ +[ ] uij=

l0 uij

τ kr θ θ0–( ) drθ
· T t( )+ +[ ] uij=

θ0 uij



87

inertial frame, the center of mass of each body, the location of articulation points in each

body, the type of joint, and the points of application of internal forces.

Using a geometric kernel (ACIS) and the kinematic analysis tools developed in our group

[126], we are able to update the kinematic information in the mechanical system graph from

changes made in the CAD model. In the future, the geometric kernel can be replaced by a

commercial CAD environment. As a result, modifications to the geometry of a component

in a CAD system could be automatically updated in the corresponding simulation model.

4.3.2 Synthesis of the mechanical system graph

The process for obtaining the graph representation suitable for Dynaflex consists of three

steps. First, an extended system graph is generated. This step maps the geometry of the

mechanism directly into a linear graph representing its topology. The second step identifies

composite bodies consisting of rigidly connected subcomponents. In a final step, single

bodies replace composite bodies reducing the system graph to a minimal graph with the

same topological properties.

The generation of the extended system graph involves a direct translation of the kinematic

information into the linear graph representation. The result of this translation is a system

graph that includes all kinematic information including fixed joints and redundant joints.

However, to avoid structural singularities or index problems, and to improve the efficiency

of the symbolic computations in Dynaflex, we simplify this initial system graph by lumping

all rigidly connected bodies into a single composite body.

Algorithm A. (Synthesis of the mechanical system graph). This algorithm takes a kine-

matic description of a 3D mechanism and generates an extended system graph describing

the topology of the system. Bodies in the system are identified by integer numbers from 0

to n where the 0th body is assumed to be the ground body. Modeling elements are repre-

sented by single edge terminal graphs.

A1. Define an inertial frame of reference. Assign a node in the system graph to the origin

of the inertial frame. Call this node nd.



88

A2. For each body i in the system, assign a node ni to the center of gravity

CGi.

A3. For each body i , add a rigid body element and a force driver element

modeling the weight of the body from nd to ni.

A4. For each joint j connecting bodies k and l, assign a node nip to an articu-

lation point in body i . Assign a position vector element to each of the con-

nected bodies such that the element is oriented from ni to nip. If joint j is a

prismatic joint, a sliding vector element is assigned instead.

A5. For each joint j assign a joint element oriented from nkp to nlp where

body k is assumed to be the reference body. A restriction imposed by Dynaflex is

that a prismatic joint be represented by two elements: a sliding vector element and a

fixed joint. Thus if joint j is a prismatic joint, in addition to replacing the position

vector element by a sliding vector element we also assign a fixed joint element prop-

erly oriented.

A6. Assign a position vector element oriented from nd to n0 to specify the position of the

ground body with respect to the inertial frame.

Performing a depth-first traversal on the extended system graph identifies composite bod-

ies. The algorithm explores all paths created by rigid connections and collects all bodies

along the path into a single composite body. We can formally state the algorithm as follows:

Algorithm B. (Composite body identification). The algorithm takes as an input the sys-

tem graph and generates as output the set of composite bodies. The algorithm uses the fol-

lowing sets to keep track of all nodes in the graph: the set CLOSED, contains all nodes

already visited. The set LUMPS contains all the composite bodies in the system. OPEN is

a set containing all the nodes to-be-visited. contains the bodies to be combined into the

current composite, and SYSTEM is the set of CG nodes of the system graph.

B1. Set ,

i 0…n=( )

i 0…n=( )

j 1…n=( )

i k l,=( )

i k l,=( )

j 1…n=( )

ξ

CLOSED ∅← LUMPS ∅←



89

B2. While do

B3. Set , ,

B4. ,

B5. While do

B6. ,

B7. ,

B8. Continue B5.

B9. Set

B10. Continue B2.

B11. The algorithm terminates. We have checked all bodies in the system and have

defined the composite bodies that must be created.

Algorithm B uses the predicate successors. Given a node in the system graph, successors

returns the adjacent nodes if the path to these nodes is through a rigid connection. However,

since we want to find the path of all fixed joints we require that adjacent nodes satisfy the

condition that a node ns is a successor of node np if and only if ns is adjacent to an edge e

of type position vector or type fixed, and the edge e is incident to node np.

The last stage in the synthesis of the system graph is to perform the reduction process that

will combine the identified bodies into single composite bodies and remove redundant

joints. To find redundant joints we first need to determine those bodies that are constrained

SYSTEM ∅≠

cg first SYSTEM( )← ξ cg{ }←

OPEN sucessors cg( ) \ CLOSED←

SYSTEM SYSTEM \ cg{ }←

CLOSED CLOSED cg{ }∪←

OPEN ∅≠

cg first OPEN( )←

ξ ξ cg{ }∪←

OPEN OPEN \ cg{ }( ) sucessors cg( ) \ CLOSED( )∪←

SYSTEM SYSTEM \ cg{ }←

CLOSED CLOSED cg{ }∪←

LUMPS LUMPS ξ{ }∪←



90

by more than one joint. We do this by detecting loops in the system graph where the bodies

in the loop appear more than once. Once we have found such bodies, the next step is to

decide wether the joints that constraint these bodies are redundant or not. Revolute joints

are redundant if and only if their axes are colinear. This would result in an over constrained

mechanism for which one of the two joints can be discarded for analysis purposes. If their

axes are not colinear, either because of numerical inaccuracies or because of design intent,

the configuration represents an overconstrained body for which we cannot discard any of

the joints for analysis purposes. In this event, the algorithm reports the problem to the user

stating that the system is fully constrained. The reduction algorithm can be stated as fol-

lows:

Algorithm C. (Graph reduction). All bodies are lumped together and all their cor-

responding elements are replaced by one single rigid body element. This new element has

an attribute that specifies what individual bodies are composing this compound body. This

attribute is used to compute geometric and physical properties of the compound object.

The input to the algorithm is the system graph and the set LUMPS computed by Algo-

rithm B.

C1. Set . For replace the edges in the system graph which are

associated with the bodies in for single edges that represent the element

.

C2. Set . In this step we obtain a set of equiva-

lent joints formed by the new bodies in the new graph. This process takes the old

joint definitions and maps the constrained bodies to the lumped bodies, thus creating

new joint definitions in terms of lumped bodies.

C3. Step C2 may reveal that any two bodies are connected by more than one joint. Since

this is not allowed we must remove redundant joints. We decide which joints to

remove as follows: if any two bodies are connected by more than one joint and at

most one joint has an associated motor, we keep the actuated joint and remove the

rest. If no motors are associated with any redundant joint, we arbitrarily pick one. If

i ξ∈

n LUMPS← 1 k n≤ ≤

LUMPSk

LUMPSk

joint articulatedbodies LUMPS( )←



91

there are more than one actuated joints this is an error condition and the system is

overconstrained and cannot be solved. Set .

C4. For each jointj connecting bodies k and l, assign a node nip to an articu-

lation point in body i . Assign a position vector element to each of the con-

nected bodies such that the element is oriented from ni to nip. If jointj is a

prismatic joint, the sliding vector element is assigned instead.

C5. For each jointj assign a joint element oriented from nkp to nlp where

body k is assumed to be the reference body. If jointj is a prismatic joint, in addition to

replacing the position vector element by a sliding vector element we also assign a

fixed joint element properly oriented.

As an example of how these steps are followed consider the design of a missile seeker

shown in Figure 4-7.

m joint←

j 1…m=( )

i k l,=( )

i k l,=( )

j 1…m=( )

Housing

Gimbal ring

Camera

Pitch connector (a)

Pitch connector (b)

Yaw connector (a)Yaw connector (b)

Shaft (a)

Shaft (b)

Figure 4-7. Missile seeker



92

This design contains 9 bodies: housing, gimbal ring, camera, pitch connector (2) yaw con-

nector (2), shaft (2). A kinematic description of the system reveals that there are a number

of bodies that may be combined to form composites (Table 1).

From the kinematic description shown in Table 1, the first stage of our derivation generates

an extended system graph shown in Figure 4-8. Secondly, Algorithm B identifies the com-

posites listed in Table 2.

Finally, the reduction stage yields the following kinematic relations:

Table 1. Kinematic description for the seeker system

Type of Joint Reference body Secondary body

FIXED housing pitch connector (a)

FIXED housing pitch connector (b)

REVOLUTE* pitch connector (a) gimbal ring

REVOLUTE pitch connector (b) gimbal ring

FIXED gimbal ring yaw connector (a)

REVOLUTE* yaw connector (a) shaft (a)

FIXED gimbal ring yaw connector (b)

REVOUTE yaw connector (b) shaft (b)

FIXED shaft (a) camera

FIXED shaft (b) camera

Table 2. Composite bodies found by Algorithm B

BODY_1 shaft (b) camera shaft (a)

BODY_2 housing pitch connector (b) pitch connector (a)

BODY_3 gimbal ring yaw connector (b) yaw connector (a)

Table 3. Kinematic description for the composite bodies in the seeker

Type of Joint Reference body Secondary body

REVOLUTE BODY_2 BODY_3

REVOLUTE* BODY_2 BODY_3

REVOLUTE BODY_3 BODY_1

REVOLUTE* BODY_3 BODY_1



93

Notice that there are two revolute joints per pair of composite bodies. Kinematic analysis

reveals that the rotation axes of each pair of joints coincide. For the Dynaflex analysis, one

of the two points is removed to avoid concluding over constrained kinematics; only the

joints marked with an asterisk are considered. At the end of the reduction process, we

obtain the reduced mechanical system graph shown in Figure 4-9.

In addition to the inertial parameters and the kinematic properties, dynamic elements such

as external forces, and forces acting between any two bodies are included in Dynaflex rep-

resentation. For this example, only two force elements are introduced: e8 and e12, which

are the result of the motors built into the corresponding joints. Furthermore, we introduce

gravity forces acting on the bodies at their center of mass (e1, e3, e5) representing the

weight of BODY_2, BODY_3, and BODY_1, respectively.

n0

n1

n2

n3n4

n5

n6
n7

n9

n8

housing

gim
bal ring

camerapitch connector (a)

pitch connector (b)

ya
w

co
nn

ec
to

r
(a

)

ya
w

 c
on

ne
ct

or
 (b

)

sh
aft

 (a
)

shaft (b
)

W

RV

W: WELD joint

RV: Revolute joint

W

W

W

W

W

RV

RV

RV

Figure 4-8. Extended mechanical system graph. Only joint and body elements are shown for clarity



94

4.4 Summary

In this chapter, we defined the algorithms to automatically synthesize the system graph of

a mechatronic system. In general, the system graph is a non-connected graph in which each

connected component corresponds to an energy domain involved in the system.

It was shown that the process of generating the non-mechanical system graph involves the

topological modification of the system graph formed as a non-connected graph where each

connected component corresponds to a terminal graph. For the mechanical system graph,

it was shown that the extended graph is a direct translation of the kinematic information

into the graph representation. However, to avoid structural singularities or index problems,

this graph is further reduced to combine rigid bodies connected by fixed joints. As a last

step, the articulated redundant joints are removed from the graph to prevent Dynaflex from

considering the system to be overconstrained.

e1
e2 e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

n0

n1

n2

n3

n4

n5 n6

n7

e0

e14

e13

Figure 4-9. Reduced mechanical system graph



95

Chapter 5 Automatic
Generation of
System-level
Dynamic Equations

5.1 Introduction

A modeling environment capable of generating the dynamic equations of the system

requires the ability to determine the causality of the equations. Recall that the basic condi-

tion for composability is that the equations in the model be non-causal. Causality is defined

once the complete topology of the system is known.

Converting the system of non-causal equations into a system of causal assignments can be

divided in two major steps: first, finding the causal directions for all the equations and sec-

ond, sorting the equations into a computationally feasible order of evaluation.

Care must be taken when the system of equations includes software components; software

components have fixed causality which imposes restrictions when mixing symbolic equa-

tions and software components.



96

Finding a normal tree in the system graph causally orients the system of equations. Sorting

of the equations is performed by a modification of the classic Block Lower Triangular algo-

rithm to account for software components in the system of equations.

5.2 Algebraic properties of linear graphs

The terminal equations are insufficient to describe the mechatronic system completely. An

additional e equations are required to make the problem well-posed: 2e equations in 2e

unknowns. These additional equations are derived from the connectivity of the components

given by the topology of the system graph.

In any connected graphG, a tree T is a connected subgraph that contains all the nodes ofG

but no loops. The edges that are not part of the tree form a subgraph called cotree. For a

graph with e edges and v vertices, there are exactly branches (the edges of T). Con-

sequently, the number of chords (the edges of ) in the cotree equals .

If we add any chord between any two vertices in the tree, we establish a circuit. Since in a

connected graph there are chords for a given tree T, there are as many unique cir-

cuits defined by the chords of T. These are called f-circuits (fundamental circuits) of the

graph and an element of this set is called f-circuit.

The branches of T provide the dual of the f-circuits: the f-cutsets (fundamental system of

cut-sets). A cut-set of a connected graph is the set of edges such that the removal of these

edges from the graph leaves the graph partitioned in exactly two connected components.

The f-cutsets with respect to a tree T of a connected graph G is the set of cut-sets in

which each cut-set includes exactly one branch of T. An element of the f-cutsets is called a

f-cutset.

We now regard the system graph as two subgraphs, a spanning tree1
T and a cotree. We

can identify pairs of terminal variables with the branches of the spanning

tree and pairs of terminal variables with the chords of the cotree. If the

system graph is divided in two non-connected subgraphs by a cut including exactly one

1. A spanning tree for G is a free tree that connects all vertices in G.

T

v 1–

T e v– 1+

e v– 1+

v 1–

v 1– vT fT,( )

e v– 1+ vC fC,( )



97

branch of T and some chords, the cut is unique (i.e., an f-cutset). It is clear that for a tree T

with branches, there will be as many unique cuts; i.e., the f-cutsets of the system

graph with respect to T.

The connectivity relations of the system graph can be completely specified by means of the

augmented incidence matrix, denoted . The incidence matrix is a square matrix of dimen-

sions , where v are the vertices and e are the edges of the system graph, and it contains

information both about the orientation of edges in the graph and how they are joined to form

nodes (See “Matrix representations of linear graphs” on page 181).

In general, for a graph with p connected components, the incidence matrix is a direct sum.

A matrix M is said to be a direct sum of rectangular submatrices if for any

in M no nonzero element lies in a row or column of M associated with any of the other

submatrices [143]. The existence of a direct sum in a matrix always indicates the existence

of subgraphs; therefore, the matrices can be regarded as the incidence matrices of each

of the p connected components.

Consider the incidence matrix of a connected graph ( ) G. Since the sum of all

rows of equals zero, its rows are linearly dependent. Removing any row from will

leave linearly independent rows. We call this new matrix the reduced incidence

matrix, denoted A. From graph theory [121], we know that if T is a tree of a connected

graph G, the columns of A that correspond to the branches of the tree T constitute a

nonsingular matrix. Thus if a tree is chosen and the columns of A are properly arranged, the

matrix A can be partitioned into the submatrix AT, referring to the

branches of the tree only, and the submatrix AC, referring to the

chords or to the cotree.

Equation 5-1

Two new matrices can be defined to describe the topology of the graph. The fundamental

circuit matrix (designated B) captures the connectivity relations between circuits and

edges, and the fundamental cut-set matrix designated Q. Matrix Q captures the connectivity

between cut-sets and edges.

v 1–

A

v e×

M1 M2 …Mp, ,

Mk

Mk

A p 1=

A A

v 1–

v 1–

v 1–( ) v 1–( )×

v 1–( ) e v– 1+( )×

A AT AC
=



98

If the columns of matrix B are properly arranged matrix B can be partitioned into the

submatrix BT referring to the branches of the tree and the

submatrix BC referring to the chords of the cotree. However, since

each chord appears exactly once in any given f-circuit in the positive sense, the matrix

; i.e., a unit matrix. Then we can write

Equation 5-2

When the columns of matrix A are properly arranged such that the first columns of A

are in direct correspondence with the branches of some tree T of a graph G, an equivalent

matrix Q can be derived from A by applying row operations to A.

Matrix Q represents the fundamental system of cut-sets with respect to the tree T, and

includes the cut-sets of G in which each cut-set includes only one branch of T. Then

Equation 5-3

In Appendix A we show that the incidence matrix and the circuit matrix capture the alge-

braic properties of the associated linear graph. Specifically, Theorem A-I shows that the

across variables associated with the chords of a tree T of the system graph can be expressed

as linear combinations of the across variables associated with the branches; this equations

are referred to as fundamental circuit equations. Similarly, the through variables associated

with the branches of the tree T of the system graph can be expressed as linear combinations

of the through variables associated with the chords. This equations are referred to as fun-

damental cut-set equations.

The fundamental circuit equations and the cut-set equations of a system

graph G with e edges, v vertices and p connected components are referred to as the con-

straint equations of the system. These equations are, given by:

Equation 5-4

Equation 5-5

Terminal equations together with the constraint equations of the system constitute the

mathematical model of the system. Terminal equations represent a model of the physical

e v– 1+( ) v 1–( )×

e v– 1+( ) e v– 1+( )×

BC UC=

B BT UC
=

v 1–

v 1–

Q UT QC
=

e v– p+ v p–

vc t( ) BTv
b

t( )–=

fb t( ) QCfc t( )–=



99

characteristics of the component while constraint equations describe the topological rela-

tionships between components. It must be emphasized here that the model of each compo-

nent in a system includes both the terminal equations and the associated terminal graph: the

terminal graph only provides the topological structure of the system component while the

terminal equations provide the mathematical model of the basic operation of the compo-

nent. Together the two create a complete model that can be used in larger systems that are

more complex.

Structural analysis of the system equations is accomplished in two stages [32]. First, the

causality of each element in the system graph is determined. This procedure is called selec-

tion of the normal tree. Once a normal tree has been selected, the system equations can be

derived directly from the tree. The second stage deals with the ordering of the equations

and software components into a correct sequence of evaluation.

5.3 Selection of the normal tree

Once a mechatronic system has been described as a system graph, the dynamic equations

can be derived from the graph without the need to consider the underlying physics in each

of the energy domains. The system equations can be derived by simultaneously considering

the e terminal equations and the e independent topological constraints (cut-set and circuit

equations). The remaining questions that we will address in this section are, which topolog-

ical constraints need to be considered, and which of the two system variables (across or

through) should be the independent variable in each of the e terminal equations? Both of

these questions are answered in the normal tree selection algorithm presented in this sec-

tion.

The terminal equations plus any independent set of e constraint equations unambiguously

define the dynamics of the system. However, before these equations can be numerically

solved they must be expressed in state space form in which the derivatives of a state x are

expressed as explicit functions of the states and time:

Equation 5-6x· f x t,( )=



100

Expressing the equations of the system in this form implies using the smallest possible

number of equations (equal to the order of the system) and requires expressing the high

order derivatives as a function of low order derivatives of state variables in each equation.

This can be accomplished in the following way. Let us divide the system variables into two

groups: primary variables and secondary variables—one of each for every edge. Assume

now that in the terminal equation of an edge, the highest order derivative of the primary

variable p is expressed as a function of the secondary variable, s:

Equation 5-7

On the other hand, assume that in the constraint equations the secondary variables are

expressed as a function of the primary variables:

Equation 5-8

Then, by substituting the constraint equations (5-8) into the terminal equations (5-7), we

get a minimal set of dynamic equations of the form:

Equation 5-9

which is exactly the desired state-space representation.

The final step in the derivation of our approach is the selection of the primary and second-

ary variables. According to the fundamental circuit equations (5-4) and the fundamental

cut-set equations (5-5) the dependent variables in the constraint equations are the through

variables in the branches of the tree and the across variables in the chords of the cotree:

Equation 5-10

From equations (5-8) and (5-10), we can identify primary variables with the set of

across variables associated with the branches of a forest and the set of through

variables associated with the chords of a coforest. Similarly, the dependent variables in

equation (5-10) are identified as secondary variables of the system graph.

Based on the selection of primary and secondary variables, we can obtain dynamic equa-

tions of the form (5-9). This is achieved by selecting a tree on the system graph such that

p
n( )

f s( )=

s g p( )=

p
n( )

f g p( )( )=

fT QCfC–=

vC BTvT–=

v p–

e v– p+



101

the following two conditions are satisfied: (1) the highest order derivatives of as many pri-

mary variables as possible appear in the terminal equations as functions of secondary vari-

ables and low order derivatives of primary variables, and (2) the terminal equations contain

as few derivatives of secondary variables as possible. The tree that satisfies these two con-

ditions is called a normal tree of the system graph.

The form of the terminal equation is used to guide the selection process as follows. If an

algebraic terminal equation can be inverted, one may classify the corresponding edge as

either a branch or a chord. This implies no preferred causality on that element. If the com-

ponent is a driver, the corresponding edge will be classified depending of the type of driver.

Across drivers are confined always to the tree thus the corresponding edge will be a branch.

Through drivers are always confined to the cotree and the corresponding edge will be a

chord. That is, drivers have a predefined causality that cannot be changed: recall that the

terminal equation for a driver is an explicit function of time. Then if an across driver has a

defining function the primary variable x is completely specified for all t and

we cannot solve otherwise.

If all through drivers cannot be included in the cotree then they form a cut-set, similarly if

all across drivers cannot be included in the tree, they form a circuit. Cut-sets of through

drivers or circuits of across drivers in general violate the vertex and circuit theorems (See

Appendix A). A system graph without cut-sets of through drivers or circuits of across driv-

ers is a consistent system.

For terminal equations containing derivative terms of the terminal variables, we are inter-

ested in writing them as explicit functions of low-order derivatives and time. To achieve

this we examine which time derivatives of the terminal variables occur in the terminal equa-

tion. If the highest order derivative of an across terminal variable appears in the equation,

the corresponding edge is assigned to the tree if the topology of the system allows it. If on

the other hand the highest order derivative of a through terminal variable appears, the edge

is assigned to the cotree. This preferred assignment of causality results in a set of ordinary

differential equations written in canonical form.

x t( ) f t( )=



102

Preferred causality, however, is not always achievable. This may be because of the viola-

tion of the fundamental property of a tree of a system graph; if introducing a new edge into

the tree creates a cycle the edge cannot become a branch and therefore it must be confined

to the cotree. This implies that the associated terminal equation cannot be written in canon-

ical form, which means that the system of differential equations is structurally singular; i.e.,

it has lost one degree of freedom. A common example that reflects this is that of two capac-

itors in parallel. In that system, we have two differential equations but only one degree of

freedom.

Elements in the system graph are classified as follows. If in the terminal equation of the

element the term occurs, element i is called nth-order accumulator element.

Similarly if occurs in the terminal equation, element i is called nth-order delay

element. If element i does not correspond to either an across driver or a through driver, and

neither nor occur, we call the element i an algebraic element.

This classification of elements is useful only for two-terminal elements. Multiterminal

components that have terminal equations, which can be written in the form given in

Equation 5-11 (i.e., ideal transducers) present topological restrictions that must be taken

into account [109].

Equation 5-11

The issue here is to decide whether the element that corresponds to v1 and f1 or the element

that corresponds to v2 and f2 should be confined to the forest. Both elements cannot be on

the forest because Equation 5-11 expresses v1 in terms of v2 and f1 in terms of f2, and we

must avoid doubly specifying across or through variables. Since the topological restrictions

on elements whose terminal equations have this form are very similar to those regarding

d
n
vi t( ) dt⁄

d
n
fi t( ) dt⁄

d
n
vi t( ) dt⁄ d

n
fi t( ) dt⁄

h111 td
d

h110+ 0

0 h221 td
d

h220+

v1

f2

0 k121 td
d

k120+

k211 td
d

k210+ 0

f1

v2

g1 t( )

g2 t( )
+=



103

the locations of across and through drivers, we classify the corresponding elements as gen-

eralized drivers.

The choice of what element is confined to the forest is arbitrary since in principle both can

be confined to the forest. However, a decision is made by looking at the global topology of

the system to consider the interactions between the multiterminal component and other ele-

ments in the system graph. To illustrate this, consider element e1 and element e2 composing

a multiterminal component with terminal equations of the form of Equation 5-11 (Figure

5-1). Assume that element e1 is connected to an across driver. Expanding Equation 5-11 we

observe that the highest derivative of element e1 is the derivative of its across variable (v1);

Therefore element e1 can be considered an accumulator element.

Equation 5-12

Consequently, element e1 should go into the tree such that its terminal equation expresses

the derivative of the across variable (v1) as a function of the exogenous variables. However,

since the across driver must go to the tree, adding element e1 to the tree creates a loop, as

is illustrated in Figure 5-1, which violates the tree property rendering the system graph

inconsistent. Therefore, element e1 must go to the cotree. Once we decided that element e1

must go into the cotree, its complementary element (i.e., element e2) must go into the forest.

The global topological structure of the system graph constrained element e1 to be confined

into the coforest. Had we only considered the local topology, element e1 could have been

assigned to the tree. However, from the global perspective that choice is not valid.

Multiterminal components for which the terminal equations cannot be written in the form

of Equation 5-11 (i.e., non-ideal transducers) need to be classified following the rules pre-

sented in this section to classify two-terminal elements. That is, we must consider the form

of each terminal equation based only on the terminal variables associated with the element.

h111 td

dv1 h110+ v1 k121 td

dv2 k120+ v2 g1 t( )+=

h221 td

df2 h220+ f2 k211 td

df1 k210+ f1 g2 t( )+=



104

Each element has two variables associated with it, namely , and . For each termi-

nal equation, we look for the highest order derivative of the terminal variables and classify

the element accordingly. If there are no derivative terms of the terminal variables, we call

this element an algebraic element. If on the other hand, the terminal equation associated

with the element can be written such that a terminal variable (either or ) can be

written as an explicit function of the terminal variables , we call this com-

ponent a generalized driver. Therefore, an element i will be considered a generalized driver

if either its across or through variable is completely defined by the complementary vari-

ables of the elements of the multiterminal component. In the case of multiterminal

components coupling different energy domains, the terminal variable of element i is com-

pletely defined outside its energy domain (i.e., exogenous variables).

For example, consider the following terminal equations for a DC motor where the induc-

tance L and the inertia of the rotor J have been omitted to create a simpler model:

Equation 5-13

We classify the element associated with the electrical domain (first row in Equation 5-13)

as algebraic since both terminal variables v and i appear in algebraic form. Similarly, the

element associated with the mechanical domain (second row in Equation 5-13) is classified

as a first order accumulator element since the angular velocity appears in the equation. If

on the other hand, we had considered in the equation for the electrical domain, we would

have concluded that the element is a first order accumulator. However, in this case we

Figure 5-1. Assignment of elements in a multiterminal component.

e1 e2e0

v0 g t( )=

vi t( ) fi t( )

vi t( ) fi t( )

vj t( ) fj t( ), j i≠∴

j i≠

v1 t( )

T2 t( )

R1i1 t( ) kbθ· 2 t( )+

κmi1 t( )– B2θ· 2 t( )+
=

θ· 2



105

would be saying that the equation of the electrical domain could be used to compute the

angular velocity of the rotor, but we also have a way of computing the angular velocity of

the rotor by using the terminal equation of the mechanical domain. This results in a double

specification of the angular velocity of the rotor:

Equation 5-14

Giving a single equation in three unknowns. Furthermore, if the damping factor B2 is

neglected we have

Equation 5-15

which forces us to classify the element assigned to the mechanical domain as a generalized

through driver since the torque is completely specified outside the mechanical domain.

This taxonomy of elements is used in guiding the selection of the normal tree. The follow-

ing section presents an extension to the method presented by Roe to find a normal tree. This

suffers from the problem of finding and comparing subgraphs in larger graphs (i.e., sub-

graph isomorphism) making it excessively complex. The subgraph isomorphism problem

is an important problem in complexity theory and it is known to be NP-complete [128]. In

Section 5.3.2, we present an algorithm to find the normal tree based on the minimum cost

spanning tree (MCT) algorithm. The total running time of MCT algorithm is

where ne is the number of edges in the system graph [27].

5.3.1 Extension to Roe’s method

The approach that follows to find a normal tree is an extension of Roe’s method to find a

normal tree. The original algorithm can only accept first-order derivative elements and

algebraic elements. We have extended this algorithm to work with higher-order derivative

elements as well as with multiterminal components.

1. We start by selecting a subgraph G1 of G consisting of all across drivers and general-

ized across drivers. Select a tree T1 in G1. Note that for a solution to exist,

since it is assumed G1 contains no circuits.

kb T2 t( ) κmi1 t( )+( ) B2 v1 t( ) R1i1 t( )–( )=

v1 t( )

T2 t( )
R1i1 t( ) kbθ· 2 t( )+

κmi1 t( )–
=

O ne n2 elog( )

T1 G1=



106

2. Consider a subgraph G2 of G containing all elements of G1 and all nth order accumula-

tor elements. Select a tree T2 of G2 containing T1. Cotree T2’ contains at most nth order

across elements, i.e., those that cannot be included in the tree.

3. Consider subgraphs where G3 includes (n-1)-th order accumulator ele-

ments, G4 includes (n-2)-th order accumulator elements and so on until includes

first order accumulator elements. Subgraphs are selected such that

. Select trees such that

4. Consider a subgraph containing all elements of and all dissipative ele-

ments. Select a tree such that .

5. Consider subgraphs such that and also

includes all nth order delay elements, and also includes all (n-1)-

th order delay elements, and which also includes all first

order delay elements. Select trees in Gi such that

. Since we prefer that all delay elements be

in the coforest we have .

6. Consider a subgraph GN that includes all elements of and all through drivers

and generalized through drivers, i.e., the entire graph G. Select a tree TN which includes

. For a solution to exists, this graph must not contain cut-sets of through driv-

ers. Also we require that the through drivers be in the coforest so we have

This systematic selection process will produce a normal tree where a maximum number of

accumulator elements are assigned to the tree and a maximum number of delay elements

are assigned to the cotree. However, there may be the case that the topology of the system

requires accumulator elements to be assigned to the cotree or delay elements to be assigned

to the tree. This poses no problem in the selection of the normal tree. However in the deri-

vation of the state equations this would mean that the system presents a structural singular-

ity and that the system is of lower order. The effect that this has on the formulation of state

equations as we will see in the next section is that not all the dynamic elements contribute

to the state variable vector.

G3 … Gnα
, ,

Gnα

G3 … Gnα
, ,

G1 G2 G3 … Gnα
⊂ ⊂ ⊂ ⊂ T1 T2 T3 … Tnα

⊂ ⊂ ⊂ ⊂

G nα 1+( ) Gnα

T nα 1+( ) Tnα
T nα 1+( )⊂

G nα 2+( ) … G nα nδ+( ), , G nα 1+( ) G⊂
nα 2+( )

G nα 2+( ) G⊂
nα 3+( )

G nα nδ 1–+( ) G⊂
nα nδ+( )

Tnα
T nα 1+( ) T nα 2+( ) … T nα nδ+( )⊂ ⊂ ⊂ ⊂

T nα 1+( ) T nα 2+( ) … T nα nδ+( )= = =

G nα nδ+( )

T nα nδ+( )

T nα 1+( ) T nα 2+( ) … T nα nδ+( ) TN= = = =



107

Although the algorithm presented here is suitable for automatization, it has some draw-

backs. Finding a subgraph that contains a set of specified elements is a complex process

that requires subgraph isomorphism. A simpler algorithm based on the classification crite-

ria presented earlier, can be devised.

5.3.2 Selection of the normal tree: minimum cost spanning tree

The algorithm, based on the minimum-cost spanning tree [5, 27] presents an improvement

over Roe’s algorithm since there is no need to find subgraphs of the system graph. This

algorithm is based on the fact that it is always possible to find a spanning tree in a weighted

graph having minimum total cost [5].

Algorithm D. (Normal tree). The normal tree of a system graph G is found by defining a

real function on the edges of G that computes the weight of the edges as fol-

lows:

Let and represent the highest derivative order of all accumulator elements and all

delay elements respectively, and be a real function defined on the edges that

computes the highest derivative order of the element associated with edge e. Next, classify

the edges of G as follows. Let all across drivers and generalized across drivers belong to

the class , accumulator elements to the classes

, Equation 5-16

dissipative elements to class , and delay elements to the classes

. Equation 5-17

Finally, all through drivers and generalized through drivers will belong to class . The

weight functions w defined on the edges of G are chosen for each class such that

Equation 5-18

where is the weight function associated with class , is the weight function asso-

ciated with class , is the weight function associated with class , is the weight

function associated with class , and is the weight function associated with class .

w: e ℜ +→

κα κτ

O:e ℜ +→

c∆

ci
α eα O eα( ) κα i–={ }= i 0 … κα 1–, ,=

cδ eδ O eδ( ) 0={ }=

ci
τ eτ O eτ( ) κτ i–={ }= i 0 … κτ 1–, ,=

cΦ

w∆ w0
α w1

α … wκα 1–
α wδ w0

τ w1
τ … wκτ 1–

τ wΦ< < < < < < < < <

w
∆

c
∆

wi
α

c
α

wi
δ

c
δ

wi
τ

c
τ

wi
Φ

c
Φ



108

In other words, the weight function w ranks the edges of G based on their respective classes.

Any weight function that satisfies the ranking in equation (5-18) is admissible.

The next step in our approach is to find a minimum cost spanning tree that minimizes the

total cost (weight) of the weights assigned to the branches of the tree. Aho et. al. [5] shows

that it is always possible to find such a tree based on the following property. Let V be the

set of vertices of G and U be a proper subset of V. If is an edge of lowest

cost such that and , then there is a minimum cost spanning tree that

includes . The proof of this property is outside the scope of this thesis but can be found

in Aho et. al. [5]

The weight assignment is performed only one time and it has order where e is the

number of edges. The worst-case performance for the minimum-cost spanning tree algo-

rithm is where nv is the number of nodes in the graph. However, it can be made to

run in when efficient data-structures are used to represent the graph [27]. This

algorithm will perform much better than that based on the selection of subgraphs of the

system graph.

Once a normal tree has been selected, we can write e cut-set and circuit equations, and e

terminal equations. The constraint equations together with the terminal equations constitute

the set of equations for the complete solution of the mechatronic system excluding the

mechanical energy domain. To completely specify the mechatronic system, these equations

are combined with the dynamic equations for the 3D mechanism derived by Dynaflex. This

new set of equations will be in general a set of differential algebraic equations (DAE),

which constitute the set of equations for the complete system.

The MCT algorithm requires as a precondition that the graph is connected. In general the

system graph G of a mechatronic system is non-connected. If that is the case, the problem

would be to find a normal forest1 and MCT could not be directly applied toG. One solution

approach is to apply the MCT algorithm to each component inG independently. This would

1. A normal forest is defined to be a set of normal trees for each connected subgraph of G

emin u v,( )=

u U∈ v V U–∈

emin

O e( )

O nv
2( )

O ne n2 elog( )



109

find a normal tree for each connected component that would comprise the resulting normal

forest.

5.4 Synthesis of system level dynamic equations

This section introduces an algorithm to automatically formulate the state space equations

for a mechatronic system. Given a normal tree T of the system graph G derived by the algo-

rithm presented in the previous section. The algorithm presented here is based on the

branch-chord method to formulate state equations proposed by Roe [109].

Algorithm E. (Equation synthesis). The algorithm takes as input a normal tree and

returns the set of dynamic equations of the system. Once the normal tree is selected, the

state variables of the system can be readily identified: they are the across variables corre-

sponding to the branch nth order accumulator elements, and the through variables corre-

sponding to the chord nth order delay elements.

E1.For all elements in G write the terminal equations such that they show primary vari-

ables as explicit functions of secondary variables and derivatives.

E2.Write the set of topological constraint equations for the system which are the cut-set

and circuit equations derived from G. At this point we have equations in

unknowns.

E3.Apply Algorithm F to reduce this number of equations to a set of m nth order differen-

tial equations where m equals the number of state variables in the system.

The reduction process is as follows:

Algorithm F. (Reduction). The algorithm takes as input a set of 2e equations and returns

a minimal system of m nth order differential equations.

F1. Substitute the constraint equations into the terminal equations to eliminate branch

through and chord across variables. This will leave the terminal equations as a function

of primary variables only.

2e 2e



110

F2. Eliminate the algebraic relations from the resultant set of terminal equations. To easily

identify which equations to use in the reduction process, the set of equations obtained

in F1 is now partitioned into three subsets: set A contains all equations that include dif-

ferential terms of primary variables. Set B contains equations which specify across and

through drivers, and set C contains equations which can be solved algebraically for pri-

mary variables.

F3.The system of algebraic equations in set C is then solved for the primary variables.

F4.The solution to the system of algebraic equations together with the equations in set B

are substituted in the set of differential equations. This will produce a set of differential

equations as functions of primary variables (and their derivarites) of dynamic elements

and the specified drivers.

F5.The differential equations obtained in F4 are then rearranged in canonical form to

obtain the desired state space equations.

5.5 BLT form

The set of equations obtained in the previous section is causally oriented, however, no com-

putational order of evaluation is given for the set. In this section, we explore a method to

find a computational order for the set of dynamic equations, and show how to incorporate

the software components in the solution of such equations.

We seek a form in which the system equations are given as a sequence of blocks of one or

more equations. In this form, the state derivatives and the algebraic variables are unknowns.

The equations are all first-order differential and algebraic equations. Each block can be

solved as a separate problem assuming all previous blocks are solved. Therefore, what we

seek is a Block Lower Triangular (BLT) order of the system equations [37, 38, 39, 130,

131, 138, 150]. The BLT form is a permutation of equations and unknown variables so that

the structural incidence matrix of the system equations is triangular or block triangular. The

incidence matrix is a square matrix where rows represent equations and columns represent



111

unknown variables. It indicates what variables appear in each equation (Figure 5-2). In this

form, the state derivatives and the algebraic variables are regarded as unknowns.

The BLT form partitions the set of equations into k blocks of order nk where nk is the

number of unknown variables to solve for in the subsystem of nk equations. Equations and

software components are sorted such that variables appearing in the equations within each

block are either unknowns of the same block or variables solved from previous blocks.

To introduce software components into the incidence matrix we first define two functions

associated with each software component (Figure 5-3):

Equation 5-19

That is, a software component will have an operator that computes its outputs and one that

computes its derivatives. The unknown variables of the software component are the inputs

given in the input vector u. If the output function depends on the input

vector u, the software component is classified as algebraic; otherwise, it is classified as

non-algebraic. This property determines when the software component should be sched-

uled for evaluation and will be used when we introduce the software component to the inci-

dence matrix.

Before we generate the BLT form, the system equations are augmented with equations of

the form:

e1

e2

em

v1 v2 vm. . .

..
.

Figure 5-2. Illustration of a BLT form. Black regions indicate that the variable appears in the equation.
White areas indicate that the variable does not appear in the equations while gray areas indicate that

variables may or may not appear in the equation.

x· fd t x u, ,( )=

y fo t x u, ,( )=

y f0 t x u, ,( )=



112

Equation 5-20

In addition, all occurrences of references to software components in the system equations

are replaced by the yi variables. In this way, every software component is executed at most

once in the evaluation of the dynamic equations. The result of this substitution is a system

of equations (5-21) where v represents the algebraic variables of the system.

Equation 5-21

Where and is the state vector of the dynamic equations. In this new system

of equations, some of the equations are explicit assignments to state derivatives; others are

assignments to algebraic variables. The third type of equations includes those introduced

by the software components. For any equation of this kind, some of the unknown variables

will appear as inputs to the function . We call that subset of variables the

dependency set for the software component.

Entries in the incidence matrix indicate whether a variable appears or not in a given equa-

tion. However, variables in the dependency set need to be treated in a special way. If the

software component is algebraic, the variables in the dependency set are treated as ordinary

variables, that is, the equation yi related to the algebraic software component depends on its

inputs. If on the other hand the software component is non-algebraic, the output function

does not depend on the input variables and they are not considered in the inci-

dence matrix. The BLT form orders the output functions of the software components only;

the derivative function is evaluated at the integration stage.

Given the correct order of evaluation for the system equations that include software com-

ponents, we can evaluate them numerically using the following iteration at each major and

x
states

u
(inputs)

y
(outputs)

Figure 5-3. Software component.

yi t( ) fo t x u, ,( )=

xi
·

f1 i, x x· y v, , ,( )=

vi f2 i, x x· y v, , ,( )=

yi fo i, x x· u, ,( )=

u v x̂= x̂

fo i, x x· u, ,( )

fo i, x x· u, ,( )



113

minor integration step (Figure 5-4). We first evaluate the BLT that will compute the

unknown derivatives and the values of unknown variables. In doing so, we evaluate the

output operators of the software components. Finally, we proceed to evaluate the derivative

operators of the software components. Since the variables that are computed by equations

together with the output variables of the software components are known, all inputs to the

derivative operators for the software components are ready and can be evaluated to com-

plete the evaluation of the vector of derivatives. This is executed every minor/major inte-

gration step.

If the simulation kernel supports distributed processing, we may be able to evaluate the

output operators of software components given in the BLT form or the derivative operators

in parallel on different computers. This provides the ability to run legacy software even in

different architectures, in remote computers.

5.6 Example: positioning system

To illustrate these concepts, we will use the following example: a positioning system. This

system involves two energy domains: electrical and mechanical, and includes information

technology components. The system graph consists of a digital controller, a DC motor, gear

box, shafts, rotating inertia and angular position sensors (potentiometers) as illustrated in

Figure 5-5.

Evaluate BLT schedule

Evaluate derivatives

integration
step

Compute BLT schedule

Figure 5-4. Single iteration to evaluate the system equations



114

The terminal equations for the different components in the mechatronic system are given

by:

Table 5-1. Terminal equations for the components in the positioning system

Domain Component Edge Terminal equation

Electrical Sensor 11

DC motor 7

Current driver 10

Variable driver 9

Mechanical Sensor 0

DC motor 8

Gear train 5, 6

Inertia 1

Shaft 3

4

Damper 2

5

1
2

3

4

6 7 8

9

3

Controller

v9
R7,L7

N5

N6

K3 K4

B2

J1
Shaft

Rot. Inertia

Rot. Damper

Sensor

Shaft

θ8

θ0

vREF

Figure 5-5. Positioning system

v11 t( ) θ0 t( )R11i11 t( )
θm

----------------------------------=

v7 t( ) kmθ· 8 t( ) R7i7 t( ) L7 td
d i7 t( )+ +=

i10 t( ) I t( )=

v9 t( ) fout v11 t( ) vREF t, ,( )=

T0 t( ) b0θ· 0 t( )=

T8 t( ) b8θ· 8 t( ) J8θ·· 8 t( ) kmi7 t( )–+=

T5 t( )

θ6 t( )

b5 td
d

J5 t

2

d
d

+
N5

N6
------

N5

N6
------– 0

θ5 t( )

T6 t( )
=

T1 t( ) J1θ··1 t( )=

T3 t( ) K3θ3 t( )=

T4 t( ) K4θ4 t( )=

T2 t( ) b2θ· 2 t( )=



115

The system graph for the mechatronic system is shown in Figure 5-6. Two coupling ele-

ments are used: the DC motor that couples the electrical domain to the mechanical domain,

and the sensor that couples the mechanical domain back to the electrical domain. A signal-

controlled voltage driver will model the controller. Following the classification rules

defined before, the elements in the system graph fall in the following classes:

Table 5-2. Classification of elements in the positioning system

Edge Class Weight

0 first order accumulator

1 second order accumulator

2 first order accumulator

3 algebraic element

4 algebraic element

5 second order accumulator

6 generalized across driver

7 first order delay

8 second order accumulator

1

2

3

4 5 6 7 8

93

e1

e2e3 e4

e5
e6

e7
e8

e9

e10e11

e0

v(t)vREF

Controller

Figure 5-6. System graph for the positioning system.

w0

w1

w2

w3

w4

w5

w6

w7

w8



116

where the weights are selected such that

Equation 5-22

Within the electrical domain, the sensor represented by element 11 is classified as an alge-

braic element since its two terminal variables only appear algebraically in the equation. On

the other hand, element 7 is classified as a first order delay element since its through vari-

able appears differentiated in the terminal equation. In the mechanical domain however,

element 6 representing the gear train is classified as a generalized across driver. This is

because the value of is determined by . If we had neglected the dynamics of the

gear train, we would have an ideal transducer of the form given by Equation 5-11 and we

could have made the opposite choice. From Algorithm D, we obtain the forest containing

edges leaving edges in the coforest as shown in

Figure 5-6 in bold lines.

Having selected a normal forest, we proceed with the derivation of the topological matrices,

which are given by the incidence matrix , the fundamental cutset matrix Q, and the fun-

damental circuit matrix B as follows:

Equation 5-23

9 signal-controlled across driver

10 through driver

11 algebraic element

Table 5-2. Classification of elements in the positioning system

Edge Class Weight

w9

w10

w11

wi

w9 w6 w8 w1 w5= =( ) w0 w2=( )
w3 w4 w11= =( ) w7 w10

< < < <
< <

θ6 t( ) θ5 t( )

0 1 2 6 8 9 11, , , , , ,{ } 3 4 5 7 10, , , ,{ }

A

A

1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

1– 1– 1– 1– 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0 1–

0 0 0 0 0 0 0 1– 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1– 0

0 0 0 0 1– 1– 1– 0 1– 1– 0 0

=



117

Equation 5-24

Equation 5-25

Once a suitable formulation forest has been selected, the columns of the incidence matrix

for each energy domain are arranged to include the branches of the defining tree as the first

columns. Similarly, the columns of the circuit matrix for each energy domain are

arranged to include the chords of the defining tree as the last columns. This order-

ing is necessary since we know that the submatrix of the incidence matrix given by the

branches of the tree is non-singular. Furthermore, we also notice that since the system graph

is not connected, the incidence matrix is a direct sum. Therefore, the columns in each

submatrix are arranged so that the branches come first and then the chords of each tree in

the forest.

Now we proceed to write the terminal equations of the elements in the system. Since we

already have a normal forest, they can be written in maximal form; i.e., a maximum number

of equations with derivatives of primary variables written as explicit functions of secondary

variables, as well as algebraic equations written as explicit functions of secondary vari-

ables. This selection results in the following terminal equations:

Q

1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 1 1–

0 0 0 0 0 0 0 1 0 0 1– 0

0 0 0 0 0 0 0 0 1 0 1– 0

=

B

1– 0 1 0 0 0 0 0 0 0 0 0

0 1– 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1– 0 0 0 0 1 0 0

0 0 0 0 0 0 1– 1 1 0 1 0
0 0 0 0 0 1– 1 0 0 0 0 1

=

v 1–

e v– 1+

A



118

Equation 5-26

The constraint equations for this system can be written from the cuset (Q) and circuit (B)

matrices obtained from the system graph as follows:

Equation 5-27

This set of 24 equations in 24 unknowns represents a necessary and sufficient set of equa-

tions for the mechatronic system. At this point, we start the reduction process to find a set

of five ODEs as indicated by the selected forest. We now proceed to substitute the con-

straint equations into the terminal equations for the elements to obtain the branch-chord

equations

v11 t( ) θ0 t( )R11i11 t( )
θm

----------------------------------= i10 t( ) I t( )=

v9 t( ) fout v11 t( ) vREF t, ,( )=
td

d i7 t( )
v7 t( ) kmθ· 8 t( )– R7i7 t( )–

L7
------------------------------------------------------------=

θ· 0 t( )
τ0 t( )

b0
-----------= τ5 t( ) b5θ· 5 t( ) J5+ θ·· 5 t( )

τ6 t( )N5

N6
------------------+=

θ·· 8 t( )
τ8 t( ) b8θ· 8 t( )– kmi7 t( )+

J8
------------------------------------------------------------= τ3 t( ) K3θ3 t( )=

θ6 t( )
N5

N6
------– θ5 t( )= τ4 t( ) K4θ4 t( )=

θ··1 t( )
τ1 t( )

J1
-----------=

θ· 2 t( )
τ2 t( )

b2
-----------=

v7 t( ) v9 t( )= i9 t( ) i7 t( )=

v10 t( ) v11 t( )= i11 t( ) i10 t( )–=

θ5 t( ) θ8 t( )= τ8 t( ) τ– 5 t( )=

θ4 t( ) θ1 t( ) θ2 t( )– θ0 t( )–= τ6 t( ) τ3 t( )–=

θ3 t( ) θ6 t( ) θ1 t( )–= τ1 t( ) τ3 t( ) τ4 t( )–=

τ2 t( ) τ4 t( )=

τ0 t( ) τ4 t( )=



119

Equation 5-28

Next, we build the system of algebraic equations (Equation 5-29) and solve it for the alge-

braic variables

Equation 5-29

obtaining

v11 t( ) θ0 t( )R11i10 t( )
θm

----------------------------------–= i10 t( ) I t( )=

v9 t( ) fout v11 t( ) vREF t, ,( )=
td

d i7 t( )
v9 t( ) kmθ· 8 t( )– R7i7 t( )–

L7
------------------------------------------------------------=

θ· 0 t( )
τ4 t( )

b0
-----------= τ5 t( ) b5θ· 8 t( ) J5+ θ··8 t( )

τ3 t( )N5

N6
------------------+=

θ··8 t( )
τ– 5 t( ) b8θ· 8 t( )– kmi7 t( )+

J8
---------------------------------------------------------------= τ3 t( ) K3 θ6 t( ) θ1 t( )–( )=

θ6 t( )
N5

N6
------– θ8 t( )= τ4 t( ) K4 θ1 t( ) θ2 t( )– θ0 t( )–( )=

θ··1 t( )
τ3 t( ) τ4 t( )–

J1
-----------------------------=

θ· 2 t( )
τ4 t( )

b2
-----------=

v11 t( ) τ5 t( ) θ6 t( ) τ3 t( ) τ4 t( ), , , ,

v11 t( ) θ0 t( )R11i10 t( )
θm

----------------------------------–= τ5 t( ) b5θ· 8 t( ) J5+ θ··8 t( )
τ3 t( )N5

N6
------------------–=

θ6 t( )
N5

N6
------– θ8 t( )= τ3 t( ) K3 θ6 t( ) θ1 t( )–( )=

τ4 t( ) K4 θ1 t( ) θ2 t( )– θ0 t( )–( )=



120

Equation 5-30

The solution to the system together with the equations defining across drivers are substi-

tuted in the differential equations to obtain the state space equations:

Equation 5-31

Equation 5-31 includes the output function (fout) associated with the controller. In this case

the output function is algebraic since it depends on the inputs to the component (i.e., the

controller). To determine the computational order of the equations in Equation 5-31, first,

we rewrite the system of 2nd order differential equations as a system of first order differ-

ential equations as given by Equation 5-21. With this new set of equations, the BLT form

can be obtained.

v11 t( ) θ0 t( )R11i10 t( )
θm

----------------------------------–=

θ6 t( )
N5

N6
------– θ8 t( )=

τ3 t( )
K3 N5θ8 t( ) N6θ1 t( )+( )–

N6
-----------------------------------------------------------=

τ4 t( ) K4 θ1 t( ) θ2 t( )– θ0 t( )–( )=

τ5 t( )
N6

2
b5θ· 8 t( ) J5+ θ·· 8 t( )( ) N5K3 N5θ8 t( ) θ1 t( )N6+( )+

N6
2

----------------------------------------------------------------------------------------------------------------------------=

θ· 0 t( )
K4 θ1 t( ) θ2 t( )– θ0 t( )–( )

b0
-------------------------------------------------------------=

td
d i7 t( )

fout

θ0 t( )R11I t( )
θm

------------------------------– vREF t, , 
  kmθ· 8 t( ) R7i7 t( )––

L7
-------------------------------------------------------------------------------------------------------------------=

θ·· 8 t( )
b5 b8+( )θ· 8 t( )

J8 J5+
-----------------------------------–

N5K3 N5θ8 t( ) θ1 t( )N6+( ) kmi7 t( )N6
2

–

J8 J5+( )N6
2

---------------------------------------------------------------------------------------------–=

θ··1 t( )
K3 N5θ8 t( ) N6θ1 t( )+( )–

N6J1
-----------------------------------------------------------

K4 θ1 t( ) θ2 t( )– θ0 t( )–( )
J1

-------------------------------------------------------------–=

θ· 2 t( )
K4 θ1 t( ) θ2 t( )– θ0 t( )–( )

b2
-------------------------------------------------------------=



121

5.7 Summary

The normal tree of the system graph provides the means to find a causal orientation for the

system of equations. In this chapter, we showed that an efficient way of finding such a tree

is by converting the problem to that of finding the minimum cost spanning tree of a

weighted graph.

Additionally, when the design uses software components, we presented a method that com-

bines the symbolic description of the dynamic equations with the software components. We

also pointed out the importance of properly classifying the software components to obtain

a consistent BLT form that can be used in simulation.



122

Chapter 6 Reconfigurable
models of
mechatronic
systems

6.1 Introduction

A generally accepted approach of evaluating designs is by using virtual prototyping. With

virtual prototyping, the designer can evaluate designs without building physical prototypes.

Virtual prototyping is a useful approach to improve the design process; however, to take

full advantage of the benefits of this technique, design tools must integrate analysis tools

transparently to the designer.

In addition to being integrated with the design tools, analysis tools must also support the

evolutionary nature of the design process. Since the design process is dynamic, the behav-

ioral descriptions provided by these tools need to be easily adjustable to changes in the

design. The reconfigurable models described in this chapter are a step toward providing

such flexible behavioral descriptions.



123

The modeling paradigm presented in this thesis, allows the designer to model systems in a

hierarchical fashion. Initially, a system can be described by high-level components and the

interactions between them. The models of the high-level components can then be refined

iteratively without having to modify the system-level model description. As a result, the

system model can be incrementally adapted as more detailed design features become

known. This is in contrast to most currently available modeling environments in which a

small change in the system description may require a large change in the model structure.

6.1.1 Related work

To provide simulation support to the mechatronic design approach, we need modeling tools

that capture system behavior across energy domains. In recent years, a number of modeling

languages have emerged that capture mathematical models of mechatronic systems. These

languages are based on object-oriented principles, and include Dymola [41], OMOLA [9],

NMF [118], and—more recently—Modelica [47] and VHDL-AMS [60].

Although these modeling languages are object oriented in nature, they do not permit the

model structure to be easily modified. Instead, only mechanisms for parameter reconfigu-

ration are provided. Given the evolutionary nature of the design process, it would be desir-

able to accommodate reconfiguration of the model structure also.

In de Vries’ work with polymorphic models (the MAX system), he suggests an approach

to achieve structure configuration [146]. His polymorphic models are similar to our concept

of reconfigurable models; however, they present the following limitations:

• An instance of a model is considered an implementation. This forces a new type to be

defined for each new set of parameter values for an implementation.

• Models are represented by bond graphs, which limits their applicability to lumped

parameter systems.

To overcome such limitations, we propose a system representation based on two concepts

(introduced in Chapter 2): interface and implementation. In this model representation, sys-

tems are described from a systems engineering point of view where subsystems interact

with their environment through energy exchange. The interface of a system describes the



124

interaction through a set of ports. The implementation, on the other hand, describes a sys-

tem’s internal behavior. The interface and implementation together define a complete

model of a system. A direct consequence of this new representation is that it is possible to

assign different implementations to the same system interface, thereby achieving reconfig-

urability of models. We call system models that are based on this modeling paradigm

reconfigurable models.

The proposed system model has the following characteristics:

• It supports the definition of systems whose behavior is defined by both energy

exchange and signal flow.

• It provides for gradual refinement of models.

6.1.2 What is a reconfigurable model?

Model reconfiguration is based on two principles: composition and instantiation. Compo-

sition is the mechanism that allows us to specify a model of a device from a collection of

building blocks, while instantiation performs the realization of individual building blocks.

To illustrate the idea, consider an electric DC motor. The model of this device is commonly

expressed as a set of equations:

Equation 6-1

However, looking at the energy transformation properties of this machine [64], namely, the

conversion of electrical energy into mechanical energy, a finer decomposition based on

energy balance can be achieved. In this decomposition the interaction of each subcompo-

nent is established and well defined. Figure 6-1 shows the decomposition of the electric

machine into three components: electrical system, coupling field and mechanical system

where:

• WE: total energy supplied by the electrical source.

τ ki bθ·+=

v Ri L
td

di
kθ·+ +=



125

• WM: total energy supplied by the mechanical source.

Then the energy distribution law can be expressed.

Equation 6-2

where

• WeS: energy stored in the electric or magnetic fields which are not coupled with the

mechanical system.

• WeL: heat losses associated with the electrical system. These loses occur due to the

resistance of the current carrying conductors as well as the energy dissipated from these

fields in the form of heat due to hysteresis, eddy currents and dielectric losses.

• We: energy transferred to the coupling field by the electrical system.

• WmS: energy stored in the moving member and compliances of the mechanical system.

• WmL: energy losses of the mechanical system in the form of heat.

• Wm: energy transferred to the coupling field.

If we define WF as the total energy transferred to the coupling field then:

Figure 6-1. Energy-based block diagram of an electric motor.

∑ ∑ ∑+

-

+ + +

- -

-

-

-

WM

WeL

WeS

We

WfL

Wf

Wm

WmL

WmS

WE

electrical system coupling field mechanical system

WE We WeL WeS+ +=

WM Wm WmL WmS+ +=



126

Equation 6-3

where

• Wf: energy stored in the coupling field.

• WfL: energy dissipated in form of heat due to losses within the coupling field.

The electromechanical system must obey the law of conservation of energy:

Equation 6-4

An energy-based system decomposition for an electric motor consists of three basic build-

ing blocks, each representing one subsystem of the machine. This decomposition represents

the general behavior of an electric motor where each subsystem can be described in its most

general terms with no reference to the underlining equations that rule its dynamics. That is,

at this level of description we are interested only in the fundamental building blocks and

how they interact with each other. The specifics of each subsystem are introduced later

when information about the experiment is available. For example one experiment may

require the model of the machine to consider how the total magnetic flux of the field coil

affects the torque of the motor. This can be captured by a model of the coupling field such

as:

Equation 6-5

which specifies torque as the rate of change of the energy stored in the coupling field as a

function of , where is the angle between the magnetic axes [64].

Different models of the electrical subsystem can be provided as well, namely, separate

excited, shunt, series, or compound. Each model describes the electrical system of the

machine based on different topological connections. Similarly, the mechanical system can

be described by different models including rigid bodies or non-rigid bodies, linear or non-

linear contacts, etc. The basic characteristic of a reconfigurable model is that it is defined

in terms of generic descriptions of submodels.

WF Wf WfL+=

Wf WfL+ We Wm+=

Φ

τe θd

dWF=

θ θ



127

Once the model of the electric motor is defined in terms of generic subsystem components,

each of the subsystems must be instantiated. A model is said to be an instance of a generic

description if it meets the requirements that the generic description specifies for that model.

From this point of view, the generic description defines a family of models that can be

exchanged for one another.

Reconfigurability is achieved by the instantiation principle since every model instance that

matches the requirements of its generic description is a potential candidate. This provides

the ability to describe mathematical models of devices in a very structured way that can

change as the requirements of the problem change. Traditional modeling allows parameter

instantiation but does not provide a convenient mechanism for changing the structure of the

model.

Reconfigurable models are based on the port-based modeling paradigm introduced in

Chapter 3. In the next section, we will refine the port-based modeling paradigm, and in

doing so, we define the basic elements that constitute a reconfigurable model.

6.2 Port-based multi-domain modeling of mechatronic
systems

Recall that in a port-based multi-domain model of a mechatronic system (see Chapter 3)

subsystems interact with each other through ports. Connections between ports represent the

interactions between different components, which can be of two kinds: interactions that

capture energy flow, for energy-based systems, or interactions that capture signal flow, for

non-energy based-systems. In the first case, the connection is non-directed to reflect the

non-causal nature of the energy exchange; in the second case, signal flow is represented by

a directed connection.

As illustrated in Figure 6-2 the port-based model can be hierarchical (compound model) or

primitive. Primitive models represent the behavior of a primitive system component in



128

terms of constitutive equations. Compound models represent their behavior in terms of the

structural arrangement of primitive or compound models.

6.2.1 Equation-based modeling

The behavior of a primitive system can be specified using either of two formalisms,

depending on whether the system is energy-based or not. Both formalisms represent the

behavior of the system with a set of constitutive equations. The difference between the dif-

ferent types of systems lies in how the constitutive equations are specified and how the sys-

tem’s topology is described.

In the first formalism, the behavior of non-energy-based systems is described using a pro-

cedural approach. In this case, a signal quantity represents the quantity that is available to

the environment through the interface of the system. Constitutive equations of this kind are

Figure 6-2. Port-based model



129

described as assignments (causal equations) that compute the value of a signal quantity

based on the inputs to the subsystem.

In the second formalism, the behavior of energy-based systems can be represented using a

graph-based model [35]. Each edge in the graph has two associated quantities, called

branch quantities: across quantity and through quantity. These quantities are analytic func-

tions of time (i.e., they are piece wise continuous with a finite number of discontinuities).

Across quantities, represent effort such as voltage, temperature, or pressure that are the

result of a measurement taken across two energy ports of the system. Through quantities

represent flow such as current, heat flow rate, or fluid flow rate that are the result of a mea-

surement taken in series with the component. To illustrate this, consider an example of an

electrical network. Here, the vertices of the graph represent equipotential nodes in the cir-

cuit, and edges represent branches of the circuit through which current flows. The measure-

ment taken across two nodes defines the across branch quantity, while the measurement

taken in series with the component defines the through quantity.

The constitutive equations are expressed by relating the across and through quantities of

one or several branches—for example, a resistor has a single branch, and its constitutive

equation (Ohm’s law) relates the voltage across (the across quantity) and the current

through (the through quantity) the resistor.

Constitutive equations define the behavior of a subsystem without mention of a particular

causal direction. The causal direction emerges only when the equations are combined with

constitutive equations of other subsystems, and the quantities that are external to the sub-

system are specified. A quantity is external to the subsystem if its value is computed using

a constitutive equation that is not part of the constitutive equations of the subsystem. For

example, when the constitutive equation of a resistor is combined into a larger system of

equations, either the voltage or the current will be defined externally; Ohm's law is causally

oriented to reflect this: or . In the first case, the voltage v is computed from

the current i, which is computed using an external equation. Similarly, in the second case,

the current i is computed from the voltage v.

v :=iR i := v R⁄



130

The equations appearing in the model can be of several kinds: ordinary differential equa-

tions, algebraic equations, or differential-algebraic equations. Ordinary differential equa-

tions (ODE) can represent the variation of quantities as a function of a single variable, such

as time. Therefore, ODEs are used to represent lumped parameter models. Algebraic equa-

tions do not contain partial or total derivatives. When a model includes both ODE and alge-

braic equations, the resultant system of equations is called a differential-algebraic system

of equations (DAE). In this type of system, algebraic equations represent constraints among

the state variables defined by the set of ODEs.

Constitutive equations of both types (i.e., non-causal and causal) may include a combina-

tion of branch quantities and signal quantities. We call these types of models hybrid models

since they describe the interaction of energy-based systems with non-energy-based sys-

tems. An example of this type of behavioral description would be an electromechanical

system controlled by a digital controller.

If the system is compound, its behavior is described according to the structural arrangement

of subsystems, which in turn may be compound or primitive. This unambiguously defines

the topological constraints among components. Consequently, a compound system can be

reduced through a sequence of algebraic transformations into a primitive model that exhib-

its the same behavior.

6.2.2 Meta knowledge

Whether using a compound or primitive model to describe a system’s behavior, constitutive

equations do not provide sufficient information to reason about the properties of the system

since they are based on implicit assumptions and approximations. In other words, the con-

text in which a model of a system can be applied is not explicit. If such knowledge were

explicit, one could not only reason about the applicability of the model to a given problem,

but also decide when models having similar properties can be interchanged.

One kind of meta knowledge that we consider is the operating region of the model. The

operation region defines the space of admissible values for the quantities of the model,

which provide meaningful results. Outside this space, the model may provide erroneous



131

results that invalidate its application. To ensure that a model is used within its operating

region, we explicitly express its bounds through the operating conditions of the model.

Operating conditions are conditional expressions on the quantities of the model and explic-

itly define the sub-domain for each quantity for which the equations stated in the model are

valid.

When it is necessary to define multiple operating regions, for example to capture a large

portion of the system’s operating region, operating conditions are disjointed. Each element

of the disjunction represents a valid operating region that has an associated set of constitu-

tive equations. In other words, operating conditions allow us to segment the domain of the

quantities involved in the constitutive equations. Consequently, we can obtain a model that

is applicable within a larger operation region of the system. For example, consider the oper-

ation region of the system shown in Figure 6-3. The domains of the three quantities define

the solution space of the system. The operating conditions given as a function of the three

quantities (represented by the functions OCi) segment the space into four regions (A, B, C,

and D), each of which has an associated set of equations (represented by the function Rj)

that describe valid behavior under these conditions.

6.2.3 Current support for port-based modeling

Using object-oriented modeling principles, it is possible to describe a port-based model that

is composable and hierarchical [9, 47, 60, 118]. However, in an object-oriented modeling

Figure 6-3. Segmentation of the domain based on different operating regions

q1

q2

q3

model process
quantities

q1, q2, q3
equations

if OC1(q1, q2, q3)

RA(q1, q2, q3)=0

elif OC2(q1, q2, q3)

RB(q1, q2, q3)=0

elif OC3(q1, q2, q3)

RC(q1, q2, q3)=0

elif OC4(q1, q2, q3)

RD(q1, q2, q3)=0

A

B

C

D



132

paradigm, there is not necessarily a clear separation between the interface of the model and

the implementation of its behavior. Often both concepts are merged together into a single

modeling entity. In this modeling approach, only parametric reconfiguration is allowed.

However, to evaluate the design at different levels of detail, changes in structure should

also be supported.

Ideally, the designer should be able to specify a system based on an understanding of its

behavior and its interaction with the environment. Details of how the system achieves its

behavior or about its internal structure do not become important until later, when the

designer has selected a particular instance of the given system. Moreover, as the design pro-

cess evolves, the designer should be able to change the structural configuration of the sys-

tem. To provide a modeling paradigm that admits structural modifications as well as

parametric configuration, we extend the port-based modeling paradigm to reconfigurable

models in the following section.

6.2.4 Reconfigurable component models

In this section, the port-based modeling paradigm presented in the previous section is

extended towards reconfigurable models. In a reconfigurable model, the interface of the

model and the implementation of its behavior are considered to be two separate, but depen-

dent, concepts. By considering these two concepts independently, it is possible to associate

different implementations to a single interface, achieving a structural modification of mod-

els, and consequently, creating a reconfigurable model (Figure 6-4). A reconfigurable com-

ponent model is a mathematical model that provides a mechanism to describe changes in

structure as well as the basic parameter configuration mechanism and it is based on two

principles: composition and instantiation.

The composition principle denotes the mechanism by which the behavior of the component

is described in terms of interfaces of subcomponents and their interactions. Since compo-

sition unambiguously represents topological constraints among components, a composed

model given by the pair can be reduced to a primitive model which exhibitsΦ φc〈 | 〉 Φ φp〈 | 〉



133

equivalent behavior, where represents the binding of implementation to interface

.

As a result of the principle of instantiation, compound implementations are abstract. They

are a composition of abstract interfaces, that still need to be bound to implementations to

specify the behavior completely. Consequently, instantiating a compound component (i.e.,

a component with a compound implementation) requires the recursive instantiation of each

interface in the component.

Reconfigurable models are hierarchical in nature. Based on the composition principle, we

define self-contained implementations of a system in terms of the composition of sub-

system interfaces; i.e., a compound implementation. However, a hierarchical system

defined by reconfigurable models is not fixed. Rather, it changes as implementations are

bound to the interfaces (model instantiation) that describe the compound implementation.

system
C

system
D

system
B

system
A

parameters

System E

system
D

system
B

system
A

constitutive
equations

implementation C

implementation B

implementation A

Figure 6-4. A reconfigurable system model.

Φ φ〈 | 〉 φ

Φ



134

Specifically, binding different implementations to an interface results in a different struc-

tural arrangement and thus a different hierarchical structure.

The second principle—the principle of instantiation—describes the mechanism by which

the interface of a model is bound to its implementation. An implementation that meets the

requirements of an interface, can generally be bound to it. However, the semantics of the

resulting model must be consistent with the context in which the model is used. For exam-

ple, consider the case of a resistor and a capacitor whose interfaces both include the same

set of interaction points (two electrical terminals). In such a case, an implementation that

satisfies the interface for the resistor will also satisfy that of the capacitor. However, the

semantics of the resulting model will differ; hence they cannot be interchanged. In sum-

mary, we will allow bindings that produce models having the same semantic meaning.

There are two kinds of implementations that can be bound to an interface and maintain a

consistent semantic interpretation of the model: implementations with different representa-

tions of equivalent behavior, and implementations with different behavior. Accordingly, if

and are two implementations that satisfy interface , then,

Equation 6-6

The instantiation principle also provides the basis to define a family of systems. An inter-

face that can be bound to different implementations by the instantiation principle defines a

family of systems. All members of the family will show the same interaction characteristics

but with different formal behavior. This method of describing membership of an element

in a set is referred to as a type in the theory of computational objects and can be phrased as

follows [1]:

“The type of an object provides the semantic information
that completely characterizes the object but not its behav-
ior.”

An interface defines a type, each member of which is a subsystem having a unique formal

behavior. Based on this observation, it is possible to organize system models into a type

hierarchy. This type hierarchy is derived from a type system that provides the notions of

subtype and supertype [1].

τ κ Φ

SEMANTICS Φ τ〈 | 〉( ) SEMANTICS Φ κ〈 | 〉( )=



135

Let the symbol <: represent a reflexive and transitive subtype relation between interfaces I

and I’, then:

Definition Subtyping. I’ <: I if I’ has the same ports and parameters as I and possibly

more, and the following conditions pertain:

1. The types of the ports are subtypes of types of corresponding ports in I.

2. The types of the parameters are subtypes of the corresponding parameters in I.

3. The semantics of the parameters are equivalent to the semantics of the corresponding

parameters in I.

Based on the definition of subtype (and its complement, supertype), two operations can be

defined on the type hierarchy, namely, specialization and generalization. Specialization

involves finding an interface for the same family of components that includes more detail,

while generalization involves finding an interface (again for the same family of compo-

nents) that is less specific. These operations are carried out by traversing the hierarchy in

either a downward direction (specialization) or an upward direction (generalization).

Definition Specialization. Let x and y be two interfaces. Interface y is a specialization of

interface x, denoted , if and only if the type of y is a subtype of the type of x, and

for any system S that contains x, y can be substituted for x while maintaining the same

semantics. This can be stated formally as:

Equation 6-7

where the operator should be interpreted as “x is substituted by y in S” and

should be read “the system S evaluated with interface x”. Similarly, it is possible to derive

the property of generalization based on the supertype relation.

y s x→

y s x TypeOf y( ) <: TypeOf x( )
S

x
S x y«( )

SEMANTICS S
y

( ) SEMANTICS S
x

( )=
→,∀(

)

∧⇔→

S x y«〈 〉 S
x



136

6.2.5 Parameter handling

In addition to the ports, it is also important to include the parameters in the interface. Model

parameters describe fundamental characteristics of the system. For example, inertia and

torque constants specify the invariant properties of a system that represents an electric

motor; they are constant quantities that do not change value throughout the entire simula-

tion.

In defining parameters of lower level subsystems, two kinds of parameters can be identi-

fied: formal and actual parameters. A formal parameter is defined locally in the interface

of the subsystem, and it is used by a bound implementation. An actual parameter contains

the value of an argument that is related to a formal parameter in a call to the model, and it

is defined by the environment. The value of the argument is the value of an expression

defined in terms of the formal parameters in the current scope. Parameter composition

ensures that the parameters of the system are propagated to all the subsystems that were

incorporated into the compound implementation.

The principles of instantiation and composition together with parameter propagation pro-

vide the infrastructure required to define reconfigurable models. In the next section, we

present the structure of a reconfigurable component model. Based on this structure, later

we define two important concepts that help support the design process: namely, component

selection and model selection.

6.3 Component structure

In this section, we present a component structure based on an AND-OR tree that captures

the complete model space for a component. In this context, the component structure is a

complete behavior-based characterization of the component. It spans the space of possible

system models for a given component where elements within it are instances of a reconfig-

urable component model; i.e., pairs of the form where is an interface and is an

implementation bound to .

In an AND-OR tree representation of the modeling space, each implementation of an inter-

face generates AND arcs. The degree of an AND arc is defined as the number of successor

Φ φ〈 | 〉 Φ φ

Φ



137

nodes the arc may point to. AND arcs of represent compound implementations

and the nodes pointed to by the AND arc represent the interfaces that comprise the imple-

mentation. AND arcs of represent primitive implementations. AND arcs are

indicated in Figure 6-5 with a line connecting all of the components.

In an AND-OR tree, several AND arcs may emerge from a single node, indicating alterna-

tive implementations of the interface. These are called OR arcs. OR arcs define valid

changes in structure that the model may undergo, thereby populating the model space of the

component.

The structure of the AND-OR tree and the principles of composition and instantiation are

tightly related. The principle of composition is described by an AND arc pointing to all the

constituents of the composed model. The principle of instantiation, on the other hand, is

described by an OR arc since it describes alternative ways of defining the component.

For example, the AND-OR tree shown in Figure 6-5 depicts part of the structure of a per-

manent magnet DC motor. The top-level interface of the motor can be bound to different

implementations, which indicate different alternatives to describe its behavior, i.e., OR

arcs. In Figure 6-5, the AND arc of consisting of the subsystems electrical,

conversion and mechanical, indicates that this particular implementation is a compound

system composed of the interfaces electrical, conversion and mechanical. Each interface,

in turn, generates an AND-OR tree that expands the possibilities in the selection of their

respective implementations. For instance, the implementation “armature losses” of the

degree 1>

degree 1=

DC motor

Electrical Conversion Mechanical

Ideal
model

Armature

Leakage Core losses Friction Frictionless

Impl1 Impln

losses

or or

Figure 6-5. Component model structure based on an AND-OR tree

and and

ororor or

Resistor Inductance

Impl2

... ...

degree 3=



138

interface electrical, spans an AND arc of with two interfaces: resistor and

inductance. Similarly, the interface mechanical can be described using any of the two

implementations, one that considers friction and another that neglects friction.

In summary, the representation of a component model using an AND-OR tree describes dif-

ferent ways of modeling the component, by capturing the modeling space spanned by the

reconfigurable model. Points within the space represent specific modeling instances for the

component, given by the binding of implementation to interface . The next sec-

tion, describes a component model library intended to select and organize reconfigurable

models based on this representation.

6.4 Model libraries

This section presents a model library of reconfigurable models with the aim of providing

the designer with tools to achieve both component and model selection. By component

selection, we mean that the library should supply reasonable alternatives of commercially-

available components based on given requirements. For example, the library should be able

to answer requests such as “Find a permanent magnet motor with a maximum torque rating

of ”. Model selection means that the library will provide the user with different model

alternatives or different implementations for a particular subsystem. This is important

because the availability of modeling alternatives (or implementations for a given model)

lets the user explore the behavior of a subsystem at different levels of detail.

Models in the library range from subsystems that are abstract to others that are concrete and

completely defined. An abstract system is characterized by an interface with unknown

parameters and a default implementation. A concrete system is characterized by an inter-

face with a fixed set of parameter values and a particular implementation. However, the

implementation of a concrete system does not need to be fixed. It may be the case that the

designer is interested in analyzing the behavior of a concrete system under different exper-

imental conditions, making it necessary to select a different implementation for the com-

ponent.

degree 2=

Φ φ〈 | 〉 φ Φ

τ



139

Subsystems and components within the library are both described by an implicit AND-OR

tree. Abstract subsystems are described by an AND-OR tree of level >= 1; i.e., the model

space of the component. On the other hand, concrete subsystems are described by a sub-

graph (i.e., an induced tree) of the AND-OR tree that represents particular selection of

implementations for all subsystems in the component. The induced sub-graph on the com-

ponent model structure (component AND-OR tree) has no OR arcs and is defined by the

binding for where N is the number of interfaces and is the

number of implementations for interface as defined for the component. An example of

an induced tree is indicated by bold arcs in Figure 6-5.

To fully define a concrete component, in addition to finding an induced sub-graph in the

component structure, it is necessary to define the set of parameters that define the properties

of the component.This combined process is known as realization. Realization of a (con-

crete) component is the process of finding an induced sub-graph in the component structure

together with the assignment of fixed parameter values for the component. Only when

parameter values are fixed in the induced sub-graph do we have a fully realized component.

Models within the library are organized in a hierarchy based on type. This organization is

such that models that are subtypes of parent models add only new information to the inter-

face. For instance, in Figure 6-6, the component labeled diodeTh (thermal diode) is a sub-

type of component diode since it adds the thermal ports and parameters needed to describe

that interaction. The other ports in the model remain the same, satisfying the subtype rela-

tion stated earlier.

The library of component models defined in this section exhibit the following characteris-

tics [18]:

• The models in the library are reusable and reconfigurable—the system model proposed

in this chapter promotes reusability and reconfigurability of models. Moreover, since

models range from abstract to concrete, they are sufficiently general to be used in dif-

ferent contexts.

Φi φk〈 | 〉 i 1…N= k, 1…ni∈ ni

Φi



140

• The models in the library can be shared—system models are described using a web-

savvy format (See “Component modeling markup language”) based on a language

explicit enough that users others than the original author can understand it. Moreover,

the designers sharing the models can use domain specific browsers dedicated to pre-

senting the models in familiar terms.

• The models in the library are accessible—the browsing mechanism allows users to

interactively select model instances (i.e., model selection) and to search for component

alternatives based on a given set of requirements (i.e., component selection). Conse-

quently, the availability of models in the library is brought to the attention of the

designer, thereby making the information fully accessible.

The next section describes the representation language used to characterize the structure of

reconfigurable models stored in the library.

Figure 6-6. Component library browser. Green nodes represent abstract interfaces which do not have an
implementation associated. Gray nodes represent generic component interfaces, that is, interfaces that

have not yet been parametrized. Finally, pink nodes represent interface instantiations; i.e., fully
parametrized components. These represent manufacturer components as given in a component catalog.



141

6.5 Component modeling markup language

As indicated above, this section describes the component model language used to charac-

terize reconfigurable component models. We have developed a neutral-format, model

description language that captures component model structure based on the AND-OR tree

representation introduced earlier. The language is in neutral format since it is based on

XML (extensible markup language) [158] and can be translated to the simulation language

of choice. A translator to VHDL-AMS [60], the target language used to model our simula-

tions, has been developed. Translators to other modeling languages (e.g., modelica [47],

ASCEND [101], OMOLA [9], or NMF [119]) can be written as well. In the design of this

model description language, the following criteria were established:

• Multi-energy domain—the language should be able to capture the interactions between

components in multiple energy domains.

• Non-causal equation models—the language should express the laws of physics without

assigning causality.

• Meta-knowledge—the language should provide elements to represent knowledge

implicit in the constitutive equations (such as assumptions and approximations). In

other words, the context in which this model can be applied should be made explicit

enough to provide a basis to reason intelligently about these models.

The markup language proposed in this chapter meets the above requirements and supports

our concept of reconfigurable models as defined earlier.

6.5.1 Why XML?

XML was selected because it provides clear document structures and a context-free vocab-

ulary. In addition, all XML documents share a common hierarchical structure and can be

managed, read, edited, searched and presented using the same tools. We can take advantage

of XML’s hierarchical document structures to capture the hierarchical nature of the com-

ponent models. Using XML, it was also possible to define catalogs of components and pro-

vide search mechanisms to explore the entire content of the document. In short, by defining



142

a markup language based on XML to represent component models the following features

were attained:

• Document sharing—designers can use standard XML tools to view and edit models.

• Component search—designers can use search tools to locate component models based

on desired characteristics.

• Expressiveness—a rich internal structure and a rich vocabulary makes model knowl-

edge clear.

• Reuse—a consistent document structure makes it easier to reuse document content,

extract it and apply content to different problem domains.

6.5.2 The markup language

System models are organized into a document, the internal structure of which captures the

hierarchical structure of component models. All aspects of the structure (i.e., modeling con-

structs) are described with a rich vocabulary that translates into XML tags. A document

type definition (DTD) describes the internal structure of a document and defines the sym-

bols in the vocabulary. The use of this DTD ensures that the models will be well formed

and valid. Well-formedness means that it is possible to check that the document is syntac-

tically correct before it is processed, while validity involves checking the document struc-

ture to ensure it contains all the parts required by the DTD but no extraneous parts.

The markup language defines the two basic modeling entities, interface and implementa-

tion, as the core of the internal document structure. Symbols in the vocabulary include

interface and implementation as well as symbols used to represent constitutive equations,

subcomponents, interactions between components and meta-knowledge.

At the top level, a document consists of either interface and implementation declaration

blocks or component declaration blocks. In the first case, the document specifies the basic

component models, while in the second case, the document instantiates completely defined

components by specifying the parameters and implementations of the basic component

models (i.e., it defines a catalog of components). Using a single markup language, we can



143

describe the two kinds of system models described earlier, abstract system models and con-

crete system models.

In the markup language that we have defined, the interface of the system includes—along

with ports and parameters—declarations that are common to all implementations of the

interface, conditional statements that check the validity of parameters, and the meta-knowl-

edge about the different implementations associated with the interface. For example, the

interface declaration for the DC motor in Figure 6-5 would be as follows:

interface DCmotor
parameters

ktau: real = 1.0e-14;
km: real = 1.0;
Ra: real = 1.0;
La: real = 1.0e-3;
Jm: real = 1.0e-14;
Bm: real = 1.0e-5;

ports
pos, neg: electrical;
rotor, reference: rotational;

end DCmotor;

In the language, two sections describe an implementation of an interface: the declaration

section and the statement section. The declaration section defines quantities or subcompo-

nents (in the case of a compound component) that are local to the body of the implementa-

tion. The statement section defines the behavior of the component with either a set of

constitutive equations or a set of connection statements.

Compound components are described with two vocabulary symbols: component and con-

nections. Components declare the instances to be used in the model, and connections define

the interactions between declared subcomponents. A component declaration is an XML

sub-structure that describes the induced tree in the AND-OR tree of the component. It cap-

tures parameter propagation and the binding of interface-implementation for all subcompo-

nents of the component.

For the DC motor illustrated in Figure 6-5, the implementation composed of the three sub-

systems: electrical, conversion and mechanical would be the following:



144

implementation dcmotor-cmp implements DCmotor
declarations

elect-subsystem elect(Ra=10,La=0.1)
bound-to armature-l-impl

resistor ra(r=Ra) bound-to resistor
inductance la(l=La) bound-to inductance;

conv-subsystem conv(Km=km, Kt=ktau)
bound-to conv-impl;

mech-subsystem mech(Bm=1.0e-5)
bound-to friction-imp;

statements
connections;

end dcmotor-cmp;

In this implementation the paths DCmotor-Electrical-[Resistor, Inductance], DCmotor-

Conversion, and DCmotor-Mechanical-[Friction] shown in Figure 6-5 provide the subtree

selected for the DC motor. This means that for the electrical system of the DC motor this

implementation includes armature losses in the electrical subsystem. Similarly, the selected

subtree indicates that the implementation considers friction in the mechanical subsystem.

Binding the electrical subsystem to the implementation armature-l-impl requires also bind-

ing implementations for each component declared within it. For example, in this case,

implementation armature-l-impl is an implementation composed of three components: ra

and la. These bindings are recursively specified in the declaration of the component elect.

For example, component ra with interface resistor is bound to implementation resistor.

Implementation resistor is defined by a set of constitutive equations, and it does not specify

new bindings for any components; i.e., it is a primitive implementation.

Within the DC motor, subcomponent interaction is specified by means of connections in

the statement section, which define the structure of the DC motor.

Listing 6-1 and Listing 6-2 show the XML representation for the DC motor AND-OR tree

shown in Figure 6-5.

6.6 Summary

In this chapter, we have described a modeling paradigm based on reconfigurable compo-

nent models that supports the design of mechatronic systems. In this paradigm, mathemat-



145

ical models consist of two elements: interface and implementation. The interface defines

the mechanism by which the model interacts with its environment, while the implementa-

tion describes the behavior of the component. Model reconfiguration is achieved when the

model of a component is defined by binding an implementation to an interface.

We showed that an AND-OR tree that captures all possible modeling alternatives for a par-

ticular component describes the modeling space of the component. Using this AND-OR

tree representation, we showed how these reconfigurable models can be logically organized

into a library of components that supports model selection and component selection.

<interface ident="DCmotor">
<generics>
<parameter semantics="torque_constant"
default="1.0e-14" nature-type="real" ident="tau"/>

<parameter semantics="motor_constant"
default="1.0" nature-type="real" ident="km"/>

<parameter semantics="armature_resistance"
default="1.0" nature-type="real" ident="Ra"/>

<parameter semantics="armature_inductance"
default="1.0e-3" nature-type="real" ident="La"/>

<parameter semantics="rotor_inertia"
default="1.0e-14" nature-type="real" ident="Jm"/>

<parameter semantics=”friction”
default=”1.0e-5” nature-type=”real” ident=”Bm”/>

</generics>
<boundary>
<terminal nature-type="electrical" name="pos"/>
<terminal nature-type="electrical" name="neg"/>
<terminal nature-type=”rotational” name=”rotor”/>
<terminal nature-type=”rotational” name=”reference”/>

</boundary>
</interface>

Listing 6-1. An XML representation of a DC motor model. Interface body.



146

<implementation compound="true"
of-interface="DCmotor" ident="dcmotor-cmp">
<component interface-name="elect-subsystem" name="elect">
<parameter-binding actual-part="10" formal-part="Ra"/>
<parameter-binding actual-part="0.1" formal-part="La"/>
<parameter-binding actual-part="10" formal-part="km"/>
<bound-implementation implementation-name="armature-l-impl">
<component interface-name="resistor" name="ra">
<bound-implementation implementation-name="resistor"/>

</component>
<component interface-name="inductance" name="la">
<bound-implementation implementation-name="inductance"/>

</component>
</bound-implementation>

</component>
<component interface-name="conv-subsystem" name="conv">
<parameter-binding actual-part="32.0e-3" formal-part="tau"/>
<bound-implementation implementation-name="conv-impl"/>

</component>
<component interface-name="mech-subsystem" name="mech">
<parameter-binding actual-part="1.0e-5" formal-part="Bm"/>
<bound-implementation implementation-name="friction-impl"/>

</component>
<concurrent-statements>
<connect terminal-B="neg" terminal-A="elect.neg"/>
<connect terminal-B="rotor" terminal-A="mech.load"/>
<connect terminal-B="reference" terminal-A="mech.ref"/>
<connect terminal-B="conv.elect" terminal-A="elect.conv"/>
<connect terminal-B="conv.mech" terminal-A="mech.conv"/>
<connect terminal-B="pos" terminal-A="elect.pos"/>

</concurrent-statements>
</implementation>

Listing 6-2. An XML representation of a DC motor model. Implementation body.



147

Chapter 7 Case study—
Mechatronic design
of a missile seeker

7.1 Introduction

In this chapter, we examine the design process of a missile seeker. The example follows the

flow of design information model as described in [125, 136] (Figure 7-1) for three complete

levels of refinement to the point where the actual mechanism of the seeker is formulated,

the actuators and gears are selected, and the controllers are derived.

The flow of design information model identifies different states within a particular stage in

the design process. The edges in the state diagram denote the flow of information from one

state to another. Design activities transform design information and move this information

from one state to another; labels attached to the edges indicate such design activities.

There exists a direct correspondence between our reconfigurable modeling paradigm and a

number of states and transitions in the flow of design information model (illustrated in by



148

the shaded area). This correspondence is exploited in this example to allow the designer to

evaluate the behavior of the proposed artifact by means of reconfigurable models.

In the flow of design information model, the family of solutions state represents a family of

artifacts that may meet the engineering requirements. The relationship between a solution

family and its member artifacts is similar to the relation between a class and its instances

Customer
needs

Specifications

Engineering
requirements

Observed
behavior

Proposed artifact

Bound
description

(induced tree)

Behavior
evaluation

Requirements
evaluation

Family of solutions
(AND-OR tree)

Unbound
description
(interface)

Behavior
model

(implementation)

Intended
behavior

… … …

Refine/Revise

Refine/Revise

Refine/Revise

(Re)select

(Re)bind
(instantiation)

Simulation

Reconfigurable
modeling paradigm

Figure 7-1. Flow of design information model. Adapted from [125, 136]



149

in object-oriented programming [125, 136]. Similarly to a class in object-oriented program-

ming, a solution family describes a collection of elements that share common properties.

Element members of this family are equivalent to instance objects. This means that every

member of the family shares the same set of attributes that describe the family, but with

possibly different attribute values.

The family of solutions is equivalent to our AND-OR tree description of a component.

Recall that an AND-OR tree represents the model space of a component. Elements in this

model space, which share the same attributes with the rest of the members in the space, rep-

resent specific instances of a component.

Interfaces and implementations in the reconfigurable modeling paradigm have two equiv-

alent views in the flow of design information model. Interfaces map to unbound descrip-

tions and implementations map to behavior model. Through the principle of instantiation,

we move to the proposed artifact state.

The proposed artifact state is reached when the designers complete the description of the

artifact. The designers do so by defining parameter values in the unbound description and

by binding the unbound description to a behavior model. This process corresponds to the

instantiation principle for a reconfigurable model and it is represented by an induced tree

in the AND-OR tree of the component.

Once the designer has selected a proposed artifact, the observed behavior is derived by sim-

ulating the artifact. The results of the simulation are used in the behavior evaluation state.

In this state, designers compare the artifact’s intended and observed behaviors and identify

any discrepancies. Based on the nature of the discrepancies the designer may choose to

instantiate a different artifact (by means of reconfigurable models) assuming that the cur-

rent solution family remains promising and the proposed artifact can be improved (refined).

Alternatively the designers may decide that the current solution family is not adequate and

may select a different family. At this point our reconfigurable modeling paradigm can be

used again to instantiate and analyze behaviors of member of the new family.



150

7.2 The device

The seeker is a device of medium complexity with two rotational degrees of freedom

(called pitch and yaw). The two degrees of freedom allow the device to scan a two-dimen-

sional workspace. Figure 7-2 illustrates a complete seeker.

The design of the device must meet design specifications such as desired range of motion

and desired acceleration. All this should be consider together with the physical dimensions

of the device and physical properties of the selected materials. The design of the seeker also

includes the selection of actuators and control systems. In this chapter, simulation will be

used to verify the different alternatives available while selecting the actuators, controllers,

and geometry.

Figure 7-2. Seeker



151

The complete structure of the seeker, based on an AND-OR tree, is illustrated in Figure 7-3.

7.3 Iteration I

The design begins with the recognition of need for a mechanism that allows the scanning

of a two-dimensional workspace.

7.3.1 Customer needs

The customer needs for the seeker specify the desired characteristics the intended design

must achieve. With reference to Figure 7-4, these include:

1. Light weight.

2. Manageable size.

3. Scan a square two-dimensional area of 800m by 800m.

4. Minimum cruising altitude h is 250m.

5. The seeker is mounted on a missile traveling with a maximum cruise speed of 800Km/

hr. ( ) and it should track a stationary object on the ground.

7.3.2 Specifications

The specifications are derived from the customer needs. This results in the following spec-

ifications.

Figure 7-4. Customer needs.

target

h

d

v

θ

222.22m sec⁄



152

Figure 7-3. Seeker design structure based on an AND-OR tree

motor

Electrical Conversion Mechanical

Ideal
model

Leakage Core Frictionless

Ideal

Friction

controller

Analog

Discrete
Digital

sensor

seeker design

seeker

simple

load-P load-Y

seeker seeker
dynamics geometric

Armature
losses losses

gear

pitch-loop yaw-loop

sensor
motor

Electrical Conversion Mechanical

Ideal
model

Leakage Core Frictionless

Ideal

Friction

controller

Analog

Discrete
Digital

sensor

Armature
losses losses

gearsensor

Complex
Complex



153

1. Weight limit of 800gr.

2. The size of the seeker will be determined later.

3. The seeker needs to span a 120 degrees arc (it needs to cover an area of 400m from the

center of the plane). This is considering the minimum cruising altitude, which is, from

the customer needs, equal to 250m. The range of motion of the device should be 1.0

rad.

4. The maximum velocity of the missile (800 Km/hr.) is translated into a required angular

velocity (for a single degree of freedom) as follows: let where d is the

distance of the seeker to the target and h is the missile cruising altitude. Taking the

derivatives with respect to time we find the angular velocity:

Equation 7-1

which has a maximum value, when , of 0.888 rad/sec. To compensate for sudden

changes in direction, we will require that the seeker should be able to track a trajectory

with a frequency of 2Hz ( sec.). Under this requirements, we define a desired

trajectory with components:

Equation 7-2

with period and amplitudes rad.

The desired trajectory renders a desired velocity and desired acceleration of

Equation 7-3

from which the maximum desired angular velocity is and the maximum

angular acceleration is for both degrees of freedom.

θ d
h
---

 
 atan=

td
dθ

td
d d

h
---

 
 atan

v

h 1
d

2

h
2

-----+
 
 
 

-----------------------= =

d 0=

T 0.5=

qd t( )

θpd g1
2πt
T

--------
 
 sin=

θyd g2
2πt
T

--------
 
 cos=

T 0.5sec= gi 1=

ωp 4π 4πt( )cos= αp 16π2
4πt( )sin–=

ωy 4π 4πt( )sin–= αy 16π2
4πt( )cos–=

ωmax 12.5
rad
sec
-------≈

αmax 160
rad

sec
2

----------≈



154

7.3.3 Engineering requirements

The engineering requirements formalize the specifications to a structure that facilitates its

realization [125, 136]. At this stage we specify the form requirements of the missile seeker

as follows:

1. Perpendicular axes for the two degrees of freedom.(Figure 7-5).

2. Symmetry.

3. Size restriction.

a. Length: 30 cm

b. Width: 10cm

c. Height 30cm.

The design will consist of a gimbal ring, which will provide the yaw motion, and a compo-

nent that contains the optics of the seeker, which will provide the pitch motion. The gimbal

ring will support the optics housing and the two will have perpendicular axes with respect

to each other. To comply with the size restriction, the gimbal ring will have an initial diam-

eter of 20cm and a width of 4.5cm. The optics housing will have a diameter of 8cm and

Figure 7-5. Initial kinematic model.



155

width of 5cm. The combined actuation of the pitch and yaw degrees of freedom would pro-

vide the required workspace coverage. The desired kinematic design is illustrated in

Figure 7-6.

7.3.4 Family of solutions

After establishing the engineering requirements we must explore possible solutions. In this

case we turn to the description of the seeker based on the AND-OR tree (Figure 7-3). At

this stage we define the high-level components that comprise the device; these represent

broad concepts that suggest the structure of the device and the interaction between sub-

components (Figure 7-7).

The component graph defines the device as a collection of high-level concepts and their

interactions. In this graph, we can identify two subsystems: a positioning system for each

degree of freedom controlling a rotating mass (Figure 7-8). From the engineering require-

ments and the specifications, it is estimated that the components composing the yaw motion

will be of 600gr (gimbal ring and optics housing), and the component comprising the pitch

motion will be of 300gr (optics housing). This would provide a (estimated) rotational iner-

tia of Kg-m2 for the yaw mechanism and of Kg-m2 for the pitch

mechanism.

Figure 7-6. Geometric model of the seeker design.

gimbal ring

optics housing

J 0.002= J 0.001=



156

The load data is used to determine the amount of torque the motors need to provide. In this

case, we will use a motor and a gear box to provide the desired torques. We have selected

the MicroMo series GNM 26A and GNM 31 with nominal input voltage of 24 volts, speeds

up to 4000 rpm, and torque up to N-m and N-m [85], for the pitch

and yaw degrees of freedom respectively. In addition, a gearbox with ratio 30:1 would

achieve the required speed and the required torque.

Figure 7-7. Conceptual design of the missile seeker.

5

1
2

3

4

6 7 8

9

3

Controller

v9
R7,L7

N5

N6

K3 K4

B2

J1
Shaft

Rot. Inertia

Rot. Damper

Sensor

Shaft

θ8

θ0

vREF

Figure 7-8. Positioning system

130 10
3–× 240 10

3–×



157

7.3.5 Behavior evaluation

The behavior evaluation involves comparing the simulated behavior with the intended

behavior. To perform the analysis, we select the behavior for each component in our com-

ponent graph using the model selection tool (Figure 7-9) and the AND-OR tree description

of the design shown in Figure 7-3.

The goal of this analysis is to verify that the motors can provide the required torque without

going into saturation. A simple model of the motors will be used for this purpose. We will

use a model for the selected motors with no friction and with no armature losses. The con-

troller will be a simple analog proportional controller. In this case, the bindings of imple-

mentations to interfaces are the following: <motor, ideal>, <controller, analog> and

<seeker, simple>. Interfaces sensor and gear provide one implementation (the default

implementation) and thus no explicit binding is indicated.

Figure 7-9. Model selection tool



158

As illustrated in Figure 7-10, the input voltage to the motors does not exceed the nominal

supply voltage of each motor and the torque generated by each motor is within bounds. We

can conclude that the motors are appropriate to drive the loads. The next step is to focus on

the design of the actual geometry of the device.

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-15

 15

-10

 10

 -5

  5

  0

S(:ex_seeker:pmot:va)

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.08

0.08

-0.06

0.06

-0.04

0.04

-0.02

0.02

0.00

S(:ex_seeker:pmot:taum)

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

  0

 30

  5

 25

 10

 20

 15

S(:ex_seeker:ymot:va)

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.06

0.06

-0.04

0.04

-0.02

0.02

0.00

S(:ex_seeker:ymot:taum)

Figure 7-10. Iteration I: Input voltages and generated torques of the selected motors using the estimated
loads.



159

7.4 Iteration II

In the second iteration we refine the model of the seeker. A refinement for the seeker model

involves to define the geometry and materials.

7.4.1 Engineering requirements

The dimensions of the seeker are now established and fixed according to the customer

needs (Figure 7-11). It is assumed that the geometry is synthesized using a design advisor

such as the one presented in [127]. Next, we choose the type of material we will use to man-

ufacture the seeker. We have selected an ABS polymer for the gimbal ring with density of

, while the ABS polymer for the optics housing has density of

[79]. Using this information and the volume computed (we use the geometric kernel to

extract that information), we find the mass of the gimbal to be 0.35 Kg, and the mass of the

camera housing to be 0.33 Kg.

7.4.2 Observed behavior

Querying the geometric kernel we find that the gimbal provides a moment of inertia about

the z axis (yaw angle) of 0.0018 Kg-m2 while the optics housing provides a moment of iner-

tia about the y axis (pitch angle) of 0.0012 Kg-m2. Both values of moment of inertia are

close to the estimated values in the conceptual design. This suggest that the motors selected

in the previous section would be able to drive the load without going into saturation. To

corroborate this, we derive the dynamic model of the seeker [33] and perform a new anal-

ysis on the refined system.

In this analysis we will also refine the models of the motors. The refined model of the motor

includes the armature inductance as well as friction in the mechanical component. The

refined model of the seeker includes the dynamic model as it was derived from the geomet-

ric model. As in the previous step, the new models are selected from the browser tool and

the new binding for the models of the motors is <motor, complex>, and the new binding

for the model of the seeker will be <seeker, dynamics>. The new implementations are

bound to the interfaces given in the conceptual graph without having to change the concep-

ρ 1.2
g
cc
-----= ρ 1.07

g
cc
-----=



160

Figure 7-11. Seeker dimensions.

45mm

65mm

80mm

15mm

Gimbal

Optics Housing

10mm

30mm

40mm

40mm

40mm

10mm

43mm

Front Side

Top

Front Side

Top



161

tual description of the design. The result of the simulation at this stage is illustrated in

Figure 7-12.

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-15

 15

-10

 10

 -5

  5

  0

S(:ex_seeker:pmot:va)

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.10

0.10

-0.08

0.08

-0.06

0.06

-0.04

0.04

-0.02

0.02
0.00

S(:ex_seeker:pmot:taum)

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-20

 20

-15

 15

-10

 10

 -5

  5

  0

S(:ex_seeker:ymot:va)

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.08

0.08

-0.06

0.06

-0.04

0.04

-0.02

0.02

0.00

S(:ex_seeker:ymot:taum)

Figure 7-12. Iteration II: Input voltages and generated torques for the selected motors using refined
models for the motors and the seeker.



162

7.4.3 Behavior evaluation

From the simulation results shown in Figure 7-12 we verify that the selected motors can

drive the loads. The pitch motor provides a maximum torque of 0.07 N-m, which results in

a torque slack of 0.06 N-m. The yaw motor, on the other hand, provides a maximum torque

of 0.06 N-m, which results in a torque slack of 0.18 N-m. We now proceed to complete the

design of the controllers.

7.5 Iteration III

In this iteration we concentrate on the design of the controllers that must be used to opti-

mize the behavior of the seeker. So far we have used an analog proportional controller.

However, in a practical implementation, we must use a digital controller that can be imple-

mented in a micro-controller. In this last iteration, we refine the model of the controller first

by providing a refinement from the analog domain to the discrete domain. The last refine-

ment takes the controller from the discrete domain to the discrete domain using a PWM

amplifier at the output.

For this last iteration, the user requirements, specifications and engineering requirements

remain the same.

7.5.1 Family of solutions

The family of solutions for this stage of the design is the subtree of the AND-OR tree rooted

at the node controller. This family includes an analog controller, a discrete controller and

a digital controller. In this case, we are interested in the bindings <controller, discrete> and

<controller, discrete, SM>, which, through our reconfigurable modeling paradigm, can be

selected to study different system performance.

In the principle of PWM, a dc power supply is rapidly switched at a fixed frequency f

between “ON” and “OFF”. This frequency is often in excess of 1KHz. The high value is

held during a variable pulse width t during the fixed period T. The resulting asymmetric

waveform has a duty cycle, defined as the ratio between the ON time and the period of the

waveform, usually specified as a percentage:



163

Equation 7-4

As the duty cycle is changed (by the controller), the average voltage of the motor will

change, causing changes in speed and torque at the output. It is primarily the change in the

duty cycle and not the value of the power supply that determines the output characteristics

of the motor [59].

There are two alternatives provided in the family of solutions for each controller based on

the information encoded in the PWM signal. These are <controller, discrete, SLA>, <con-

troller, discrete, SM>, <controller, digital, SLA>, and <controller, digital, SM> (see

Figure 7-3). The behavior SLA (i.e., simple, locked anti-phase PWM) consists of a single,

variable duty-cycle signal in which is encoded both direction and amplitude information.

A 50% duty-cycle PWM signal represents zero drive, since the average voltage delivered

to the motor is zero. On the other hand, SM (Sign/magnitude PWM) consists of separate

direction (sign) and amplitude (magnitude) signals. The (absolute) magnitude signal is

duty-cycle modulated, and the absence of a pulse signal (a continuous logic low level) rep-

resents zero drive. Voltage delivered to the motor is proportional to pulse width.

7.5.2 Observed behavior

The observed behavior is obtained for the discrete instance of the controller component

(Figure 7-13). For this design, we have selected the sign/magnitude PWM behavior. The

observed behavior of the discrete controller is shown in Figure 7-14.

7.5.3 Behavior evaluation

The error achieved by the yaw controller is 0.009 rad while the error for the pitch controller

is 0.008 rad. At this last stage of the design of the seeker, we consider the error values

attained by the discrete controllers to be acceptable.

duty cycle
t
T
---100%=



164

7.6 Lessons learned

Throughout the example we observed that our simulation-based design environment can

help in the creation of different analysis settings, which can help in the evaluation of the

design without too much effort. By being able to analyze the behavior of the design early

in the design process, the designer is able to make more educated estimates that will reduce

design conflicts in later stages.

The quality of the design improves because more design alternatives can be explored

through the composition and instantiation of components. This is true since the use of

reconfigurable models allows the designer to test different alternative components and to

analyze the behavior of the system with these new components.

The port-based modeling paradigm permits reusable hierarchical models to be composed.

This is also an advantage because by having a minimal set of building blocks the designer

can compose a large number of designs that can be used later in new design problems.

CNTL_SOFTWARE
(process)

GND

PWMfreq

Sample &
Hold

Sampling freq

clk

V
measured

gnd

Vin

V
desired

Sample &
Hold

clk

gnd

V
in

qdes ired

qmeasured

PWM
amplifier

sign

PWM

PWM_clk

u

gnd

Energy
f low

Signal f low

Figure 7-13. Discrete controller with PWM amplifier.



165

7.7 Summary

In this chapter, we walked through a number of iterations to design a missile seeker. We

started off by defining the customer needs and the requirements based on these needs.

Based on the flow of design information model we identified several areas that map directly

to our reconfigurable modeling paradigm. As a result, a seamless integration between the

design process and evolutionary simulation (based on our reconfigurable models) was pre-

sented. The complete simulation-based design framework is shown in Figure 7-15.

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.004

 0.010

-0.002

 0.008

 0.000

 0.006

 0.002

 0.004

:ex_seeker:pucont:error_signal

0.0 5.00.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.015

 0.015

-0.010

 0.010

-0.005

 0.005

 0.000

:ex_seeker:yucont:error_signal

Figure 7-14. Iteration III: Tracking errors for yaw and pitch using a discrete controller.

Yaw tracking error (rad)

Pitch tracking error (rad)



166

Figure 7-15. The composable modeling and simulation environment.



167

Chapter 8 Conclusions

8.1 Contributions

While developing a new modeling paradigm for mechatronic systems that provides model-

ing and simulation support to the design process, significant contributions in the area of

modeling multi-domain systems were achieved. We can classify these as follows:

• Composable simulation.

• Port-based multi-domain modeling of mechatronic systems.

• Reconfigurable models.

• Structural knowledge representation.

• Multidisciplinary modeling and simulation representation.

We have grouped these contributions into two larger groups: intellectual and implementa-

tion contributions. Intellectual contributions include new ideas, and new algorithms, while



168

implementation contributions include new framework and new representational structures.

Within the intellectual contributions of this work we can include composable simulation,

port-based multi-domain modeling of mechatronic systems, and reconfigurable models.

The implementation contributions of this work include the structural knowledge represen-

tation and multidisciplinary modeling and simulation environment.

8.1.1 Intellectual contributions

8.1.1.1 Composable simulation

In this thesis, we developed the idea of composable simulation. By composable simulation

we mean the ability to generate system-level simulations automatically by simply organiz-

ing the system components.

Composition is the basis for assembling simulation models of multi-energy domain physi-

cal components. It is through composition that our port-based models are assembled into a

complete model. When these models are combined into a complete system, our framework

automatically combines them into a system-level simulation.

Raising the level of user interaction to composition of system components rather than com-

position of simulation models will result in a significant reduction of effort in creating and

modifying system-level simulations and will reduce the simulation and modeling expertise

required of the user.

Our framework for composable simulation will therefore enable designers to verify their

physical designs with much less effort and time than is required in current simulation envi-

ronments.

8.1.1.2 Port-based multi-domain modeling of mechatronic systems

Multi-domain modeling of physical systems requires means to capture the interaction

between components within a single energy domain and across energy domains. To this

end, we developed a novel modeling paradigm based on port-based objects [133]. The port-

based object approach allows us to model system components by describing their behavior

and their interaction with the environment. Interaction paths capture energy flow (for



169

energy-based systems) or signal flow (for non-energy based systems). In this way, we can

describe a system as a graph where nodes represent high-level system components and

edges represent their interactions.

Port-based objects can be compound or primitive. Compound port-based objects define the

behavior of a system as a structural arrangement of subsystems (also modeled as port-based

objects), while primitive port-based objects are defined by the constitutive equations

describing the behavior of the object.

The port-based modeling paradigm is the basis for our multidisciplinary modeling and sim-

ulation environment, as well as for our concept of reconfigurable models. A port-based

object is transformed into a hybrid mathematical representation based on linear graphs and

block diagrams.

8.1.1.3 Reconfigurable models

To support the evolutionary nature of design, we extended the port-based modeling para-

digm to support reconfigurability of system models. Reconfigurable models are a powerful

abstraction that allows the designer to change the simulation models on the fly. The mod-

eling paradigm of reconfigurable models is based on the separation of the boundary of the

component (i.e., collection of ports) from the description of its behavior (which can be

given by equations—for primitive components—or by a composition of subcomponents—

for compound components). We called the boundary of the component its interface, and we

called its behavior the implementation.

Using the concept of subtyping, we organize the component interfaces into a semantic net-

work. An important virtue of this network is that by traversing it (upward or downward) we

define two operations: refinement and generalization. Reconfigurability is achieved when

an implementation is bound to an interface. Therefore, this network completely defines the

basic operations that are required to support reconfigurable models, namely, specialization,

generalization, and reconfiguration.



170

8.1.2 Implementation contributions

8.1.2.1 Structural knowledge representation

During design, it is necessary to have access to a set of simulation models for a given com-

ponent. This set of models can be used to perform simulations at different levels of detail

and at different stages of the design process. We call this group of models the model space

of the component. We developed a representation to describe the model space of a recon-

figurable component. The representation is based on an AND-OR tree [105]. The AND-OR

tree representation systematically organizes a family of possible structures of a system,

hence describing the model space of this system. Using the properties of the AND-OR tree,

OR arcs denote modeling alternatives, while AND arcs denote the elements comprising an

individual modeling alternative.

The structure of the AND-OR tree and the principles of composition and instantiation

defined in this work are tightly related. The principle of composition is described by an

AND arc pointing to all the constituents of the composed model. The principle of instanti-

ation, on the other hand, is captured by an OR arc since it describes alternative ways of

defining the component.

Based on this structure, we developed models of concrete components. These models are

characterized by an induced tree of the AND-OR tree. The collection of reconfigurable

models represented by this component structure are stored in a library of components.

To describe this model structure, we developed a neutral markup specification language

based on XML. The purpose of this language is to facilitate sharing of reconfigurable

models among the members of a team of designers.

8.1.2.2 Multidisciplinary modeling and simulation representation

We developed a novel multidisciplinary modeling paradigm that combines energy-based

and non-energy based systems into a single modeling representation. The formalism used

to represent a multidomain system is based on linear graphs [143]. We extended this for-

malism and created a hybrid representation for mechatronic systems. In this representation,

energy-based systems are modeled using the linear graph formalism, and non-energy-based



171

systems are modeled using block diagrams. We have combined the two formalisms into a

hybrid representation that allows the description of both types of systems. New elements—

variable elements—seamlessly interface the two formalisms.

We developed algorithms to automatically synthesize the linear graphs for all energy

domains involved, including signal, electrical, and mechanical domains. The algorithms

that synthesize the linear graph for the mechanical energy domain take care to simplifying

the graph. This simplification is done in order to minimize the possibility of obtaining both

high-index algebraic differential equations and fully constrained mechanisms. The simpli-

fication algorithm works by identifying and removing redundant kinematic joints (i.e.,

joints that have coincident joint axes).

We formalized the causality problem as that of finding a minimum cost spanning tree on

the linear graph. This provided a convenient way for finding causal directions for all the

equations in the system. To incorporate the equations derived from the non-conservative

system, we defined an extension of the classic Block Lower Triangular algorithm to find a

feasible order of evaluation of the DAEs.

8.2 Future directions

This work is a foundation for a different approach to modeling. Our paradigm has raised

several issues that need to be addressed to develop its full potential. These issues provide

the basis for future research in the areas of reconfigurable models and improved support of

the design activities. Some of these issues include the following:

1. Automated model selection—A solution to the problem of automated model selection is

required to have intelligent simulation-based design advisors. A simulation-based

design advisor is a design tool that can suggest appropriate simulation models based on

information about the kind of analysis that is to be performed. From this information,

the system should explore the model space for the component (the component AND-

OR tree) and find a subset of implementations that have to be bound to the interfaces



172

used in the design. To accomplish this goal, we consider that the following questions

should be resolved, however, these questions present only a starting point from which

research in this area can leverage:

1.1. What semantic description (i.e., language representation) should we use to

describe an experiment?

1.2. What is the information embedded in a class of experiments that is relevant to

select a subset of models? This area would be useful to reduce the search space

when working with a set of experiments.

1.3. What is the semantic content of a model?

1.4. What is the mapping of the semantic content of an experiment to model semantics?

1.5. How would the computational requirements affect the model selection?

2. Model aggregation—Composable simulation and port-based modeling allows us to

create models of physical systems by putting together simpler models. An important

problem is that of aggregation of these models. This is important because we want to be

able to abstract all details of the model being created such that the abstraction can be

used in larger models. The issues in this area include:

2.1. How does the context in which the aggregate is to be used influence the aggrega-

tion boundaries? It may be possible to have many different views of a composition

depending on the context in which the aggregate will be used. The simplest case

would be to place an envelope around all components.

2.2. How can the ports and terminals of the elements of the aggregate be combined into

a meta-port (which may include ports and terminals)? If the composition can have

different views, it must have different ways of interacting with the environment.

Ports and terminals that are visible in one view may not be in another.

3. Expanding the expressiveness of the modeling paradigm—As we pointed out in

Chapter 3, the port-based modeling paradigm can describe component interactions in

any energy domain as long as the interaction is not distributed but lumped. As a result,

only lumped parameter models can be described with this modeling paradigm. An



173

important set of physical models, however, require the use of distributed parameter

models. Therefore, to expand the modeling capabilities of our approach, extensions to

distributed parameter modeling are required. The issues involved in this area include:

3.1. What representational structures should we use to describe a distributed parameter

model?

3.2. Can the existing representations be used to extend our framework?

3.3. How can we relate the distributed parameter model to the lumped parameter

model?

4. Use of modeling in collaborative design—Design of mechatronic systems is a process

that is characterized by the involvement of a number of experts in different areas, for

example mechanical, electrical and software engineering. Therefore, it is necessary to

provide simulation support in a collaborative design environment. In this area, teams of

experts working on different portions of the design should be able to share the model of

the design such that others have an updated view of the problem. The issues are related

to software systems architectures, since the objective is to implement a distributed

repository of models that is accessible from anywhere in the organization. These

include, version control, model sharing and locking, and consistency maintenance.

5. Product structure—The product structure represents the physical organization of com-

ponents. It provides information not available in a simulation model of the device. This

information may influence the selection of the kind of models, and how these models

interact. An example of such case is the physical proximity or actual mechanical con-

tact between two components. If the experiment we are performing considers the phys-

ical proximity of components, for example to capture the effects of heat radiation of

one component onto its neighboring components, the models that are selected should

account for those interactions. Considering the topology of the component in a simula-

tion run, would improve the fidelity of the simulation and give the designer a better

understanding of the interactions between components that may be otherwise excluded.

The issues to be addressed in this area include:



174

5.1. What is the taxonomy of interactions that can be derived from the product struc-

ture? Physical proximity and physical contact are two examples, but are there

more?

5.2. What semantic description should these interactions have to be able to perform

inferences on the type of models required?

5.3. What semantic content is required to describe the models?

6. Intelligent behavioral search of models—Typically, in design, one starts from func-

tional requirements, which after selection of the appropriate physical processes, are

transformed into form [96]. Once the form is synthesized, mathematical modeling can

provide a description of the behavior of the form. It would be desirable to provide tools

that can search for a component that meets given functional requirements. An example

could be to search for an electric motor that meets some torque or angular speed

requirements. This translates into a search problem on the space of available compo-

nents. The result of the query should bring a subset of components that best match the

requirements. Behavioral search is different from model selection. We can think of the

problem of formulating a model for a physical device as being divided into two steps.

One is to find the device that matches the functional requirements (behavioral search)

and once the device is given, we need to select a model for that device (model selec-

tion) that matches the requirements of some experiment. The issues involved in the area

of behavioral search include:

6.1. What is the semantic description of the query (i.e., a query language)?

6.2. What is the semantic content of a model?. This semantic content may be different

from the semantic content in 1.3 above since it should reflect the properties of a

model related to the design requirements.

6.3. What is the best internal organization of models to make the query efficient? This

question is related to the design of the component repository. Should we use an

object-oriented data-base?, relational database?, distributed?



175

7. Functional models—The function of a device is its intended behavior. The functional

specification describes the device’s goals. Functions are achieved through form. The

form of a device is where the physical processes associated with the device take place.

If we associate behaviors with form and combine them into a single component model,

we obtain component models containing a description of their form and one or more

behavioral descriptions. Using functional models in a simulation-based design environ-

ment requires that we address the following issues:

7.1. Mapping from function to form. If we associate the behavioral description of a

device to form, it may be possible to synthesize form from function. The combined

use of behavior and form could be used to test, through simulation, that the behav-

ior of a device matches the given functional requirements; this problem is related

to the issue of intelligent behavioral search of models (above). However, once a set

of (behavior of) devices has been identified to match the functional requirements,

further analysis is required to find the appropriate physical realization (form) of

the device; i.e., to verify that the physical characteristics of the selected device

match the physical requirements (dimensions, materials, etc.)

7.2. Mapping from form to behavior. In this context, the problem is to find a kinematic

model that describes the form. This kinematic model is used in conjunction with

the behavioral description of the system to provide a complete model of the sys-

tem. To this end, work is in progress in our center. This work deals with the auto-

matic synthesis of behavioral models that describe interaction between geometric

components [126]. Given the components for these interactions, the dynamic

model of the form can be synthesized and parametrized by obtaining lumped

parameters from the CAD model.

8. Integration with commercial CAD programs—We envision that the composition of

simulation models will consider the geometry of the physical device. In the current

implementation, the geometry is taken into account using a CAD package developed in

our group. If the modeling paradigm and software environment presented in this disser-

tation are to be used in an engineering setting, the framework must be integrated to

commercial CAD packages like I-DEAS or ProEngineer.



176

8.3 Conclusions

In this dissertation, we presented a composable simulation framework to support the design

of mechatronic systems. Our framework allows simulations to be assembled from high-

level component descriptions, which results in a significant reduction in time, and hence

cost, of developing new simulations. Designers can take full advantage of these features to

test new designs or to test changes to existing designs. This could translate in a larger

design space being considered which may result in better designed products.

The concept of reconfigurable models provides three basic operations: specialization, gen-

eralization, and reconfiguration. This allows the designer to create simulations at different

levels of detail by simply changing the implementations associated with the interfaces in

the design.

Reconfigurable models incorporate parameterization, typing, and port-based interfaces,

which allow building models as networks of encapsulated, reusable subsystems that are

explicitly classified. The classification of these models is given in the type hierarchy that

we used to organized the models in the library. It is explicit because we can determine the

properties of a model from the type hierarchy through inheritance. The type hierarchy pro-

vides the information needed about a particular model at any time.

When we consider a component such that it is divided into two parts, an interface that

defines essential properties and an implementation that defines non-essential properties, we

achieve modularization of the component. Furthermore, when combining subtyping with

modularization, it becomes possible to define instantiations of an abstract concept (inter-

face) with an implementation. We can also define specializations or generalizations of an

abstract concept with the subtype relation.

Our framework allows the designer to consider concurrently the integrated system at dif-

ferent levels of abstraction, ranging from low-resolution models to high-resolution models.

Additionally, it gives the designer an unequaled flexibility to manipulate the model of the

design.



177

Appendix A Linear Graph
Theory

A.1 Introduction

Linear graph theory, a branch of combinatorial mathematics, has proved to be a useful tool

for the study of large and complex systems. Leonhard Euler wrote one of the first papers

on graph theory and laid the foundation for the theory when he published the solution to the

Königsberg bridge problem in 1736. However, its first application to an engineering prob-

lem did not arise until 1847, when Gustav Kirchhoff applied it to the study of electrical net-

works.

This appendix presents a review of the basic concepts in linear graph theory, namely, the

topological and algebraic properties. The material is based on the seminal work by Branin

[17] on network analogies for physical systems, and the work by Seshu and Reed [121] on

electrical networks.



178

A.2 Basic definitions of linear graphs

The basic elements comprising a linear graph are line segments (called edges) each having

two end points (called vertices). If a direction is specified on each edge, they become ori-

ented edges and the graph is referred to as directed graph. Schematically, we can indicate

the edge orientation two ways, namely, by attaching a + and a – to the two ends of the edge

or by attaching an arrowhead directed from the + end to the – end of the edge.

Definition Linear graph. A linear graph G is a collection of edges, no two of which have

a point in common that is not a vertex.

Definition Connected graph. A graph G is connected if there exists a path between any

two vertices of the graph. If the graph is not connected, it contains p connected compo-

nents.

Figure A-1 shows an example of an oriented linear graph. This graph is a non-connected

graph having two connected components. The arrowheads on each edge indicate the direc-

tionality of the edges.

The following definitions set the basic terminology for linear graph theory.

Definition Subgraph. A subgraphGs is a subset of edges of the graphG. SubgraphGs is a

proper subgraph if it does not contain all edges of G.

Definition Incidence. Edge k is incident to a vertex p if p is an endpoint of k.

e

fbcd

a

1 2

3

4 5

6

7 8 9

Figure A-1. A directed linear graph



179

Definition Degree of vertex. The degree of a vertex is the number of edges incident to that

vertex.

Definition Edge sequence. An edge sequence is any subset Es of the edges of G where Es

can be ordered such that an edge k in Es has a vertex in common with the preceding edge

, and the other vertex in common with the succeeding edge .

Definition Path. A path is an edge sequence where each internal vertex has a degree of

exactly two and each terminal vertex is of degree 1.

Definition Circuit or loop. A circuit or loop is a closed edge sequence where all vertices

are of degree 2.

A tree T is a connected acyclic subgraph of a connected graph G that contains all the ver-

tices of G but contains no loops. The edges that are not part of the tree form a subgraph

called cotree. Edges in the tree are referred to as branches, while edges in the cotree are

referred to as links or chords. For a graph with e edges and v vertices, there are exactly

branches. Consequently, the number of chords in the cotree equals . If the graph

G is not connected, a tree does not exists because by definition, a tree is a connected sub-

graph of a connected graph. However, a tree can be found for each of the connected com-

ponents of G. The collection of such trees is called a forest. Similarly, each component of

G defines a cotree and the collection of all cotrees is called a coforest. Therefore, in a graph

with e edges, v vertices and p connected components there will be branches in the p

trees (forest) and chords in the p cotrees (coforest).

Let G be a connected graph with v vertices and e edges (i.e., ) and T be a tree of G.

If we add any chord between any two vertices in the tree, we establish a circuit. Since in a

connected graph there are chords for a given tree T, there are as many unique cir-

cuits defined by the chords of T. The fundamental circuits (f-circuits) of a connected graph

G for a tree T are the circuits formed by each chord of the given tree T.

As an example, consider the graph G shown in Figure A-2. The tree T=(a, b, g, d) is indi-

cated by bold edges in the figure. The number of edges and vertices is nine and five, respec-

k 1– k 1+

T

v 1–

e v– 1+

v p–

e v– p+

p 1=

e v– 1+

e v– 1+



180

tively; therefore, the number of chords in the graph is five. The five fundamental circuits

defined by these chords and their tree paths are listed in Table A-1.

The table includes the f-circuits defined with respect to the tree T = (a, b, g, d). It has been

proved that any circuit in a graph can be made an f-circuit with respect to some tree [121].

This property is of utmost importance when we analyze the algebraic structure of the graph

since it allows us to select the causality of the equations of the physical system being mod-

eled.

Since the graph is directed, it is appropriate to consider the f-circuits oriented. As stated

above, a chord uniquely defines an f-circuit; therefore, it is natural to assign the orientation

of the f-circuit to be consistent with the direction of the defining chord.

Table A-1. Fundamental circuits for the tree of figure Figure A-2

Chord Tree path f-circuit

(f) (a, b) (a, b, f)

(h) (b, g, d) (b, g, d, h)

(c) (b, g) (b, g, c)

(i) (a, g) (a, g, i)

(e) (a, g, d) (a, g, d, e)

1

2

3

4

5

a

b c

d

e

f

g

h

i

Figure A-2. A connected graph with a tree T indicated by bold edges



181

A circuit in a linear graph has a dual called cut-set. A cut-set of a connected graph G, is

defined as a set C of edges of G such that the removal of these edges from G leaves G par-

titioned in exactly two connected components.

A fundamental system of cut-sets (f-cutsets) with respect to a tree T of a connected graph

G is the set of cut-sets in which each cut-set includes a branch of T. The fundamental

cut-set orientation is to agree with the orientation of the defining branch.

We end this section by presenting an interesting property of a fundamental cut-set: if

represents a branch of a tree T in a connected graph G, and represents

the cut-set defined by , then each of the f-circuits defined by the chords

includes . To illustrate this property, let be edge a in the graph of Figure A-2. The f-

cutset defined by this branch is (a, f, i, e) since the removal of this set leaves the graph in

two components one of which is the isolated vertex 1. From Table A-1, we can see that the

f-circuits defined by the chords (f, i, e) all include edge a.

A.3 Matrix representations of linear graphs

The connectivity relations of any oriented linear graph can be completely specified by

means of the augmented incidence matrix, denoted .The incidence matrix contains infor-

mation both about the orientation of edges in the graph and how they are joined to form

nodes. For a directed graph is G with v vertices and e edges the incidence matrix is a

matrix with entries defined by:

In general, for a graph with p connected components, the incidence matrix is a direct sum.

A matrix M is said to be a direct sum of if for any in M no nonzero ele-

ment lies in a row or column of M associated with any of the other submatrices [143]. The

existence of a direct sum in a matrix always indicates the existence of subgraphs; therefore,

v 1–

e1

e1 e,
2

e3 … en, , ,( )

e1 e2 e3 … en, , ,

e1 e1

A

v e×

aij

aij

1 if edge j is incident at vertex i and is oriented away from vertexi

1 if edge j is incident at vertex i and is oriented toward vertex i–

0 if edge j is not incident at vertex i





=

M1 M2 …Mp, , Mk



182

the matrices can be regarded as the incidence matrices of each of the p connected com-

ponents.

The incidence matrix for the graph shown in Figure A-1, is given by Equation A-1. As

expected, this matrix is a direct sum; there are two connected components in the graph,

which show up in the incidence matrix.

Equation A-1

Consider the incidence matrix of a connected graph ( ) G. Since the sum of all

rows of equals zero, its rows are linearly dependent. Removing any row from will

leave linearly independent rows. We call this new matrix the reduced incidence

matrix, denoted A. From graph theory [121], we know that, if T is a tree of a connected

graph G, the columns of A that correspond to the branches of the tree T constitute a

nonsingular matrix. Thus if a tree is chosen and the columns of A are properly arranged, the

matrix A can be partitioned into the submatrix AT, referring to the

branches of the tree only, and the submatrix AC, referring to the

chords or to the cotree.

Equation A-2

Two new matrices can be defined to describe the topology of the graph. The fundamental

circuit matrix (designated B) captures the connectivity relations between circuits and

edges, and the fundamental cut-set matrix (henceforth referred to as the cut-set matrix) des-

ignated Q. Matrix Q captures the connectivity between cut-sets and edges.

The fundamental circuit matrix B of a directed graph G with respect to a tree T is defined

by the circuits formed by each chord as follows:

Mk

A

1– 1– 0 1– 1 0 0 0 0

0 1 1 0 1– 0 0 0 0

1 0 1– 1 0 1 0 0 0

0 0 0 0 0 1– 0 0 0

0 0 0 0 0 0 1 1– 1

0 0 0 0 0 0 1– 1 1–

=

A p 1=

A A

v 1–

v 1–

v 1–( ) v 1–( )×

v 1–( ) e v– 1+( )×

A AT AC
=

e v– 1+



183

If the columns of matrix B are properly arranged matrix B can be partitioned into the

submatrix BT referring to the branches of the tree and the

submatrix BC referring to the chords of the cotree. However, since

each chord appears exactly once in any given f-circuit in the positive sense, the matrix

; i.e., a unit matrix. Then we can write

Equation A-3

A closer look to the matrices A and B will reveal a very interesting and fundamental prop-

erty of linear graphs. We can define two linear vector spaces associated with the graph G,

namely, the vector space VQ spanned by the rows of matrix A, and the vector space VB

spanned by the rows of matrix B. These two vector spaces are subspaces of the linear vector

space VG of dimension e. It can be shown [121] that the matrices A and B satisfy the fol-

lowing relation:

Equation A-4

This implies that the two vector subspaces VQ and VB are orthogonal complements of the

e-dimensional linear vector space VG. This fact is known as the orthogonality principle.

Using this fact, we can derive an equation to find matrix BT:

Equation A-5

It follows that

Equation A-6

bij

1 if edge j is in circuit i and the orientation of the circuit and the

edge coincide

1 if edge j is in circuit i and the orientation of the circuit and the–

edge do not coincide

0 if edge j is not in circuit i










=

e v– 1+( ) v 1–( )×

e v– 1+( ) e v– 1+( )×

BC UC=

B BT UC
=

ABT 0 and BAT 0= =

AT AC

BT
T

UC

ATBT
T ACUC+ 0= =

BT AC
T– AT

1–( )T=



184

When the columns of matrix A are properly arranged such that the first columns of A

are in direct correspondence with the branches of some tree T of a graph G, an equivalent

matrix—two matrices A and Q are equivalent when their rows span the same vector

space—Q can be derived. This matrix is derived from matrix A by applying row operations

to A. Matrix Q represents the fundamental system of cut-sets with respect to the tree T. It

includes the cut-sets of G in which each cut-set includes only one branch of T. Then

Equation A-7

Since matrices A and Q are equivalent, the following relation holds

Equation A-8

It follows from Equation A-5 that

Equation A-9

A.4 The algebraic structure associated with a linear
graph

We will illustrate the algebraic structure associated with a linear graph, with the analysis of

a simple electrical network. Figure A-3 shows an electrical network and a linear graph

topologically equivalent to the network. The numbering of the elements in the network and

v 1–

v 1–

Q UT QC
=

BQT 0=

BT QC
T–=

c

a

e

1

2 3

4

5

6

7

8

b

c
d

a

e

d

b

1

4

5

6

8

7

2

3

+

+ +

+

+

+ +

+

Figure A-3. An electrical network and its associated linear graph.



185

the edges in the linear graph makes it easy to see the correspondence between them. In the

figure, all current directions and voltage references have been indicated.

It is a trivial exercise to derive the Kirchhoff’s current and voltage equations for this net-

work and they are given as follows:

Equation A-10

and

Equation A-11

Rewriting the two systems of equations (A-10) and (A-11) in matrix form we obtain

Equation A-12

and

i1 t( ) i2 t( ) i3 t( ) i7 t( )–+ + 0=

i1 t( )– i4 t( ) i6 t( )–– 0=

i2 t( )– i3 t( )– i4 t( ) i5 t( )–+ 0=

i5 t( ) i7 t( ) i8 t( )+ + 0=

i6 t( ) i8 t( )– 0=

v1 t( )– v2 t( ) v4 t( )+ + 0=

v1 t( )– v3 t( ) v4 t( )+ + 0=

v4 t( ) v5 t( ) v6 t( )– v8 t( )–+ 0=

v1 t( ) v6 t( )– v7 t( ) v8 t( )–+ 0=

1 1 1 0 0 0 1– 0

1– 0 0 1– 0 1– 0 0

0 1– 1– 1– 1– 0 0 0

0 0 0 0 1 0 1 1

0 0 0 0 0 1 0 1–

i1 t( )

i2 t( )

i3 t( )

i4 t( )

i5 t( )

i6 t( )

i7 t( )
i8 t( )

0=



186

Equation A-13

The coefficient matrices in the previous equations can be recognized as the augmented inci-

dence matrix and the fundamental circuit matrix respectively of the directed graph shown

in Figure A-3. This observation is general and it is applicable to any system for which a

directed linear graph can be obtained (i.e., the network problem [17]). This fact leads to the

definition of the two Kirchhoff theorems that state that the sum of currents leaving a node

equals zero and the sum of voltages around a loop equals zero. This can be written as:

Equation A-14

Where is the incidence matrix of the directed graph and

where is associated with edge j. Similarly,

Equation A-15

Where B is the fundamental circuit matrix of the directed graph with respect to some tree

T, and where is associated with edge j. For the exam-

ple above, the tree T = (1, 4, 6, 8).

We know that the incidence matrix is a singular matrix for which we can remove a row to

obtain the reduced incidence matrix A, which is full rank. Thus, in a connected graph with

v vertices, there are exactly linearly independent Kirchhoff’s current equations. In

general, if the graph contains p connected components, there are linearly independent

Kirchhoff’s current equations. Similarly, there are linearly independent Kirch-

hoff’s voltage equations for a network of p connected components.

Theorem A-I.If T is any tree of a connected graph, the voltage functions of the chords of

1– 1 0 1 0 0 0 0

1– 0 1 1 0 0 0 0

0 0 0 1 1 1– 0 1–

1 0 0 0 0 1– 1 1–

v1 t( )

v2 t( )

v3 t( )

v4 t( )

v5 t( )
v6 t( )

v7 t( )

v8 t( )

0=

Ai t( ) 0=

A i t( ) i1 t( ) i2 t( ) … ie t( )=

ij t( )

Bv 0=

v t( ) v1 t( ) v2 t( ) … ve t( )= vj t( )

v 1–

v p–

e v– p+



187

T can be expressed as linear combinations of the voltage functions of the branches of T,

and the current functions of the branches of T can be expressed as linear combinations of

the current functions of the chords of T [121].

Proof. To prove the first part of the theorem, let us assume that the columns of B are prop-

erly arranged such that they include the chords of the defining cotree as the last

columns, and the vector v is arranged accordingly:

Equation A-16

Expanding Equation A-16 we obtain , which can be solved for

:

Equation A-17

This shows that the chord voltages can be expressed as linear combinations of the branch

voltages.

For the second part of the proof, we recognize that the cut-set matrix Q of cut-sets

and rank defines a set of equations , which are equivalent1 to the Kirch-

hoff’s current equations . If the columns of Q are properly arranged to include

the branches of the defining tree as the first columns, and the vector i is arranged

accordingly we have

Equation A-18

Expanding Equation A-18 we obtain , which can be solved for :

Equation A-19

This equation defines the branch currents as linear combinations of the chord currents. •

1. Two systems of linear equations are equivalent if they have the same solution.

e v– 1+

Bf U
vb t( )

vc t( )
0=

Bfvb t( ) vc t( )+ 0=

vc t( )

vc t( ) Bfvb t( )–=

v 1–

v 1– Qi t( ) 0=

Ai t( ) 0=

v 1–

U Qf

ib t( )

ic t( )
0=

ib t( ) Qfic t( )+ 0= ib t( )

ib t( ) Qfic t( )–=



188

Equations (A-17) are referred to as fundamental circuit equations and equations (A-19) are

referred to as fundamental cut-set equations.



189

Appendix B MDL Grammar

In this appendix, we present the grammatical rules that define the high-level language used

to describe component models and configurations.

module_def ::= module identifier module_qualifier
module_body endmodule ;

module_qualifier ::=is | isa configuration with

module_body ::= interface_def |
body_def |
interface_def body_def

interface_def ::= interface interface_constituent ;

interface_constituent ::=
sizes_decl |
interface_constituent ; sizes_decl

body_def ::= submodules body_decl ;
connections body_connections ;
initialization body_initializations ;



190

body_decl ::= body_item_decl |
body_decl ; body_item_decl

body_connections ::=
body_connection_decl |
body_connections ; body_connection_decl

body_initializations ::=
body_init_decl |
body_initializations ; body_init_decl

body_item_decl::= name_list isa module_decl

module_decl ::= module identifier

body_connection_decl::=
in [ number ] @ identifier . in [ number ] |
out [ number ] @ identifier . out [ number ] |
identifier . in [ number ] @ in [ number ] |
identifier . out [ number ] @ out [ number ] |
identifier . in [ number ] @

identifier . out [ number ] |
identifier . out [ number ] @

identifier . in [ number ]

body_init_decl::= setstate ( init_statement_args ) |
setparam ( init_statement_args )

init_statement_args ::=identifier , array_def

sizes_decl ::= declare ( field_decl , bool_or_dim )

field_decl ::= inputs | outputs |
states | dft

bool_or_dim ::= true | false | num

array_def ::= [ expr_list ] |
{ array_element_def }

array_element_def ::=
array_element |
array_element_def , array_element

array_element ::= [ expr_list ]

expr_list ::= expr |
expr_list , expr



191

expr ::= num |
expr + expr |
expr - expr |
expr * expr |
expr / expr |
- expr |
expr ^ expr |
( expr )

name_list ::= identifier |
name_list , identifier



192

Appendix C C-language
interface component
specification

C.1 C-language interface specification for software
components

The C-language interface specification for software components provides an application

programming interface (API) to the kernel model. The API provides a collection of stan-

dard methods, which are implemented as C functions. The methods in this API are classi-

fied in two mayor groups: methods called by the simulation kernel in response to the state

of the module, and methods called by the implementation of the design entity to access its

internal data structures maintained by the kernel. Methods called by the kernel include:

sbsDerivatives, sbsOutputs, sbsInitializeSizes and sbsTerminate

(Listing C-2). Two additional methods are shown Listing C-2, namely, DECLARE_CLASS

and ssGetFcnParams. These methods are used to register a new kernel module, and to

define aliases to the module’s parameters. Methods called by the implementation of the



193

design entity include methods to declare and query the sizes and values of its input, output

and states vectors, and access operations for work areas.

DECLARE_CLASS(module)—This macro is used to register module the new class in

the kernel and prepare all internal data structures to handle the new class. It auto-

matically forward declares all of the class functions (e.g., sbsOutputs) and gen-

erates the necessary code to initialize the internal virtual function table used by the

kernel to fetch the appropriate class method.

ssGetFcnParams(sbsTask*, int)—This macro is called to access the parameters

of a module that has been previously defined in a configuration. The first argument

is a pointer to an sbsTask structure that represents the module class and the sec-

ond parameter is an index in the parameter array defined in the MDL specification.

The macro returns a list of array elements where the 0-th element is the first array

in the list; the first element is the second array etc.

sbsDerivatives()—Once the task is spawned this function is called by the kernel to

compute the derivatives of the design entity. The function is called every major and

#include “sbs.h”

DECLARE_CLASS(class_name)

#define parameter_1ssGetFcnParam(S,0)[0]

static void
sbsDerivatives(double t, const double* x, const double* u,

double* dx, sbsTask* S) {
}

static void
sbsOutputs(double t, const double* x, const double* u,

double* y, sbsTask* S) {
}

static void sbsInitializeSizes(sbsTask* S) {
}

static void sbsTerminate(sbsTask* S) {
}

Listing C-2. Template for implementing a design entity



194

minor integration step.

sbsOutputs()—Similarly to the sbsDerivatives function, this function is called by the

kernel to compute the outputs of the module implementing the design entity. The

function is called every major and minor integration step.

sbsInitializeSizes()—This function is called once at the moment when the task

is spawned in the kernel to set up all the sizes of all internal data structures used to

keep the state of the instance of the class. These include the number of continuous

and discrete states, the number of inputs and outputs, and the sizes of the work ar-

eas.

sbsTerminate()—This function is called once at the end of the integration. It may be

used to save information that is stored in the internal buffers associated with the

class instance onto secondary storage. It may also be used to free space allocated to

local work vectors assigned to the class instance as a request in the sbsInitial-

izeSizes function.

The implementation code of a design entity is reentrant; therefore, these methods must not

define any local storage. If they do, then all instances will use the same storage causing data

corruption and unpredictable results. For this reason, each instance of a class has indepen-

dent storage work areas that are initialized and accessed through a set of macros. There are

three work areas that can be used for this purpose: real work vector, integer work vector,

and pointer work vector. The macros used in the initialization of the length of these work

areas have the form ssSetNum?Work() where ‘?’ can take any of the following values:

R, I, or P for real, integer or pointer type vectors.

Two operations are defined on these work areas, namely, read and write. These operations

are implemented by a set of macros, which have the general forms ssGet?Work and

ssSet?Work. The former is used to read values from the work area, and the later is used

to write values to the work area. Similarly to the initialization macros, the ‘?’ can take

values R, I, or P.



195

An example of the use of API and the MDL language is presented next. With reference to

Figure C-1 Listing C-3 shows the MDL specification for the missile seeker, while Listing

C-4 shows the implementation of software component DC using the API defined in this

appendix.

Listing C-3. System-level definition of the missile seeker.

0

1

2

3

0

0

1

2

3

0

1 0

1

0
C2

DC2
PID2

G

0

0

1

0

1

0
2

3

0

1 0

1

0
C1

DC1
PID1

0

Figure C-1. Missile seeker system

0

1

0
1

2
3

cte2

zero

cte1

module system isa configuration with
submodules

seeker_m isa module seeker;
cte1, cte2, zero isa module constant;

connections
cte1.out[0] @ seeker_m.in[0];
cte2.out[0] @ seeker_m.in[2];
zero.out[0] @ seeker_m.in[1];
zero.out[0] @ seeker_m.in[3];

initialization
setParam(cte1, [0.14]);
setParam(cte2, [-0.14]);
setParam(zero, [0]);

endmodule;



196

Listing C-4. C--language implementation of software component G.

/* Module: dcmotor.c
Comments: Implementation of the dcmotor device interface*/

#include <stdio.h>
#include "sbs.h"

DECLARE_CLASS(dcmotor)

#define Jm ssGetFcnParam(S,0)[0]
#define bm ssGetFcnParam(S,0)[1]
#define Km ssGetFcnParam(S,0)[2]
#define K1 ssGetFcnParam(S,0)[3]
#define n ssGetFcnParam(S,0)[4]

static void sbsDerivatives(
double t, /* current simulation time */
const double* x, /* the states vector */
const double* u, /* the input vector */
double* dx, /* the derivatives vector */
sbsTask* S /* the sbs struct for this block */

) {
double tau_m = Km * K1 * u[0];
dx[0] = x[1];
dx[1] = (tau_m - bm * x[1] - (u[1] / n)) / Jm;

}

static void sbsOutputs(
double t, /* current simulation time */
const double* x, /* the states vector */
const double* u, /* the input vector */
double* y, /* the output vector */
sbsTask* S /* the sbs struct for this block */

{
*y = x[0];

}

static void sbsInitializeSizes(sbsTask* S) {
ssSetNumContStates(S, 2); ssSetNumDiscStates(S, 0);
ssSetNumInputs(S, 2); ssSetNumOutputs(S, 1);
ssSetNumRWork(S, 0); ssSetNumIWork(S, 0);
ssSetNumPWork(S, 0);

}

static void sbsTerminate(sbsTask* S) { }



197

C.5 C API implementation

This section presents the C application programming interface provided to develop simu-

lation software modules.

/* File: sbs.h
* Comments:
* Data structures and access methods for sbs-tasks
* Any model is an sbs-task. The sbsTask contains all entry points
* to the sbs-task (e.g., sbsOutputs) as well as any data
* associated with the sbs-task.
*/

#ifndef _SBS_H
#define _SBS_H

#define _QUOTE1(name) #name
#define _QUOTE(name) _QUOTE1(name)

#define DECLARE_CLASS(classname) sbsTask _sbsClass_##classname; \
static sbsTask* _S = &_sbsClass_##classname; \
void sbsDerivatives(),sbsOutputs(); \
void sbsInitializeSizes(), sbsTerminate(); \
static char _sbsfcnName[] = "SIMKIT sbs-task \"" _QUOTE(classname)
"\""; \
void _sbsInitializeClassFcnPointers_##classname() \
{ \

ssSetModelName(_S, _sbsfcnName); \
ssSetsbsInitializeSizes(_S,sbsInitializeSizes); \

ssSetsbsOutputs(_S,sbsOutputs); \
ssSetsbsDerivatives(_S,sbsDerivatives); \
ssSetsbsTerminate(_S,sbsTerminate); \

}

typedef struct sbsTask_tag sbsTask;

/*
* _sbsFcnModelMethods:
* sbsInitializeModel - Initialize sbsTask sizes array
* sbsOutputs - Fill output vector
* sbsDerivates - Compute the derivatives
* sbsTerminate - End of model housekeeping
*/

struct _sbsFcnModelMethods {
void (*sbsInitializeSizes)(sbsTask* S);
void (*sbsTerminate)(sbsTask* S);
void (*sbsOutputs)(double t, const double* x, const double* u,

double* y, sbsTask* S);



198

void (*sbsDerivatives)(double t, const double* x, const double* u,
double* dx, sbsTask* S);

};

struct _sbsSizes {
int numContStates; /* number of continuous states */
int numDiscStates; /* number of discrete states */
int numOutputs; /* number of outputs */
int numInputs; /* number of inputs */

/* ------ Work vectors --------*/
int numIWork; /* size of integer work vector */
int numRWork; /* size of double work vector */
int numPWork; /* size of pointer work vector */

};

struct _sbsStates {
double* U; /* input vector */
double* Y; /* output vector */
double* X; /* State vector */
double* dX; /* derivative vector */

};

struct _sbsFcnParams {
int count; /* number of function parameters passed in */
const double** params; /* the function parameters */

};

struct _sbsWork {
int* iWork; /* integer work vector */
double* rWork; /* real work vector */
void** pWork; /* pointer work vector */
int* mapVector; /* pointer to the global array that maps

inputs to outputs */
};

struct sbsTask_tag {
const char* modelName; /* Name of the model */
struct _sbsSizes sizes; /* sizes */
struct _sbsFcnParams fcnParams; /*function parameters passed in*/
struct _sbsStates states; /* state and derivative vectors */
struct _sbsWork work; /* various work areas */
struct {

struct _sbsFcnModelMethods sbsFcn; /* model methods */
} modelMethods;

};

/*======================================*
* sbsTask Get and Set Access methods *
*======================================*/



199

/*----------------------- S->modelName ------------------------*/
#define ssGetModelName(S) \

(S)->modelName /* (const char*) */
#define ssSetModelName(S, name) \

(S)->modelName = (name)

/*-------------------------------- S->sizes ----------------------
-----------*/
#define ssGetNumContStates(S) \

(S)->sizes.numContStates /* (int) */
#define ssSetNumContStates(S,nContStates) \

(S)->sizes.numContStates = (nContStates)

#define ssGetNumDiscStates(S) \
(S)->sizes.numDiscStates /* (int) */

#define ssSetNumDiscStates(S,nDiscStates) \
(S)->sizes.numDiscStates = (nDiscStates)

#define ssGetNumTotalStates(S) \
(ssGetNumContStates(S) + ssGetNumDiscStates(S)) /* (int) */

#define ssGetNumOutputs(S) \
(S)->sizes.numOutputs /* (int) */

#define ssSetNumOutputs(S,nOutputs) \
(S)->sizes.numOutputs = (nOutputs)

#define ssGetNumInputs(S) \
(S)->sizes.numInputs /* (int) */

#define ssSetNumInputs(S,nInputs) \
(S)->sizes.numInputs = (nInputs)

#define ssGetNumRWork(S) \
(S)->sizes.numRWork /* (int) */

#define ssSetNumRWork(S,nRWork) \
(S)->sizes.numRWork = (nRWork)

#define ssGetNumIWork(S) \
(S)->sizes.numIWork /* (int) */

#define ssSetNumIWork(S,nIWork) \
(S)->sizes.numIWork = (nIWork)

#define ssGetNumPWork(S) \
(S)->sizes.numPWork /* (int) */

#define ssSetNumPWork(S,nPWork) \
(S)->sizes.numPWork = (nPWork)

/*---------------- S->fcnParams --------------------*/

#define ssGetFcnParamsCount(S) \



200

(S)->fcnParams.count /* (int) */
#define ssSetFcnParamsCount(S,n) \

(S)->fcnParams.count = (n)

#define ssGetFcnParamsPtr(S) \
(S)->fcnParams.params /* (double **) */

#define ssSetFcnParamsPtr(S,ptr) \
(S)->fcnParams.params = (ptr)

#define ssGetFcnParam(S,index) \
(S)->fcnParams.params[index] /* (double*) */

#define ssSetFcnParam(S,index,mat) \
(S)->fcnParams.params[index] = (mat)

/*----------------------- S->states --------------------------*/
#define ssGetU(S) \

(S)->states.U /* (double *) */
#define ssSetU(S,u) \

(S)->states.U = (u)

#define ssGetY(S) \
(S)->states.Y /* (double *) */

#define ssSetY(S,y) \
(S)->states.Y = (y)

#define ssGetX(S) \
(S)->states.X /* (double *) */

#define ssSetX(S,x) \
(S)->states.X = (x)

#define ssGetdX(S) \
(S)->states.dX /* (double *) */

#define ssSetdX(S,dx) \
(S)->states.dX = (dx)

/*------------------------ S->work --------------------------*/
#define ssGetIWork(S) \

(S)->work.iWork /* (int *) */
#define ssSetIWork(S,iwork) \

(S)->work.iWork = (iwork)

#define ssGetIWorkValue(S,iworkIdx) \
(S)->work.iWork[iworkIdx] /* (int) */

#define ssSetIWorkValue(S,iworkIdx,iworkValue) \
(S)->work.iWork[iworkIdx] = (iworkValue)

#define ssGetRWork(S) \
(S)->work.rWork /* (double *) */

#define ssSetRWork(S,rwork) \
(S)->work.rWork = (rwork)



201

#define ssGetRWorkValue(S,rworkIdx) \
(S)->work.rWork[rworkIdx] /* (double) */

#define ssSetRWorkValue(S,rworkIdx,rworkValue) \
(S)->work.rWork[rworkIdx] = (rworkValue)

#define ssGetPWork(S) \
(S)->work.pWork /* (void **) */

#define ssSetPWork(S,pwork) \
(S)->work.pWork = (pwork)

#define ssGetPWorkValue(S,pworkIdx) \
(S)->work.pWork[pworkIdx] /* (void*) */

#define ssSetPWorkValue(S,pworkIdx,pworkValue) \
(S)->work.pWork[pworkIdx] = (pworkValue)

#define ssGetmapV(S) \
(S)->work.mapVector /* (int *) */

#define ssSetmapV(S,mVec) \
(S)->work.mapVector = (mVec)

/*------------------ S->modelMethods.sbsFcn --------------------*/
#define ssSetsbsInitializeSizes(S,initSizes) \

(S)->modelMethods.sbsFcn.sbsInitializeSizes = \
(void (*)(sbsTask*)) (initSizes)

#define fcnInitializeSizes(S) \
(*(S)->modelMethods.sbsFcn.sbsInitializeSizes)(S)

#define ssSetsbsOutputs(S,outputs) \
(S)->modelMethods.sbsFcn.sbsOutputs = \

(void (*)(double, const double*, \
const double*, double*, sbsTask*)) (outputs)

#define fcnOutputs(t, x, u, y, S) \
(*(S)->modelMethods.sbsFcn.sbsOutputs)(t,x,u,y,S)

#define ssSetsbsDerivatives(S,derivs) \
(S)->modelMethods.sbsFcn.sbsDerivatives = \

(void (*)(double, const double*, \
const double*, double*, sbsTask*)) (derivs)

#define fcnDerivatives(t, x, u, dx, S) \
(*(S)->modelMethods.sbsFcn.sbsDerivatives)(t,x,u,dx,S)

#define ssSetsbsTerminate(S,housekeeping) \
(S)->modelMethods.sbsFcn.sbsTerminate = \

(void (*)(sbsTask*)) (housekeeping)
#define fcnTerminate(S) \

(*(S)->modelMethods.sbsFcn.sbsTerminate)(S)

#define ssCopyModelMethods(T,S) \
(T)->modelMethods.sbsFcn.sbsInitializeSizes = \



202

(S)->modelMethods.sbsFcn.sbsInitializeSizes; \
(T)->modelMethods.sbsFcn.sbsTerminate = \
(S)->modelMethods.sbsFcn.sbsTerminate; \

(T)->modelMethods.sbsFcn.sbsOutputs = \
(S)->modelMethods.sbsFcn.sbsOutputs; \

(T)->modelMethods.sbsFcn.sbsDerivatives = \
(S)->modelMethods.sbsFcn.sbsDerivatives

#endif

/* Eof: sbs.h */



203

Appendix D Composable
Simulation Markup
Language

<?xml encoding="US-ASCII"?>

<!--*************************************************************
** Carnegie Mellon University **
** Institute for Complex Engineered Systems **
** **
** Antonio Diaz-Calderon & Chris Paredis **
** Composable Simulation Markup Landuage DTD **
** May, 2000 **
** **
****************************************************************

-->

<!ENTITY % vhdl-ams-mode "INCLUDE">
<!ENTITY % non-vhdl-ams-mode "IGNORE">

<!-- Names definitions -->
<!ENTITY % IDENT "NMTOKEN"> <!-- an identifier -->
<!ENTITY % URL "CDATA"> <!-- an URL -->
<!ENTITY % CONNECTOR "CDATA"> <!-- a connector -->
<!ENTITY % EXPRESSION "CDATA"> <!-- an expression -->



204

<!ENTITY % definition "(interface | implementation | record)">
<!ENTITY % _common_declarations "signal | constant | type |

sub-type | variable | package">

<!ENTITY % _entity_header "generics?, boundary?">
<!ENTITY % _entity_declarative_item "%_common_declarations;">
<!ENTITY % _entity_statements "assertions">
<!ENTITY % _entity_meta_knowledge "semantics?, implementations?">
<!ENTITY % _ebody "(%_entity_header;,

(%_entity_declarative_item;)*,
%_entity_statements;?,
%_entity_meta_knowledge;)">

<!ENTITY % _architecture_declarative_part
"branch-quantity | free-quantity |
spectral-quantity | noise-quantity |
terminal | component | function | %_common_declarations;">

<!ENTITY % _abody "((%_architecture_declarative_part;)*,
concurrent-statements, description?)">

<!ENTITY % _prim_statements "process | break | equation | assert">
<!ENTITY % _comp_statements "connect">

<![%non-vhdl-ams-mode;[
<!ENTITY % _concurrent_statements "((%_prim_statements;)+ |

%_comp_statements;+)">
]]>

<![%vhdl-ams-mode;[
<!-- <!ENTITY % _concurrent_statements "(%_prim_statements; |

%_comp_statements;)+"> -->
<!ENTITY % _concurrent_statements "(#PCDATA | %_prim_statements; |

%_comp_statements;)*">
]]>

<!-- Valid natures provided by the modeling environment -->
<!ENTITY % NATURES "(electrical | magnetic | fluidic |

thermal | mechanical | translational | rotational |
electrical_vector)">

<!ENTITY % mach-limit "big | small | bigint | -big | -small | -
bigint">

<!--********************* D O C U M E N T **********************-->
<!ELEMENT document (require*, (((library | package)*,

(%definition;)*) | component*))>
<!ATTLIST document

version CDATA #REQUIRED



205

is_library (true | false) "false">

<!ELEMENT require EMPTY>
<!ATTLIST require

url CDATA #REQUIRED>

<!--********************** L I B R A R Y **********************-->
<!ELEMENT library EMPTY>
<!ATTLIST library

name NMTOKEN #REQUIRED>

<!--********************** P A C K A G E **********************-->
<!ELEMENT package EMPTY>
<!ATTLIST package

name NMTOKEN #REQUIRED>

<!--******************** I N T E R F A C E **********************-->
<!ELEMENT interface %_ebody;>
<!ATTLIST interface

ident %IDENT; #REQUIRED
abstract (true | false) "false"
super-type (NMTOKEN | null) "null"
sub-types (NMTOKENS | null) "null">

<![IGNORE[
<!--************* C O M P O N E N T - I N S T A N C E *************-->
<!ELEMENT component-instance

(parameter-binding*, bound-implementation)>
<!ATTLIST component-instance

ident %IDENT; #REQUIRED
instance-of %IDENT; #REQUIRED>

]]>

<!--********************* G E N E R I C S **********************-->
<!ELEMENT generics (parameter)+>

<!--********************* B O U N D A R Y **********************-->
<!ELEMENT boundary (terminal | quantity | interface-signal)+>

<!--********************* T E R M I N A L **********************-->
<!ELEMENT terminal EMPTY>
<!ATTLIST terminal

name %IDENT; #REQUIRED
nature-type %NATURES; "electrical">

<!--********************* Q U A N T I T Y **********************-->
<!ELEMENT quantity EMPTY>
<!ATTLIST quantity

name %IDENT; #REQUIRED
nature-type (real | NMTOKEN) "real"



206

range (true | false) "false"
direction (in | out) #REQUIRED
default %EXPRESSION; #IMPLIED
row-l CDATA #IMPLIED
row-h CDATA #IMPLIED>

<!--******************* I N T E R F A C E S I G N A L ***********-->
<!ELEMENT interface-signal EMPTY>
<!ATTLIST interface-signal

name %IDENT; #REQUIRED
nature-type CDATA #REQUIRED
range (true | false) "false"
signal-kind (in | out | inout | buffer) #IMPLIED
guarded (true | false) "false"
default %EXPRESSION; #IMPLIED
row-l CDATA #IMPLIED
row-h CDATA #IMPLIED>

<!--******************* A S S E R T I O N S *********************-->
<!ELEMENT assertions (assert)+>

<!ELEMENT assert EMPTY>
<!ATTLIST assert

label NMTOKEN #IMPLIED
postponed (true | false) "false"
condition CDATA #REQUIRED
report CDATA #IMPLIED
severity CDATA #IMPLIED>

<!--******************** S E M A N T I C S **********************-->
<!ELEMENT semantics (qprop | assumption | pprop)+>

<!--********************** Q P R O P **********************-->
<!ELEMENT qprop EMPTY>
<!ATTLIST qprop

sign (pos | neg | none) "pos"
Q1 CDATA #REQUIRED
Q2 CDATA #REQUIRED>

<!--******************** A S S U M P T I O N ********************-->
<!ELEMENT assumption EMPTY>
<!ATTLIST assumption

def CDATA #REQUIRED>

<!--********************** P P R O P **********************-->
<!ELEMENT pprop (#PCDATA)>

<!--***************** I M P L E M E N T A T I O N S **************-->
<!ELEMENT implementations (specification)+>
<!ELEMENT specification EMPTY>



207

<!ATTLIST specification
name NMTOKEN #REQUIRED
url %URL; #REQUIRED
default (true | false) "false">

<!--********************** R E C O R D **********************-->
<!ELEMENT record (parameter)+>
<!ATTLIST record

ident %IDENT; #REQUIRED>

<!--******************* D E S C R I P T I O N *******************-->
<!ELEMENT description (#PCDATA)>

<!--****************** I M P L E M E N T A T I O N ***************-->
<!ELEMENT implementation %_abody;>
<!ATTLIST implementation

ident %IDENT; #REQUIRED
of-interface %IDENT; #REQUIRED
compound (true | false) "false"
configure (true | false) "false"
is-default (true | false) "false"
vrml CDATA #IMPLIED>

<!ELEMENT concurrent-statements %_concurrent_statements;>

<!--******************* Q U A N T I T I E S *********************-->
<!ELEMENT free-quantity EMPTY>
<!ATTLIST free-quantity

nature-type NMTOKEN #REQUIRED
ident %IDENT; #REQUIRED
range (true | false) "false"
default %EXPRESSION; #IMPLIED
min (NMTOKEN | %mach-limit;) "-big"
max (NMTOKEN | %mach-limit;) "big"
row-l NMTOKEN #IMPLIED
row-h NMTOKEN #IMPLIED
col-l NMTOKEN #IMPLIED
col-h NMTOKEN #IMPLIED
semantics NMTOKEN #IMPLIED>

<!ELEMENT spectral-quantity EMPTY>
<!ATTLIST spectral-quantity

ident %IDENT; #REQUIRED
nature-type NMTOKEN #REQUIRED
magnitude NMTOKEN #REQUIRED
phase NMTOKEN #REQUIRED>

<!ELEMENT noise-quantity EMPTY>
<!ATTLIST noise-quantity

ident %IDENT; #REQUIRED



208

nature-type NMTOKEN #REQUIRED
definition CDATA #REQUIRED>

<!ELEMENT branch-quantity EMPTY>
<!ATTLIST branch-quantity

across-vars NMTOKENS #IMPLIED
through-vars NMTOKENS #IMPLIED
plus-terminal CDATA #REQUIRED
minus-terminal CDATA #IMPLIED>

<!--********************* C O N S T A N T **********************-->
<!ELEMENT constant EMPTY>
<!ATTLIST constant

ident %IDENT; #REQUIRED
nature-type NMTOKEN #REQUIRED
range (true | false) "false"
default %EXPRESSION; #IMPLIED
min (NMTOKEN | %mach-limit;) "-big"
max (NMTOKEN | %mach-limit;) "big"
row-l CDATA #IMPLIED
row-h CDATA #IMPLIED
col-l CDATA #IMPLIED
col-h CDATA #IMPLIED
semantics NMTOKEN #REQUIRED>

<!--********************* V A R I A B L E **********************-->
<!ELEMENT variable EMPTY>
<!ATTLIST variable

ident %IDENT; #REQUIRED
nature-type NMTOKEN #REQUIRED
range (true | false) "false"
default %EXPRESSION; #IMPLIED
shared (true | false) "false"
min (NMTOKEN | %mach-limit;) "-big"
max (NMTOKEN | %mach-limit;) "big"
row-l CDATA #IMPLIED
row-h CDATA #IMPLIED
col-l CDATA #IMPLIED
col-h CDATA #IMPLIED>

<!--******************* S I G N A L ****************************-->
<!ELEMENT signal EMPTY>
<!ATTLIST signal

name %IDENT; #REQUIRED
nature-type CDATA #REQUIRED
range (true | false) "false"
signal-kind (register | bus) #IMPLIED
default %EXPRESSION; #IMPLIED
row-l CDATA #IMPLIED
row-h CDATA #IMPLIED>



209

<!--********************** T Y P E **********************-->
<!ELEMENT type EMPTY>
<!ATTLIST type

name %IDENT; #REQUIRED
type-definition CDATA #REQUIRED>

<!--********************* S U B - T Y P E **********************-->
<!ELEMENT sub-type EMPTY>
<!ATTLIST sub-type

name %IDENT; #REQUIRED
subtype-indication CDATA #REQUIRED>

<!--******************** C O M P O N E N T **********************-->
<!ELEMENT component (parameter-binding*,

bound-implementation?,
candidate-implementation*,
position?)>

<!ATTLIST component
final (true | false) "false"
name %IDENT; #REQUIRED
interface-name %IDENT; #REQUIRED
vrml CDATA #IMPLIED
url CDATA #REQUIRED>

<!ELEMENT parameter-binding EMPTY>
<!ATTLIST parameter-binding

formal-part %IDENT; #REQUIRED
actual-part CDATA #REQUIRED>

<!ELEMENT bound-implementation (component*)>
<!ATTLIST bound-implementation

implementation-name %IDENT; #REQUIRED>

<!ELEMENT candidate-implementation (component*)>
<!ATTLIST candidate-implementation

is-default (true | false) "false"
implementation-name %IDENT; #REQUIRED>

<!--********************* F U N C T I O N **********************-->
<!ELEMENT function (function-args, function-body)>
<!ATTLIST function

name %IDENT; #REQUIRED
return-type NMTOKEN #REQUIRED>

<!ELEMENT function-args (formal-arg)+>

<!ELEMENT formal-arg EMPTY>
<!ATTLIST formal-arg

name %IDENT; #REQUIRED



210

nature-type NMTOKEN #REQUIRED
range (true | false) "false"
default %EXPRESSION; #IMPLIED
row-l CDATA #IMPLIED
row-h CDATA #IMPLIED
col-l CDATA #IMPLIED
col-h CDATA #IMPLIED>

<!ELEMENT function-body (#PCDATA)>

<!--********************** P R O C E S S **********************-->
<!ELEMENT process (#PCDATA)>
<!ATTLIST process

label NMTOKEN #IMPLIED>

<!--********************** B R E A K **********************-->
<!ELEMENT break (#PCDATA)>
<!ATTLIST break

label NMTOKEN #IMPLIED>

<!--********************* E Q U A T I O N **********************-->
<!ELEMENT equation (#PCDATA)>
<!ATTLIST equation

label NMTOKEN #IMPLIED>

<!--********************** C O N N E C T **********************-->
<!ELEMENT connect EMPTY>
<!ATTLIST connect

terminal-A %CONNECTOR; #REQUIRED
terminal-B %CONNECTOR; #REQUIRED>

<!--******************** T R A N S F O R M **********************-->
<!ELEMENT position EMPTY>
<!ATTLIST position

x NMTOKEN "0"
y NMTOKEN "0"
z NMTOKEN "0"
roll NMTOKEN "0"
pitch NMTOKEN "0"
yaw NMTOKEN "0">

<!--******************** P A R A M E T E R **********************-->
<!ELEMENT parameter EMPTY>
<!ATTLIST parameter

nature-type CDATA #REQUIRED
ident %IDENT; #REQUIRED
range (true | false) "false"
default %EXPRESSION; #IMPLIED
min (NMTOKEN | %mach-limit;) "-big"
max (NMTOKEN | %mach-limit;) "big"



211

row-l CDATA #IMPLIED
row-h CDATA #IMPLIED
col-l CDATA #IMPLIED
col-h CDATA #IMPLIED
semantics NMTOKEN #IMPLIED>

<!-- EOF csml.dtd -->



212

Bibliography

[1] M. Abadi and L. Cardelli, A theory of objects. Monographs in Computer Science,
Springer-Verlag, New York, 1996.

[2] G. Abowd, R. J. Allen, and D. Garlan, “Formalizing style to understand descrip-
tions of software architecture,” Pittsburgh, PA: School of Computer Science, Carn-
egie Mellon University.

[3] S. Addanki, R. Cremonini, and S. J. Penberthy, “Reasoning about assumptions in
graphs of models,” presented at IJCAI-89 1989.

[4] S. Addanki, R. Cremonini, and S. J. Penberthy, “Graphs of models,” Artificial
Intelligence, vol. 51, pp. 145-177, 1991.

[5] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data structures and algorithms. Add-
ison-Wesley, Reading, Massachusetts, 1987.

[6] R. J. Allen, “The Wright architectural description language,” unpublished.



213

[7] R. J. Allen and D. Garlan, “Formalizing architectural connection,” presented at
16th International Conference on Software Engineering, Sorrento, Italy, May
1994.

[8] R. J. Allen and D. Garlan, “Formal connectors,” School of Computer Science, Car-
negie Mellon University, Pittsburgh, PA, Tech. Report CMU-CS-94-115, March
1994.

[9] M. Anderson. “Object-oriented modeling and simulation of hybrid systems,” Ph.
D. Thesis, Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden, 1994.

[10] G. C. Andrews, M. J. Richard, and R. J. Anderson, “A general vector-network for-
mulation for dynamic systems with kinematic constraints,” Mechanisms and
Machine Theory, vol. 23, no. 3, pp. 243-256, 1988.

[11] D. Baraff, “Analytical methods for dynamic simulation of non-penetrating rigid
bodies,” SIGGRAPH: Compputer Graphics, vol. 23, no. 3, pp. 223-232, 1989.

[12] D. Baraff, “Interactive simulation of solid rigid bodies,” IEEE Computer Graphics
and Applications, pp. 63-75, 1995.

[13] P. I. Barton and C. C. Pantelides, “Modeling of combined discrete/continuous pro-
cesses,” AIChE Journal, vol. 40, no. 6, pp. 966-979, 1994.

[14] R. Bhaskar and A. Nigam, “Qualitative physics using dimensional analysis,” Arti-
ficial Intelligence, vol. 45, pp. 73-111, 1990.

[15] D. Bobrow, B. Falkenhainer, A. Farquhar, R. Fikes, K. Forbus, T. Gruber, Y.
Iwasaki, and B. Kuipers, “A compositional modeling language,” unpublished.

[16] A. M. Bos and M. J. L. Tiernego, “Formula manipulation in the bond graph model-
ing and simulation of large mechanical systems,” Journal of the Franklin Institute,
vol. 319, no. 1/2, pp. 51-65, 1985.

[17] F. H. Branin, “The algebraic-topological basis for network analogies and the vec-
tor calculus,” presented at Symposium on Generalized Networks, Polytechnic
Institute of Brooklin, April 12-14 1966.



214

[18] A. P. J. Breunese, J. L. Top, J. F. Broenink, and J. M. Akkermans, “Libraries of
reusable models: Theory and application,” Simulation, 1996.

[19] A. P. J. Breunese. “Automated support in mechatronich systems modeling,” Ph. D.
Thesis, Department of Electrical Engineering, University of Twente, Enschede,
The Netherlands, 1996.

[20] Cadsim Engineering, “CAMP-G,” 2000.

[21] F. E. Cellier, Continuous system modeling. Springer-Verlag, 1991.

[22] F. E. Cellier and H. Elmqvist, “Automated formula manipulation supports object-
oriented continuous system modeling,” IEEE Control Systems, vol. 13, no. 2, pp.
28-38, 1993.

[23] F. E. Cellier, “Object-oriented modeling: means for dealing with system complex-
ity,” presented at 15th Benelux Meeting on Systems and Control, Mierlo, The
Netherlands 1996.

[24] F. E. Cellier, H. Elmqvist, and M. Otter, “Modeling from physical principles,”
www.ece.arizona.edu/~cellier, 1996.

[25] E. Christen, K. Bakalar, A. M. Dewey, and E. Moser, “Analog and mixed-signal
modeling using the VHDL-AMS language,” 36th Design and Automation Confer-
ence, New Orleans, 1999.

[26] Controllab Products B. V., “20-sim,” 1999.

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms. MIT
Press, Cambridge, 1990.

[28] J. de Kleer, “Problem solving with the ATMS,” Artificial Intelligence, vol. 28, pp.
197-224, 1986.

[29] J. de Kleer, “An assumption-based TMS,” Artificial Intelligence, vol. 28, pp. 127-
162, 1986.

[30] J. de Kleer, “Extending the ATMS,” Artificial Intelligence, vol. 28, pp. 163-196,
1986.



215

[31] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, “A modular composable soft-
ware architecture for the simulation of mechatronic systems,” presented at ASME
Design Engineering Technical Conference, 18th Computers in Engineering Con-
ference, Atlanta, GA, September 1998.

[32] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, “Automatic generation of sys-
tem-level dynamic equations for mechatronic systems,” Computer-Aided Design,
vol. 32, pp. 339-354, 2000.

[33] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, “On the synthesis of the sys-
tem graph for 3D mechanics,” presented at American Control Conference, San
Diego, CA, June 2-4 1999.

[34] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, “Combining information
technology components and symbolic equation manipulation in modeling and sim-
ulation of mechatronic systems,” presented at IEEE International Symposium on
Computer Aided Control Sysyem Design, Island of Hawaii, HI, August 1999.

[35] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, “A composable simulation
environment for mechatronic systems,” presented at SCS 1999 European Simula-
tion Simposium, Erlangen, Germany, October 1999.

[36] v. J. J. Dixhoorn, “Bond graphs and the challenge of a unified modeling theory of
physical systems,” in Progress in Modeling and Simulation, F. E. Cellier, Ed. Lon-
don: Academic Press, 1980, pp. 207-245.

[37] I. S. Duff and J. K. Reid, “An implementation of Tarjan's algorithm for the block
triangularization of a matrix,” ACM Transaction on Mathematical Software, vol. 4,
no. 2, pp. 137-147, 1978.

[38] I. S. Duff, “On algorithms for obtaining a maximum traversal,” ACM Transactions
on Mathematical Software, vol. 7, no. 3, pp. 315-330, 1981.

[39] I. S. Duff, M. A, Erisman, and J. K. Reid, Direct methods for sparse matrices.
Monographs on numerical analysis, Oxford Science Publications, Oxford Univer-
sity Press, Oxford, 1989.

[40] W. K. Durfee, M. B. Wall, D. Rowell, and F. K. Abbott, “Interactive software for
dynamic system modeling using linear graphs,” IEEE Control Systems, vol. 11, no.
4, pp. 60-66, 1991.



216

[41] Dynasim AB, “Dymola,” 1999.

[42] H. Elmqvist, M. Otter, and F. E. Cellier, “Inline integration: A new mixed sym-
bolic/numeric approach for solving differential-algebraic qeuation systems,” :
Dynasim AB, Research Park Ideon, S-223 70 Lund, Sweden.

[43] H. Elmqvist, F. E. Cellier, and M. Otter, “Object-oriented modeling of hybrid sys-
tems,” presented at European Simulation Symposium, Delft, The Netherlands,
October 1993.

[44] H. Elmqvist and M. Otter, “Methods for tearing systems of equations in object-ori-
ented modeling,” presented at ESM 94 European simulation multiconference, Bar-
celona, Spain, 1994.

[45] H. Elmqvist and D. Brück, “Constructs for object-oriented modeling,” presented at
Eurosim Simulation Congress, Vienna, Austria, September 1995.

[46] H. Elmqvist and S. E. Mattsson, “An introduction to the physical modeling lan-
guage Modelica,” presented at European Simulation symposium, Passau, Ger-
many, October 19-22 1997.

[47] H. Elmqvist, S. E. Mattsson, and M. Otter, “Modelica: The new object-oriented
modeling language,” presented at The 12th European Simulation Multiconference,
Manchester, UK, June 16-19 1998.

[48] B. Falkenhainer and K. D. Forbus, “Setting up large-scale qualitative models,” in
Readings in qualitative reasoning about physical systems, The Morgan Kaufmann
Series in Representation and Reasoning, D. S. Weld and J. de Kleer, Eds. San
Mateo, CA: Morgan Kaufmann Publisher, Inc., 1990, pp. 553-558.

[49] B. Falkenhainer and K. D. Forbus, “Compositional modeling: Finding the right
model for the job,” Artificial Intelligence, vol. 51, pp. 95-143, 1991.

[50] B. Falkenhainer, A. Farquhar, D. Bobrow, R. Fikes, K. Forbus, T. Gruber, Y.
Iwasaki, and B. Kuipers, “CML: A compositional modeling language,” Knowl-
edge Sysyems Laboratory, Stanford University, Palo Alto, CA, Tech. Report KSL-
94-16, January 1994.

[51] J. B. Ferris and J. L. Stein, “Development of proper models of hybrid systems: A
bond graph formulation,” presented at International Conference on Bond Graph
Modeling and Simulation, Las Vegas, NV 1995.



217

[52] S. Finger and J. R. Rinderle, “A transformational approach to mechanical design
using a bond graph grammar,” presented at The 1989 ASME Design Technical
Conferences, 1st International Conference on Design Theory and Methodology,
Montreal, Quebec, Canada, September 1989.

[53] S. Finger and J. R. Rinderle, “Transforming behavioral and physical representa-
tions of mechanical designs,” presented at First International Workshop in Formal
Methods in Design, Manufacturing and Assembly, Colorado Springs, January
1990.

[54] K. D. Forbus, “Qualitative process theory,” Artificial Intelligence, vol. 24, pp. 85-
168, 1984.

[55] K. D. Forbus, “The qualitative process engine,” in Readings in qualitative reason-
ing about physical systems, The Morgan Kaufmann Series in Representation and
Reasoning, D. S. Weld and J. de Kleer, Eds. San Mateo, CA: Morgan Kaufmann
Publisher, Inc., 1990, pp. 220-235.

[56] K. D. Forbus, “The QPE user's manual,” The Institute for the Learning Sciences,
Northwestern University January 1992.

[57] P. Fritzson and V. Engelson, “Modelica: A unified object-oriented language for
system modeling and simulation,” presented at The 12th European Conference on
Object-Oriented Programming, Brussels, Belgium, July 20-24 1998.

[58] M. R. Genesereth and R. E. Fikes, “Knowledge interchange format version 3.0 ref-
erence manual,” Stanford University, Palo Alto, CA, Tech. Report KSL-92-86,
June 1992.

[59] M. B. Histand and D. G. Alciatore, Introduction to mechatronics and measurement
systems. Boston: Mc Graw-Hill, 1998.

[60] IEEE 1076.1 Working Group, “Analog and mixed-signal extensions to VHDL,”
vhdl.org/vi/analog, 1999.

[61] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System dynamics: A unified
approach, 2nd ed. John Wiley & Sons, Inc., New York, 1990.

[62] D. E. Knuth, The art of computer programming, vol. 1. Addison-Wesley, Reading,
Massachusetts, 1973.



218

[63] H. E. Koenig, Y. Tokad, H. K. Kesavan, and H. G. Hedges, Analysis of discrete
physical systems. MacGraw-Hill, New York, 1967.

[64] P. C. Krause, Analysis of electric machinery. McGraw-Hill series in electrical engi-
neering, McGraw-Hill, New York, 1986.

[65] B. Kuipers, “Qualitative simulation,” Artificial Intelligence, vol. 29, pp. 289-338,
1986.

[66] B. J. Kuipers, C. Chiu, D. T. Dalle Molle, and D. R. Throop, “Higher-order deriva-
tive constraints in qualitative simulation,” Artificial Intelligence, vol. 51, pp. 343-
379, 1991.

[67] F. S. Lee, T. J. Moon, and G. Y. Masada, “Modeling of distributed electromechani-
cal systems using extended bond graphs,” Journal of the Franklin Institute, vol.
331B, no. 1, pp. 43-60, 1994.

[68] E. A. Lee and others, “Ptolemy II,” Department of Electrical and Computer Engi-
neering and Computer Sciences, University of California at Berkeley, Berkeley,
CA 2000.

[69] T. W. Li and G. C. Andrews, “Application of the vector-network method to con-
strained mechanical systems,” Mechanisms, Transmissions, and Automation in
Design, vol. 108, pp. 471-480, 1986.

[70] LMS CADSI, “DADS,” 1999.

[71] L. S. Louca, J. L. Stein, G. M. Hulbert, and J. Sprague, “Proper model generation:
An energy-based methodology,” presented at International Conference on Bond
Graph Modeling 1997.

[72] D. C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz, “Partial ordering of
event sets and their application to prototyping concurrent timed systems,” Com-
puter Systems Laboratory, Stanford University, Stanford, CA CSL-TR-92-515,
April 1992.

[73] D. C. Luckham and J. Vera, “An event-based architecture definition language,”
IEEE Transactions on Software Engineering, vol. 21, no. 9, pp. 717-734, 1995.



219

[74] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann,
“Specitication and analysis of system architecture using Rapide,” IEEE Transac-
tions on Software Engineering, vol. 21, no. 4, pp. 336-355, 1995.

[75] D. C. Luckham, J. Vera, and S. Medal, “Three concepts of system architecture,”
Computer Systems Laboratory, Stanford University, Stanford, CA, Tech. Report
CSL-TR-95-674, July 1995.

[76] D. L. Margolis, “A survey of bond graph modeling for interacting lumped and dis-
tributed systems,” Journal of the Franklin Institute, vol. 319, no. 1/2, pp. 125-135,
1985.

[77] T. A. Mashburn and D. C. Anderson, “Automatically deriving behavior constraints
for performance variables in mechanical design,” Research in Engineering Design,
vol. 6, pp. 85-102, 1994.

[78] S. E. Mattsson and H. Elmqvist, “An overview of the modeling language Model-
ica,” presented at Eurosim '98 Simulation congress, Helsinki, Finland, April 14-15
1998.

[79] MatWeb, “The online materials information resource,” www.matls.com, 2000.

[80] J. J. McPhee, M. G. Ishac, and G. C. Andrews, “Wittenburg's formulation of multi-
body dynamics equations from a graph-theoretic perspective,” Mechanism and
Machine Theory, vol. 31, no. 2, pp. 202-213, 1996.

[81] J. J. McPhee, “On the use of linear graph theory in multibody system dynamics,”
Nonlinear Dynamics, vol. 9, pp. 73-90, 1996.

[82] J. J. McPhee, “A unified graph-theoretic approach to formulating multibody
dynamics equations in absolute or joint coordinates,” Journal of the Franklin Insti-
tute, vol. 334B, no. 3, pp. 431-445, 1997.

[83] J. J. McPhee, “Automatic generation of motion equations for planar mechanical
systems using the new set of "branch coordinates",” Mechanism and Machine The-
ory, vol. 33, no. 6, pp. 805-823, 1998.

[84] Mechanical Dynamics Inc., “ADAMS,” 1999.

[85] MicroMo Electronics, www.micromo.com, 2000.



220

[86] B. J. Muegge. “Graph-theoretic modeling and simulation of planar mechatronic
systems,” MASc. Thesis, Systems Design Engineering, University of Waterloo,
Waterloo, 1996.

[87] J. M. Nataf, “A direct translator from neutral model format to the SPARK simula-
tion environment,” Enery and Buildings, vol. 23, no. 2, pp. 131-139, 1995.

[88] P. P. Nayak, L. Joskowicz, and S. Addanki, “Automated model selection using
context-dependent behaviors,” presented at Fifth International Workshop on Qual-
itative Reasoning about Physical Systems 1991.

[89] P. P. Nayak and L. Joskowicz, “Efficient compositional modeling for generating
causal explanations,” Artificial Intelligence, vol. 83, no. 2, pp. 193-227, 1996.

[90] P. E. Nikravesh and I. S. Chung, “Application of euler parameters to the dynamic
analysis of three-dimensional constrained mechanical systems,” Journal of
Mechanical Design, vol. 104, pp. 785-791, 1982.

[91] N. Orlandea. “Node-analogous, sparsity-oriented methods for simulation of
mechanical dynamic systems,” Ph.D. Thesis, Mechanical Engineering, University
of Michigan, 1973.

[92] N. Orlandea, M. A. Chace, and D. A. Calahan, “A sparsity-oriented approach to
the dynamic analysis and design of mechanical systems - Part 1,” Journal of Engi-
neering for Industry, August, 1977.

[93] N. Orlandea, M. A. Chace, and D. A. Calahan, “A sparsity-oriented approach to
the dynamic analysis and design of mechanical systems - Part 2,” Journal of Engi-
neering for Industry, August, 1977.

[94] O. M. Oshinowo and J. J. McPhee, “Object-oriented implementation of a graph-
theoretic formulation for planar multibody dynamics,” Numerical Methods in
Engineering, vol. 40, no. 4097, 1997.

[95] M. Otter, H. Elmqvist, and F. E. Cellier, “Modeling of multibody systems with the
object-oriented modeling language Dymola,” presented at NATO/ASI Computer-
Aided Analysis of Rigid and Flexible Mechanical Systems, Troia, Portugal,
June27-July 9 1993.

[96] G. Pahl and W. Beitz, Engineering design: A systematic approach, 2nd Edition,
Springer-Verlag, London, U.K., 1996.



221

[97] H. M. Painter, Analysis and design of engineering systems. MIT Press, Cambridge,
MA, 1961.

[98] C. C. Pantelides, "The consistent initialization of differential-algebraic systems,"
SIAM J. Sci. Stat. Comput., vol. 9, 1988.

[99] C. C. Pantelides and P. I. Barton, "Equation-oriented dynamic simulation: Current
status and future perspectives," Computers in Chemical Engineering, vol. 17, S263
1993.

[100] P. Piela. “ASCEND: An Object-Oriented Computer Environment for Modeling
and Analysis,” Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, 1989.

[101] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg, “ASCEND:
An object oriented computer environment for modeling and analysis. 1 - The mod-
eling language,” Comput. Chem Engng, vol. 15, no. 1, pp. 53-72, 1991.

[102] R. Rajagopalan, “Qualitative modeling and simulation: A survey,” in AI Applied to
Simulation, vol. 18, Simulation Series, E. J. H. Kerckhoffs, G. C. Vansteenkiste,
and B. P. Zeigler, Eds. The Society for Computer Simulation.

[103] S. Y. Reddy and K. W. Fertig, “Design Sheet: A system for exploring design
space,” Artificial Intelligence in Design, 1996.

[104] R. C. Redfield, “Bond graphs as a tool in mechanical system conceptual design,”
presented at ASME, Automated Modeling 1992.

[105] E. Rich and K. Knight, Artificial Intelligence, 2nd edMcGraw-Hill, New York,
1991.

[106] M. J. Richard and R. J. Anderson, “Dynamic simulation of three-dimensional rigid
bodies using vector-network techniques,” Mathematics and Computers in Simula-
tion, vol. 26, pp. 289-296, 1984.

[107] M. J. Richard, R. J. Anderson, and G. C. Andrews, “The vector-network method
for the modeling of mechanical systems,” Mathematics and Computers in Simula-
tion, vol. 31, pp. 565-581, 1990.



222

[108] M. J. Richard, I. Bindzi, and C. M. Gosselin, “A topological approach to the
dynamic simulation of articulated machinery,” Journal of Mechanical Design, vol.
117, pp. 199-202, 1995.

[109] P. H. Roe, Networks and systems. Electrical Engineering, Addison-Wesley, Read-
ing, Massachusetts, 1966.

[110] R. C. Rosenberg, “State-space formulation for bond graph models of multiport
systems,” Journal of Dynamic Systems, Measurement, and Control, pp. 35-40,
1971.

[111] R. C. Rosenberg and T. Zhou, “Power-based model insight,” presented at Auto-
mated Modeling for Design, The Winter Annual Meeting of the ASME, Chicago,
Ill, November 1988.

[112] R. C. Rosenberg and D. C. Karnopp, Introduction to physical system dynamics.
Series in Mechanical Engineering, McGraw-Hill, New York, 1983.

[113] R. C. Rosenberg and Y. Y. Wang, “Some structuring issues in modeling,” presented
at ASME, Automated Modeling 1992.

[114] RosenCode Associates Inc., The ENPORT reference manual, Lansing, Michigan,
1989.

[115] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-ori-
ented modeling and design. Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[116] J. Rumbaugh, I. Jacobson, and G. Booch, The unified modeling language reference
manual. Reading, Mass. Addison-Wesley, 1999.

[117] P. Sahlin and E. F. Sowell, “A neutral model format for building simulation mod-
els,” presented at IBPSA Building Simulation conference, Vancouver, Canada,
June 1989.

[118] P. Sahlin. “Modeling and simulation methods for modular continuous systems in
buildings,” Ph. D. Thesis, Department of Building Sciences, Division of Building
Services, Royal Institute of Technology, Stockholm, Sweden, 1996.



223

[119] P. Sahlin, “NMF handbook,” Department of Building Sciences, Division of Build-
ing Services, Royal Institute of Technology, Stockholm, Sweeden, Tech. Report
ASHRAE RP-839, June 1996.

[120] W. Schienhlen, Multibody systems handbook. Springer-Verlag, Berlin, 1990.

[121] S. Seshu and M. B. Reed, Linear graphs and electrical networks. Addison-Wesley,
Reading, Massachusetts, 1961.

[122] M. Shaw and D. Garlan, “Characteristics of higher-level languages for software
architectures,” School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, Tech. Report CMU-CS-94-210, December 1994.

[123] D. Shetty and R. A. Kolk, Mechatronics system design. PWS Publishing Company,
Boston, 1997.

[124] P. Shi. “Flexible multibody dynamics: A new approach using virtual work and
graph theory,” Ph. D. Thesis, Systems Design Engineering, University of Water-
loo, Waterloo, Canada, 1998.

[125] S. B. Shooter, W. Keirouz, S. Szykman, and S. J. Fenves, “A model for the flow of
design information,” presented at 2000 ASME Design Engineering Technical Con-
ferences (12th International Conference on Design Theory and Methodology),
paper No. DETC2000/DTM-14550, Baltimore, MD, September 2000.

[126] R. Sinha, C. J. J. Paredis, S. K. Gupta, and P. K. Khosla, “Capturing articulation in
assemblies from component geometry,” presented at ASME Design Engineering
Technical Conference, Atlanta, GA, September 1998.

[127] R. Sinha, C. J. J. Paredis, and P. K. Khosla, “Kinematics support for design and
simulation of mechatronic systems,” presented at 4th IFIP Workshop on Knowl-
edge Intensive CAD, Parma, Italy, May, 2000.

[128] S. S. Skiena, The Algorithm Design Manual. Springer-Verlag, New York, 1997.

[129] J. L. Stein and L. S. Louca, “A component-based modeling approach for systems
design: Theory and implementation,” presented at International Conference on
Bond Graph Modeling and Simulation, Las Vegas, NV, January 1995.



224

[130] D. V. Steward, “On an approach to techniques for the analysis of the structure of
large systems of equations,” SIAM Review, vol. 4, no. 4, pp. 321-342, 1962.

[131] D. V. Steward, “Partitioning and tearing systems of equations,” SIAM J. Numer.
Anal., vol. 2, no. 2, pp. 345-365, 1965.

[132] D. B. Stewart and P. K. Khosla, “Rapid development of robotic applications using
component-based real-time software,” presented at IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, August 1995.

[133] D. B. Stewart. “Real-time software design and analysis of reconfigurable multi-
sensor based systems,” Ph. D. Thesis, Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA, 1996.

[134] D. B. Stewart and P. K. Khosla, “The Chimera methodology: Designing dynami-
cally reconfigurable and reusable real-time software using port-based objects,”
International Journal of Software Engineering and Knowledge Engineering, vol.
6, no. 2, pp. 249-277, 1996.

[135] J. C. Strauss and others, “The SCI continuous system simulation language
(CSSL),” Simulation, vol. 9, no. 6, pp. 281-303, 1967.

[136] S. Szykman, S. J. Fenves, S. B. Shooter, and W. Keirouz, “A foundation for
interoperability in next-generation product development systems,” presented at
2000 ASME Design Engineering Technical Conferences (20th Computers and
Information in Engineering Conference), paper No. DETC2000/CIE-14622, Balti-
more, MD, September 2000.

[137] M. Takác, “Fixed point classification method for qualitative simulation,” in
Progress in Artificial Intelligence: 8th Portuguese Conference on Artificial Intelli-
gence, EPIA '97, vol. 1323, Lecture Notes in Artificial Intelligence, E. C. A. Car-
doso, Ed. Coimbra, Portugal: Springer, 1997, pp. 255-266.

[138] R. Tarjan, “Depht-first search and linear graphs algorithms,” SIAM Journal on
Computing, vol. 1, no. 2, pp. 146-160, 1972.

[139] The Boeing Company, “Easy5 Engineering analysis system,” 1999.

[140] The Mathworks Inc., “Matlab/Simulink,” 1999.



225

[141] J. L. Top. “Conceptual modeling of physical systems,” Ph. D. Thesis, University
of Twente, Enschede, The Netherlands, 1993.

[142] J. Top and H. Akkermans, “Tasks and ontologies in engineering modeling,”
Human-Computer Studies, vol. 41, pp. 585-617, 1994.

[143] H. M. Trent, “Isomorphisms between oriented linear graphs and lumped physical
systems,” The Journal of the Acoustical Society of America, vol. 27, no. 3, pp. 500-
527, 1955.

[144] M. J. L. Tiernego and A. M. Bos, “Modeling the dynamics and kinematics of
mechanical systems with multibond graphs,” Journal of the Franklin Institute, vol.
319, no. 1/2, pp. 37-50, 1985.

[145] T. J. A. de Vries, A. P. J. Breunese, and P. C. Breedveld, “MAX: A mechatronic
model building environment,” presented at Computer Aided Conceptual Design,
Lancaster 1994.

[146] T. J. A. de Vries. “Conceptual design of controlled electro-mechanical systems: A
modeling perspective,” Ph.D. Thesis, University of Twente, 1994.

[147] T. J. A. de Vries and A. P. J. Breunese, “Structuring product models to facilitate
design manipulations,” presented at International Conference on Engineering
Design, Praha, August 22-24 1995.

[148] D. S. Weld, “Automated model switching: Discrepancy driven selection of approx-
imation reformulation,” Department of Computer Sicence and Engineering, Uni-
versity of Washington, Seattle, WA, Tech. Report 89-08-01, October 1989.

[149] D. S. Weld, “Reasoning about model accuracy,” Department of Computer Science
and Engineering, University of Washington, Seattle, WA, Tech. Report 91-05-02,
June 1991.

[150] A. W. Westerberg, H. P. Hutchison, R. L. Motard, and P. Winter, Process flow-
sheeting. Cambridge University Press, Cambridge, 1979.

[151] P. M. Will, “Simulation and modeling in early concept design: An industrial per-
spective,” Research in Engineering Design, vol. 3, no. 1, pp. 1-13, 1991.



226

[152] B. C. Williams and J. de Kleer, “Qualitative reasoning about physical systems: A
return to roots,” Artificial Intelligence, vol. 51, pp. 1-9, 1991.

[153] B. H. Wilson and J. L. Stein, “An algorithm for obtaining minimum-order models
of distributed and discrete systems,” Journal of Dynamic Systems, Measurement
and Control. Transactions of the ASME, vol. 117, no. 4, 1992.

[154] B. H. Wilson, J. H. Taylor, and B. Erylmaz, “A frequancy domain model-order-
deduction algorithm for linear systems,” presented at ASME Dynamic Systems
and Control Division 1995.

[155] J. Wittenburg, Dynamics of systems of rigid bodies. B. G. Teubner, Stuttgart, 1977.

[156] J. Wittenburg, “Analytical methods in mechanical system dynamics,” in Computer
Aided Analysis and Optimization of MEchanical System Dynamics, vol. F9, NATO
ASI Series, E. J. Haug, Ed. Berlin: Springer-Verlag, 1984, pp. 89-127.

[157] J. Wittenburg and U. Wolz, “MESA VERDE: A symbolic program for nonlinear
articulated-rigid-body dynamics,” presented at ASME Design Engineering Con-
ference, Cincinnati, OH, September 1985.

[158] World Wide Web Consortium, “Extensible Markup Language (XML),”
www.w3.org/XML, 1999.

[159] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of modeling and simulation:
Integrating discrete event and continuous complex dynamic systems, 2nd ed. San
Diego: Academic Press, 2000.


