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The use of strong typing, exemplified in the Ascend modeling
language, is a recent phenomenon in executable modeling lan-
guages for mathematical modeling. It is also one that has sig-
nificant potential for improving the functionality of computer-
based modeling environments. Besides being a strongly typed
language, Ascend is unique in providing operators that allow
dynamic type inference, a feature that has been shown to be
useful in assisting model evolution and reuse. We develop
formal semantics for the type system in Ascend—focusing on
these operators—and analyze its mathematical and computa-
tional properties. We show that despite the strong interactions
between various statements involving the operators, the lan-
guage does possess certain desirable mathematical and com-
putational properties. Further, our analysis identifies general
issues in the design and implementation of type systems in
mathematical modeling languages. The methods used in the
article are applicable beyond Ascend to a class of typed mod-
eling languages that may be developed in the future.

E xecutable modeling languages (EMLs[18]) have been in-
strumental in the development of modern modeling envi-
ronments.[21] The use of strong typing is a recent phenom-
enon in such languages, but one that is likely to grow in
importance in the future.[54] In this article, we describe a
method for the formal analysis of a class of typed modeling
languages. These are languages that implement first-order
type systems with inclusion subtyping[15] and that provide
operators for dynamic type inference (see Section 1.3). We
explain our method by developing the semantics for, and
analyzing the properties of, the type system used in one
such fully implemented language, Ascend.[49, 50, 51]

The main objectives of the article are twofold. First, in the
context of Ascend itself, the formal specification and analy-
sis of the semantics of its type system allows us to establish
representational as well as computational properties of the
language. They should also enable users to understand pre-
cisely the implications of statements made in the language,
and guide designers in making improvements to the lan-
guage. In this context, it is important to note that certain
aspects of Ascend’s type system, not found in other model-
ing languages and little discussed in the model-management
literature, have been shown to be particularly useful in
assisting model reuse.[39] Second, we hope that by providing

an approach for the rigorous analysis of a type system
designed to assist modeling, this article will guide research
on major design issues and trade-offs peculiar to the use,
current or future, of typing in modeling languages.

We elaborate on both of these objectives, their relevance
to modeling environments, and related work in type sys-
tems and type inference, in Section 1. We describe the es-
sential features of Ascend in Section 2 with the objective of
illustrating representation features of its underlying type
system. In Section 3.1 we precisely state what we mean by
formalizing the type system in Ascend, and in Section 3.2,
we lay out our method for doing so. This involves partition-
ing Ascend into an object-level (corresponding to a class-
based language) and a meta-level language. We describe the
formal semantics of the Ascend type system in detail in
Section 4 and analyze its properties in Section 5. The impli-
cations of these results on the design and implementation of
typed modeling languages are discussed in Section 6.

1. Modeling Languages: Typing and Semantics
In the last two decades, a number of declarative executable
modeling languages have been developed to facilitate math-
ematical modeling. These include general-purpose lan-
guages for mathematical programming modeling (e.g.,
GAMS,[10] AMPL,[19] MODLER[28]), languages for mathe-
matical modeling in specific domains (e.g., PM*[38] for pro-
duction planning), graph-based modeling languages based
on graph grammars,[34, 35] a modeling language (SML[24, 25])
to support the structured modeling[20] framework, mathemat-
ical extensions to database languages (e.g., SQLMP[16] ex-
tends SQL) and languages rooted in formal logic (e.g., L1

and L2.[5, 7]

1.1 Trends in Modeling Languages
The earlier EMLs focused on representing model algebra—
the information necessary to solve the model. These lan-
guages classified objects and expressions into such general
categories as variables, parameters, constraints, and objec-
tive functions.[54] This categorization enabled certain simple
kinds of semantic validation (e.g., a variable used in the
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objective function must appear in a constraint). Later re-
search, aiming to support much more than model represen-
tation and solution, has led to the use of deeper categoriza-
tion—or typing—of objects, and a broader range of
reasoning over this categorization. Bradley and Clem-
ence[13, 14] describe a type calculus (involving dimensional
information about variables) for modeling languages and its
application in model validation and integration. Bhargava et
al.[9] type variables according to their quiddities—a formal
representation of semantic information—and discuss its use
in model integration. Muhanna describes the use of data
typing to validate interconnected models.[43] SML,[23, 24, 25]

the leading implementation of Geoffrion’s structured-mod-
eling framework,[20] significantly exploits the advantages
that strong typing provides in determining various sorts of
errors or inconsistencies in models; in a strongly typed
language, all elements have an associated type, and the
compiler ensures that all expressions in the language are
type-consistent.

Finally, a type system in which type determines model
structure forms the core of the strongly typed modeling
language Ascend.[50] Ascend supports equational modeling,
which includes paradigms such as mathematical program-
ming, simultaneous equations, and differential equations.
Models in Ascend (see Section 2) define types, and variables
in the language may have multiple associated types, many
of them inferred. Further, Ascend has type-manipulation
operators, which enhance the reusability and integration of
models.[39]

A second noticeable trend in modeling languages is in the
area of formal semantics of these languages. Because expres-
sions in the earlier EMLs closely mirrored conventional al-
gebraic expressions, these languages automatically had a
commonly understood interpretation. The semantic restric-
tions required to enforce model correctness were rarely for-
malized.[54] However, as EMLs are extended with sublan-
guages for indexed expressions (see [24, 25]), dimensional
analysis[14, 4]) and structured data modeling,[8, 54] the impor-
tance of a formal semantic specification has increased. Re-
garding indexed expressions, Neustadter[45] has addressed
the formal semantics of algebraic expression sublanguages
using a generic algebraic modeling language. Hong and
Mannino[32] provide denotational semantics of their model-
ing language LU, which is based on measurement theory.
Vicuna[54] uses attribute grammars to specify declaratively
the semantic restrictions in SML. However, little has been
done to date on the semantics of modeling-oriented type
systems—such as Ascend’s—which allow objects to have
multiple types and provide operators that use inference to
manipulate types, and in which important attributes of a
model depend on the type of its variables.

1.2 Focus and Motivation
This article falls at the convergence of these two recent
trends in executable modeling languages: the incorporation
of methods for typing, and the formalization of declarative
semantics of these languages. EMLs make it easier for mod-
elers to represent, verify, debug, and solve mathematical

models. It is agreed that, to make further progress in sup-
porting the modeling lifecycle, EMLs must be extended to
capture various kinds of qualitative information about mod-
els, which can then be used by inference procedures to
provide additional functionality in modeling systems.[7] Re-
cent research, cited above, indeed, provides evidence that
such extensions are consistent with a stronger role for typing
and methods of type inference. The lack of a semantic for-
malization, particularly for typed languages, severely limits
the error-detection capabilities that modeling languages can
provide to facilitate correct formulation of models.[54]

By developing and analyzing the semantics of one partic-
ular typed modeling language, Ascend, we hope to make a
contribution both to the development of typed modeling
languages, and to a formal analysis of these languages.
Specifically, in the context of Ascend, our method explicates
the semantics of the language in an implementation-inde-
pendent way. Although Ascend has a well-developed oper-
ational semantics, we believe there are three advantages in
carefully developing the declarative semantics.

First, our formal description of Ascend (Section 4) speci-
fies precisely the semantics of a fully implemented and
distinctive typed modeling language. In the absence of such
semantics, one must appeal to intuition to understand the
effects of various statements in Ascend; this can be non-
trivial and confusing. Second, it describes the Ascend lan-
guage in a notation and formalism that is well understood
and widely used for language design and specification.
Third, it permits a principled investigation of extensions to
the language, and suggests directions for improving or ex-
tending the language.

Why choose Ascend—rather than a generic typed lan-
guage—to demonstrate our method? Because Ascend is a
useful, working, modeling language which has a significant
user group in the industry. Because it is the only modeling
language that incorporates both strong typing and operators
that can alter, dynamically, the declared types of an object,
and because of the importance of these features in assisting
model reuse through model interconnection, which is rec-
ognized as an important and complex problem in modeling
systems.[22, 37, 43]

The ideas presented in this article generalize beyond As-
cend in two ways. First, the method that we use to specify
and analyze the semantics of Ascend is applicable to a broad
class of typed modeling languages (see Section 3.2). Second,
our analysis (Section 5) establishes a set of desirable prop-
erties which might serve as a benchmark for type systems
for model management languages. Such properties can, and
should, be investigated in all modeling languages. Because
the design of Ascend’s type system is entirely compatible
with current algebra-oriented executable modeling lan-
guages, this article should be extremely useful to those
interested in extending these languages.

1.3 Related Work
There is an extensive literature on typing in programming
languages, some of which is relevant to the issues we con-
sider in this article. A slightly dated but excellent survey of
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typing and the role it plays in enabling data abstraction and
polymorphism in programming languages is provided in
Cardelli and Wegner.[15] Type systems are classified both in
terms of the set of types that can be represented and in the
kinds of relationships such as equivalence or inclusion that
can be computed. Computing such relationships between
types is fundamental to the analysis and implementation of
type-checking and type-inference algorithms, a topic that is
of considerable interest to the programming language com-
munity.[2, 27] Given the recent trend toward incorporating
strong typing in modeling languages, this body of work is
directly relevant to implementing language environments.
Thus, for instance, the fact that Ascend’s type system is a
first-order type system with single inheritance subtyping (as
in Cardelli and Wegner’s classification[15]) gives us certain
assurances about type checking.

However, analogs of Ascend’s distinctive type modifica-
tion operators—which were developed to meet modeling
needs—have not been studied in the programming lan-
guage literature. This leads to our focus on the analysis of a
type system—such as Ascend’s—in which type-modifica-
tion operators play an important role. Ideas related to our
work may be found in the areas of type inference in pro-
gramming languages,[3, 15, 40, 36] typing in object-oriented
languages[29] (as a particular example, consider the type
system in the object-oriented programming language
Eiffel[42]), and subsumption in concept definition languages.[56]

We briefly discuss each of these topics and the relation of
results in these areas to our work.

1.3.1 Type Inference in Programming Languages
Type systems were introduced in the programming language
literature several years ago and now come in various
forms.[15] The objective of typing is to ensure that functions
(or equivalently, programs) are applied to appropriate ar-
guments. Programming languages can perform type check-
ing either at “compile time” or at “run time.” Languages that
perform compile-time type checking are statically typed,
whereas languages that perform run-time type checking are
dynamically typed. ML[47] is an example of a statically typed
language whereas LISP[55] is an example of a dynamically
typed language. It is obvious that the benefits of type check-
ing (particularly, static-type checking) are best realized
when every element of the program has an assigned type.

To relieve the burden on the programmer in making type
assignments, programming languages such as ML rely on a
type-assignment system. A type-assignment system is a set of
rules for associating types, in general the most general type,
to programs without assuming typed declarations of vari-
ables. Type inference, in this literature, refers to the algorith-
mic implementation of a type-assignment system. An exam-
ple is the inference in ML of the type of the function reverse
that reverses a list.[46] Given the definition of the reverse
function—this definition contains no mention of types—
ML’s type-assignment system is able to infer the most gen-
eral type of the function to be list(t) 3 list(t) where t is the
type variable. This, for instance, permits the reverse function
to be used to reverse a list of integers (i.e., the type variable
t takes on the value integer).

Thus, our use of the term-type inference in the context of
inferring the type associated with a model property (i.e., an
Ascend variable) is fundamentally different from the use of
the term in the programming language community. First, it
is not our aim to infer the type of a function or program
phrase from a definition that makes no mention of the type
of variables. Second, in languages such as ML, type infer-
ence involves determining the most general type of a func-
tion from its definition, while our inference procedures es-
tablish the most refined type of a model property from a
collection of declarations that either state or modify its type.

Finally, there is another crucial distinction between As-
cend’s type system and conditional typing in programming
languages. Ascend’s type-manipulation operators imple-
ment a specific and fixed semantics, considered relevant in
mathematical modeling; in this article, we articulate and
explain these semantics using predicate logic. Programming
languages with conditional typing, on the other hand, pro-
vide a specialized logic which is still general enough to
specify and implement, perhaps with significant program-
ming, particular operators (such as those of Ascend) which
impose various types of type constraints. Whereas these
languages do not offer such operators as “built-in” or prim-
itive operators for development of mathematical models,
Ascend does.

1.3.2 Concept- and Frame-Description Languages
Concept-description languages and frame-based representa-
tion languages have been an active area of research in the
knowledge representation community. These languages
provide representational features and inferential services.
For example, frame-based languages permit the definition of
a collection of structures called frames, that denote classes of
objects that have certain attributes. Each frame has a number
of data elements called slots, each of which corresponds to
an attribute that members of its class can have. Representa-
tional features in Ascend (e.g., atom and model types) are
similar to these features of frame-based languages. Frames
also support procedural features, thereby permitting proce-
dures to be attached to slots for computing values of slots or
to propagate side effects when a slot is filled. Although
Ascend does support frame-like structures, it does not allow
procedural attachments to slots; on the other hand, unlike
typical frame-based languages, Ascend has type-modifica-
tion operators, which are powerful tools in model building.

Concept-description languages support a different world
view from that of frame-based systems. The most influential
among these is the so called KL-ONE family[56] which in-
cludes languages such as CLASSIC[11] and LOOM.[41] They
have well-developed and clear criterial semantics[56] and
require concepts to be defined in terms of other previously
defined concepts. For example, the concept “children” is
related to the concept “sons.” These concept definitions are
automatically classified and organized using the subsump-
tion relation, which is stated intensionally unlike in Ascend,
where the taxonomic hierarchy is set up extensionally using
the refines relation. For example, in concept-description lan-
guages, the concept “woman with children” can be inferred
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to be more general than (i.e., it subsumes) the concept
“women with sons”; this, by virtue of the relationship be-
tween “children” and “sons”; such inference is not sup-
ported in Ascend. From a practical point of view, this means
that in concept-description languages, the modeler or the
programmer does not declare kind of or subtype relations to
create taxonomic structures, whereas in Ascend, the modeler
must handcraft and maintain the hierarchy. There has been
considerable work on defining these subsumption algo-
rithms and studying the tradeoff between the expressiveness
of the concept-description language and the tractability of
these algorithms.

To summarize, Ascend shares some similarities with the
declarative, representational features of frame-based lan-
guages. The procedural extensions in frame-based lan-
guages and the concept of automatic classification of con-
cepts in concept-description languages are not seen in
Ascend. Similarly, the type-modification operators in As-
cend that modify the type of a property, find no analog in
concept-description or frame-description languages.

2. The Ascend Modeling Language
Ascend was originally designed to support the declarative
and structured specification of large systems of constraints
that arise in engineering design.[48, 51] See [50] for an intro-
duction to the language and [39] for a discussion of its
application in OR/MS applications in general and model
management in particular. The language builds on concepts
used in object-oriented programming and conventional
strongly-typed languages such as Pascal. Specifically, it sup-
ports a well-defined type system, type-manipulation opera-
tors, and monotonic inheritance. It is not a pure object-
oriented language because it does not subscribe to either the
“information hiding” or the “explicit message passing” par-
adigms used in languages such as Smalltalk.[30]

Modeling in the Ascend language consists of declaring
structured types. There exist four unstructured elementary
types that are basic to the language and need not be de-
clared. Structured types are categorized into Atom types
(Atoms) and Model types (Models), and are typically com-
posed from other types using certain operators in the lan-
guage. This section has two objectives: i) to give the reader
an idea of the utility and complexity of Ascend’s type-
modification operators, and ii) to provide enough details
about the type system to facilitate understanding of the later
sections that develop and analyze formal semantics for
typed languages.

Throughout this section, we illustrate Ascend concepts
using the well-understood simple transportation problem
(Figure 1). The fundamental modeling philosophy in As-
cend—which is consistent with its unique operators (partic-
ularly the ARE-THE-SAME operator) for inheritance and
type modification—is a “building-block approach”: i.e., cre-
ate components of a complex model, then put these and any
pre-existing components together using operators in the
language. For example, we first build plant and customer
models, then we create the transportation model by
declaring certain relationships between plants and custom-

ers; the complete collection of Ascend statements in given in
Appendix A. With regard to Ascend’s support for reusabil-
ity, note that the plant and customer models could later
be used, perhaps with some specialization, to develop mod-
els for vehicle routing or traveling salesman problems as
well. To further illustrate how the operators facilitate a
building-block approach, we combine the plant–customer
transportation model with a warehouse–plant trans-
portation model to create the integrated transhipment
model.

2.1 Elementary Types
There are four elementary types: real, integer, boolean, and
symbol. Informally, each of these types can be thought of as
names that refer to the set of real numbers, integers, bool-
eans, and symbols, respectively.

2.2 Atom Types
Atoms, in contrast to elementary types, are structured, i.e.,
they contain a number of named properties each of which has
a value that is an instance of some type. In the case of Atoms,
values of all properties are required to be instances of ele-
mentary types. The definition of a commonly used Atom in
Ascend—solver_var , that models an algebraic vari-
able—is given below. The precise meaning of the statements
is indicated in the corresponding first-order logic statements
under each; this topic is discussed in more detail in [6].

ATOM solver_var;
@x solver-var( x) 3

value IS_A real;
?y (value( x) 5y, real( y))

lower_bound IS_A real;
?y 9 (lower-bound( x) 5y 9, real( y 9))

upper_bound IS_A real;
?y 0 (upper-bound( x) 5y 0, real( y 0))

END solver_var;

This definition declares a set of individuals of type
solver_var each with three properties value , lower_
bound , and upper_bound . The IS_A operator is used to

Figure 1. Components of a transportation problem.
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associate a given type with a given property, e.g., the state-
ment value IS_A real associates the type real with the
property value .

ATOM supply_capacity REFINES solver_var;
@x supply-capacity ( x) 3 solver-var( x),

low_bound : 5 0;
low-bound( x) 5 0

END supply_capacity;

Atoms can be organized into refinement hierarchies using
the REFINES operator. These refinement hierarchies specify
subtypes and enable inheritance. Thus, for instance, as
shown above, supply_capacity is specified to be a sub-
type of solver_var . Hence it inherits the properties
value , low_bound , and upper_bound from the definition
of solver_var . Since mathematical models formulated in
Ascend are stated in terms of algebraic variables, a typical
formulation will specify several refinements of atom types
such as solver_var .

We can depict Ascend objects and relationships between
them in a diagram. Figure 2 gives an example diagram that
shows a fragment of the types solver_var , supply_ca-
pacity , and real . We encourage the reader to make use of
such diagrams to understand some of the more complicated
examples in this article.

2.3 Model Types
Models, like Atoms, are structured; however, the values of
their properties are not restricted to be instances of elemen-
tary types, and can be instances of Atoms, Models, or ele-
mentary types. Models also permit specification of algebraic
relationships between properties that have elementary or
atomic type, and are defined within the scope of the model.
Qualified names are used to reference properties that are not
locally defined.

To continue building our transportation model, we now
define the model of a plant ; the definition is given in Figure

3 with the lines numbered for ease of explanation. The
model plant denotes a set of individual plants, each of
which supplies a set of customers, denoted by their identi-
fiers, customerId . This is stated in Lines 1–3 and is derived
from our conceptualization of a plant as shown in Figure 3.

Each plant has several properties: sup (Line 4) denotes its
supply capacity; fc , an array (Line 5), models the flow from
the plant to each of the customers that it supplies; and cost
(Line 6) represents the unit cost of supplying each of the
customers. Note that the types of these properties (e.g.,
supply_capacity ) are atoms that are presumed to have
been developed earlier. These properties are related algebra-
ically and specified compactly using arrays indexed over
sets of symbols (e.g., fc ). For example, the totalFlow
(Lines 7–8) from a plant to the customers it supplies should
not exceed the available supply capacity sup . In general, as
indicated in Lines 7–10, arrays in Ascend may be indexed
over sets of symbols or integers or refinements of these
elementary types. These index sets can also be declared
implicitly (e.g., [1 Pmaxcustomer] ) and computed from
other sets using operations common to algebraic modeling
languages.

The customer model, a mirror image of the plant model,
is described in a similar way. As shown in Figure 4, a
customer can be supplied from several plants. This concep-
tualization leads to the model specification shown below.
Each customer has a demand, dem, which is an instance of
an atom, demand, and has a property, fp , which models the
flow into a customer from the set of plants plantId that
supply it. Paralleling the constraint on plants, the flow into
a customer is required to be equal to the demand at the
customer.

2.4 Equivalencing Model Properties:
The ARE_THE_SAME Operator

Recall that our plant model was based on the concept of
having a plant supply a set of customers. Similarly, the
customer model is based on the concept of having a cus-
tomer being supplied by a set of plants. But, how do we
relate specific plants to the customers they supply and vice
versa? In a transportation context, as illustrated in Figure 5,
these plants and customers have a specific linkage; in As-
cend terms, the flows emanating from a plant are equivalent
to flows incident on a customer. This linking is accom-
plished using the ARE_THE_SAME(ATS) operator, which
establishes equivalence between two or more model prop-
erties. ATS declarations define equivalence classes in which
all members are equivalent.[12, 53] Equivalenced properties
are forced to have the same type(s) and values.

This process also completes the development of our
transportation model. It contains an array of plant and
customer models, p and c , respectively (Lines 1–3). The set
of plants that supply a given customer is stated in Line 5;
this also states, inversely, the set of customers that a given
plant supplies.

The key step, Line 9, in constructing the model is to
specify that the jth flow fc[j] from plant p[i] is equivalent
(ATS) to the ith flow fp[i] into customer c[j] . We have

Figure 2. Pictorial depiction of Ascend objects: Types are
denoted by shaded ellipses, their properties are grey
rectangles (the value property of solver_var is not shown
here). The properties point to their own type (through
grey edges). The darker edges are used to depict
relationships between types. Finally, inference is depicted
with thick lines: note the thick rectangular slots (and thick
edges from them). E.g., the node supply-capacity has its
slots inferred from the “refines” relation, and the type of
these slots is also inherited from solver-var.
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now created the connected network transportation struc-
ture. This ATS statement, through type inference, also re-
sults in the value, upper bound, and lower bound of the fp
and fc properties to be equivalenced. Thus, the effect of an
ATS declaration is not limited to the properties for which the
declaration is made. Because any property independently
may participate in other ATS or other operator declarations,
the overall implications, and even the validity of the entire
collection of declarations, are not quite obvious.

The validity of an ATS declaration depends on the struc-
ture of the type hierarchies created with the REFINES rela-
tionship (see below). ATS declarations can be made only for
properties whose types are comparable. Two types are com-
parable if one lies on the root path[1] of the other in a type
hierarchy. Given two types on the same root path, the type
that is farther from the root is referred to as the more refined
type. When an ATS declaration relates two model properties
with different types, the type of one of the properties is
altered to be of the more refined type. Thus, an ATS decla-
ration can associate more than one type with a model prop-
erty.

2.5 Defining Model Hierarchies:
The REFINES Operator

As with Atoms, Models can also be organized into inheri-
tance hierarchies using the REFINES operator. In all cases,

inheritance is purely monotonic in the sense that all prop-
erties and relationships between them are inherited from the
parent, and none can be deleted.

To see the utility of this operator, consider a fairly com-
mon scenario. The demand, dem, is specified as an exoge-
nous input in our customer formulation above. Now we
desire the demand to be obtained as a result from a demand
forecasting model. To incorporate this extension, we make use
of a general forecast model, which we adapt, using the
REFINES operator, into an expForecast model for our
purposes. This way we begin developing our model hierar-
chy into which, refining the customer model, we will add
a customer_with_forecasted_demand model.

MODEL forecast;
Tf IS_A integer;
D[1 PTf] IS_A demand;
E[1 PTf] IS_A expectedValue;
S[2 PTf] IS_A smoothedValue;
F[2 PTf] IS_A forecastedValue;

END forecast;

The expForecast model defines an exponential smooth-
ing forecasting model with alpha as a smoothing parame-
ter. Clearly, other refinements of the base forecasting model
forecast are possible (e.g., a moving average model).

MODEL expForecast REFINES forecast;
alpha IS_A dimensionlessConstant;
E[1] 5 D[1]
FOR i IN [2 PTf] CREATE

E[i] 5 alpha pD[i] 1 (1-alpha) pE[i-1];
F[i] 5 E[i] 1 S[i]/alpha;

END;
S[2] 5 E[2] 2 E[1];
FOR i IN [3 PTf] CREATE

S[i] 5 alpha p(E[i] 2E[i 21]) 1 (1 2alpha) p

Figure 3. Model of a plant: Conceptualization and statement in Ascend.

Figure 4. Model of a customer: Conceptualization and
statement in Ascend.
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S[i 21];
END;

END expForecast;

Now we refine the customer model to create the cus-
tomer_with_forecasted_demand . The demand, dem, at
the customer is specified to be equal to the forecasted value.

MODEL customer_with_forecasted_demand REFINES
customer;

F IS_A forecast;
dem 5 F.E[F.tf];

END customer_forecast;

Apart from the purpose already served by the REFINES
operator, model hierarchies, in conjunction with other As-
cend operators (ARE_THE_SAME, ARE_ALIKE, and IS_RE-
FINED_TO), prove useful in defining a variety of more com-
plex models. We discuss this feature next.

2.6 Declaring Similarity between Model Properties: The
ARE_ALIKE Operator

The transportation model developed thus far consisted
of an array of plant and customer models. Now consider
a scenario in which we apply the forecasting models devel-
oped above. That is, we want to define a new transportation
model, say transportation_model_with_cus-
tomer_demand_forecasts , in which all the customers
are instances of the customer_with_forecasted_de-
mand model.

Recall that the customer_with_forecasted_demand
is a refinement of the customer model. If we declare (using
the ARE_ALIKE (AA) operator) that all the instances, c , of
the customer component of the transportation model
are structurally similar, any change to the type of one of the

elements of c would result in the desired change being
propagated to all customer model instances. The model
fragment used to declare that all the instances of the cus-
tomer model “are alike” is shown below. Such a fragment
would have to be added to the transportation model speci-
fication of the previous section.

FOR i, i 11 in customerId CREATE
c[i], c[i 11] ARE_ALIKE;

As with the ATS declaration, a modeler can declare two
model properties to be alike only if their types are compa-
rable. An AA declaration makes the types of the properties
the same, but does not equivalence them as does ATS.
Because the type of a property determines its structure, a
structural change (i.e., the refinement of the type of a prop-
erty) made to any one property is propagated automatically
to the group of properties declared to be alike.

2.7 Modifying the Type of a Property:
The IS_REFINED_TO Operator

To continue with the example from the previous section,
consider a refinement of the transportation model,
which consists of customers which are instances of the cus-
tomer_with_forecasted_demand model. The model
specification is shown below.

MODEL transportation_model_with_customer_
demand_forecasts REFINES transportation;

customerId : 5 {NY, LA, PHIL};
c[“LA”] IS_REFINED_TO customer_with_fore-

casted_demand;
c[“LA”].F IS_REFINED_TO expForecast;

END trans_forecast;

Figure 5. Setting up the transportation model with plant and customer models as building blocks. The ATS operator is
used to connect plant and customer flows.
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The first statement uses the IS_REFINED_TO (IRT) oper-
ator to modify the type of c from customer to its subtype
customer_with_forecasted_demands . Because the el-
ements of c have been declared to be similar using the AA
operator, this results in all elements of c becoming instances
of the more refined type. Recall that the property, F, of a
customer model is of type forecast , not its subtype
expForecast . The second statement uses the IRT operator
to modify the type of the forecast property to the exponen-
tial forecast model, expForecast . This second application
of the IRT operator is particularly useful in a scenario in
which we have multiple forecasting models specified and
are interested in generating variants of the base transporta-
tion model integrated with different types of customer-de-
mand forecasting models. This ability to combine type mod-
ification (using IRT) with propagation of structure (using
AA) or equivalencing of structure and value (using ATS) is
a unique and powerful feature of the Ascend modeling
language, and facilitates an evolutionary approach to mod-
eling and model reuse.

2.8 An Example of Model Integration in Ascend
Finally, in this section, we demonstrate how the operators in
Ascend facilitate reuse through model integration. We use
the integration of two transportation models to define a
transhipment model as an illustrative example.

IMPORT transportation;

MODEL transhipment;
( p P 5 production

D 5 distribution p)

P, D IS_A transportation;
warehouseId IS_A set OF symbol;

P.customerId, D.plantId, warehouseId ARE_
THE_SAME;

FOR i IN warehouseId CREATE
P.c[i].dem .5 D.p[i].totalFlow;

END;

P.obj.included : 5 FALSE;
D.obj.included : 5 FALSE;

obj : MINIMIZE
SUM(P.p[P.plantId].shipmentCost) 1
SUM(D.p[warehouseId].shipmentCost);

END transhipment;

Integration begins with the incorporation of two instances
of the transportation model (P and D, respectively) into the
transhipment model. The set of customer identifiers of P
(P.customerId ) and the set of plant identifiers of D
(D.plantId ) are equivalenced using the ARE_THE_SAME
operator. The material balance constraint at the tranship-
ment node, which requires that the flow into a transhipment
node is greater than or equal to the flow out the node, is
defined for the identifiers in the merged set. Finally, the
integration is completed by “unincluding” the objective

functions of the individual transportation models (by as-
signing the included attribute a value of FALSE) and intro-
ducing a new objective function. This sort of compact inte-
gration is made possible because of the ability to specify and
reuse structured component models and support for pow-
erful operators such as ARE_THE_SAME.

2.9 Summary
To summarize, the Ascend language has three important
features.

1. A modular approach using the IS_A operator to building
complex model types from simpler model types, atom
types, and elementary types.

2. Organization using the REFINES operator of atom types
and model types into inheritance hierarchies.

3. Type modification using the ARE_THE_SAME, ARE_
ALIKE , and IS_REFINED_TO operators of model prop-
erties to accomplish specific goals, such as model reuse,
structure propagation, and integration.

Given that type systems and type inference play a central
role in model statement, and that the complex interactions
between model (type) declarations and operator (type mod-
ification) declarations are a key reason why Ascend opera-
tors provide powerful support for modeling, it is important
to understand the behavior of the Ascend type system. In
particular, given the complex interactions between model
and operator declarations, which define and modify the type
of a model property, it is important to establish if the type
system has desirable features such as the existence of com-
putable and uniquely definable most refined type correspond-
ing to each property in an Ascend model. It is our goal in
formalizing the semantics of Ascend to make these tasks
simpler, and the meaning of each operator declaration
clearer.

3. Developing Formal Semantics of Type Systems
What exactly do we mean by investigating the formal se-
mantics of Ascend? The part of Ascend concerned with the
mathematical relationships between objects is not the issue
here; the semantics are similar to those of other executable
modeling languages. What is distinctive about Ascend (or of
any typed modeling language), as we stated before, is its
type system, and the fact that statements involving Ascend’s
operators (AA, ATS, and IRT) can be used to change the
declared types of objects. The interactions between these
statements can be very complex, and hence it is not obvious
i) whether certain operator statements are valid from the
point of view of consistent typing (i.e., that the type of the
operands satisfies semantic constraints), and ii) what
changes they induce to types of previously declared objects.
That is what we are concerned with in this article. The
problem is stated more precisely in Section 3.1, and our
solution strategy is summarized in Section 3.2.

3.1 The Problem Statement
Let us conceptualize a statement about the type T of an
Ascend object, u, in the context of a model M (or of an atom
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M), as

type~u , M! 5 T . (1)

Each instantiation of the schema described by Eq. 1 cor-
responds to a type declaration for an object. There are two
ways in which types may be stated. The first is user-decla-
rations of types, made in atom or model definitions. The
second is through inference (e.g., over statements involving
an AA, ATS, or IRT operator). Because there can now be
several type statements for a given object, what then, if any,
is its “true” type? The answer lies in the relationship of type
refinement, and the fact that types are organized in a hier-
archy. That one type refines another is stated in Ascend
solely through user-declarations.

Type refinement is significant in Ascend in two ways.
First, statements involving AA, ATS, or IRT are valid only
when the concerned objects have types such that one is a
refinement of the other. Second, the “true” type of an ascend
object is defined to be the most refined type (MRT), computed
using all instances of Statement 1. This true type is required
in order to apply various other computational procedures in
Ascend. Let us conceptualize the MRT of an object u as

mrt~u , M! 5 T9 . (2)

Our primary concern in developing a formal semantics
for Ascend is to develop a method for examining the truth of
instances of these two statements. That is, given statements
such as (type(u, M) 5 T) or (mrt(u, M) 5 T9), we wish to have
a clear, unambiguous, and implementation-independent
way of determining whether they are true or not. This is
important in a typed modeling language because the type of
an object determines various attributes such as its mathe-
matical structure and its definitional dependencies on other
objects.

3.2 Strategy: A Bilevel Conceptualization
We distinguish the “class-based” or object-level fragment of
Ascend from its meta-level[26, 33] type-modification operators.
The class-based fragment consists of the three kinds of types
(elementary types, atom types, and model types), the IS_A op-
erator (used to declare types of slots) and the REFINES
operator (used to establish type hierarchies). The meta-level
operators (ATS, AA, IRT) operate on, and draw inferences
about, these object-level declarations to alter type informa-
tion about the slots. Certain other aspects of Ascend (e.g.,
equations, dimensional information, and instantiation pro-
cedures) can be ignored because they do not affect the type
of an object.

This bilevel conceptualization has two principal advan-
tages. First, it characterizes the class of languages to which
our methods are applicable (i.e., a language with first-order
types, inclusion subtyping,[15] and operators that permit
reasoning over the types of objects). Second, as shown be-
low, the distinction made between the class-based fragment
of the language and the operator declarations permits us to
define a simple translation from Ascend statements into
predicate logic.

Because atom and model declarations in Ascend define

classes of individuals that share certain properties, we for-
malize models and atoms as sets. The same is true for
elementary types such as real, integer, boolean, and string,
which also refer to sets of individuals. Each type is viewed
as a first-order predicate that denotes all the elements of
the type. The refinement relationship between types also
translates into a first-order statement. For example,
REFINES(T1, T2) is equivalent to @x(T1(x) 3 T2(x)). The
named slots in atom and model declarations are viewed as
functions, whose domain is the model or atom in which they
appear and whose range is the type declared by the IS_A
operator. For example, the statement p1 IS_A point in the
model strut defines a function p1 whose domain is the set of
all struts and whose range is the set of points. The definition
of a function F with a domain M and range T is viewed as a
first-order assertion funDef(F, D, R). For better readability,
we write this predicate as F : M ° T. The class-based frag-
ment of Ascend can therefore be formalized as a collection of
sets, refinement relationships between sets, and functions
declared on the sets. Further, it facilitates an accurate de-
scription of the semantics of the meta-level operators in
Ascend which are applied to functions (i.e., the slots) in the
class-based fragment of the language. In particular, the treat-
ment of functions, their domain and their range (i.e., type) as
first-class objects permits us to state, within a single formal
system, both the semantical constraints on making state-
ments involving the operators and the rules for making
inferences with these statements.

4. Logical Formalization of Ascend’s Type System
Recall that in formalizing Ascend’s semantics, our focus is
on the truth-value of statements of the forms F : M ° T (i.e.,
type(F, M) 5 T) and mrt(F, M) 5 T9. We will reconstruct the
essential aspects of Ascend’s type system axiomatically as
statements in first-order logic. Then, any particular state-
ment about the type of an Ascend object (i.e., a slot or
property) will be true if and only if it can be derived, using
standard logical inference, in our formalization (in first-
order logic, a proof-theoretic derivation of a statement guar-
antees its truth in a semantic sense as well). A new assertion
will be valid (consistent with all the previous ones) if and
only if it does not lead to a contradiction in our formal
system, and its “implications” (on other objects) will be
exactly those statements, not derivable earlier, that can be
derived once the assertion is added.

We present the axioms in three categories: i) axioms de-
fining the mathematical properties of the IRT, AA, and ATS
operators, ii) axioms that state the “rules” for drawing in-
ferences about the type of a slot, and iii) axioms that repre-
sent integrity constraints for declarations involving IRT, AA,
and ATS operators. The inference rules are the most signif-
icant in making Ascend’s type systems as “powerful” as
they are, because they can trigger a series of deductions
starting from a single user declaration. The integrity con-
straints play an important role in ensuring that the language
has certain desirable mathematical properties.

Before we describe the axioms, we must deal with some
issues of notation and terminology. We use upper case let-
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ters as logical variables in our axioms: we will usually use F
for functions (recall that properties are treated as functions
in the formalization), T for types, and M for models (recall,
though, that models are types). All free variables are as-
sumed to be universally quantified, unless we explicitly use
the existential quantifier. For better readability, we also state
a few definitions—though these could also be thought of as
axioms in our formalization.

Definition 1. Type of Function: The type of a function F in a
model M is defined as follows.

~type~F , M! 5 T! 7 ~F : M ° T!

Statements of the form (F : M ° T) can either be based on user
declarations of type or be generated through inference using the
axioms described in this section. Hence, a function may be asso-
ciated with several types.

Definition 2. Applicable Functions: Given a model M and a
function (slot) F, we say that F is an applicable function for M
(written appl-func(M, F)) if there is a type T such that F : M °
T. Formally,

appl-func~M , F! 7 ?T~F : M ° T! .

Definition 3. Type Comparability: Two types are comparable
if and only if one of them refines the other. Type comparability is
commutative.

comp~T1, T2! 7 ~refines~T1, T2! ~ refines~T2, T1!!

Definition 4. Type Conformability: Two functions are type
conformable in the context of a model M if and only if all their
types in M are comparable. Type conformability is commutative.

conf~F1, F2, M!

7 @T1 @T2S ~~F1 : M ° T1! ` ~F2 : M ° T2!!
3 comp~T1, T2!D

4.1 Mathematical Properties of Ascend Operators

Axiom 1. refines: The refines relationship is a partial order.

Reflexivity:

refines~T , T!

Anti-symmetry:

~refines~T1, T2! ` refines~T2, T1!! 3 T1 5 T2

Transitivity:

?T~refines~T1, T! ` refines~T , T2!! 3 refines~T1, T2!

Axiom 2. are-the-same: ATS is an equivalence relation; it is
transitive, symmetric and reflexive.

Reflexivity:

ats~F , F , M!

Symmetry:

~ats~F1, F2, M! 3 ats~F2, F1, M!!

Transitivity:

?F~ats~F1, F , M! ` ats~F , F2, M!! 3 ats~F1, F2, M!)

Axiom 3. are-alike: AA is an equivalence relation; it is transi-
tive, symmetric and reflexive.

Reflexivity:

aa~F , F , M!)

Symmetry:

~aa~F1, F2, M!! 3 aa~F2, F1, M!)

Transitivity:

?F~aa~F1, F , M! ` aa~F , F2, M!! 3 aa~F1, F2, M!)

4.2 Reasoning about Types
The following axioms describe type inferencing and manip-
ulation in Ascend. The axioms are depicted concisely in
Figure 6; this figure may also be meaningful in understand-
ing the key logical idea underlying each axiom. The first two
rules tell us that types of functions can be inferred through
refinement and composition. The remaining rules specifi-
cally concern the semantics of Ascend operators, and state
how statements involving operators result in the association
of new types with various functions. Note that a rule having
a schema c3 (f3 g) is the same as (c ` f)3 g. We often
write it in the former form to indicate that it can be read as:
Suppose c; then f implies g.

Function Applicability

Axiom 4. Models inherit the functions of other models that they
refine.

~refines~T , T1! ` ~F : T1 ° T2!!3 ~F : T ° T2!

Axiom 5. Functions are applicable through composition.

?T~~F1 : T1 ° T! ` ~F2 : T ° T2!!

3 ~~F1 + F2! : T1 ° T2!

Implications of Declarations involving Operators

Axiom 6. An IRT declaration associates a more refined type with
an applicable function.

~~F : M ° T1! ` irt~F , M , T2! ` refines~T2, T1!!

3 ~F : M ° T2!

Axiom 7. AA relationships are inherited through refinement, i.e.,
if two functions are-alike in a given model, they also are-alike in all
refinements of the model.

~aa~F1, F2, M! ` refines~T , M!!3 aa~F1, F2, T!

Axiom 8. ATS relationships are inherited through refinement,
i.e., if two functions are-the-same in a given model, they also
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are-the-same in all refinements of the model.

~ats~F1, F2, M! ` refines~T , M!! 3 ats~F1, F2, T!

Axiom 9. Implications, on applicable functions, of an AA decla-
ration: If F1 and F2 are-alike, and if F1 has a type that is more
refined than a type of F2, then the type of F1 gets associated with F2.

aa~F1, F2, M!

3 ~@T1 @T2~~F1 : M ° T1! ` ~F2 : M ° T2!

` refines~T1, T2!)3 ~F2 : M ° T1!)

Note that no inference is possible if the functions are not
type conformable. In fact, such a declaration will be disal-
lowed—see the integrity constraints in Section 4.3.

Axiom 10. Implications, on applicable functions, of an ATS dec-
laration: This is analogous to the previous AA axiom.

ats~F1, F2, M!

3 ~@T1 @T2~~F1 : M ° T1! ` ~F2 : M ° T2!

` refines~T1, T2!!3 ~F2 : M ° T1!!

Axiom 11. If two functions are-alike in a model T, then they
are-alike in all instances of T.

aa~F1, F2, T!

3 ~@F @M~~F : M ° T! 3 aa~F + F1, F + F2, M!!!

Axiom 12. If two functions are-the-same in a model T, then they
are-the-same in all instances of T. This is in analogous to the
previous AA axiom.

ats~F1, F2, T!

3 ~@F @M~~F : M ° T! 3 ats~F + F1, F + F2, M!!!

However, an ATS declaration results in additional infer-
ences about the type of an object as shown below.

Axiom 13. Recursive propagation of the effects on an ATS dec-
laration: If ats(F1, F2, M), then for every applicable function F, it
also follows that ats(F1 + F, F2 + F, M).

ats~F1, F2, M!

3 ~@F @T~~F1 : M ° T! ` appl-func~F , T!!

3 ats~F1 + F , F2 + F , M!!

Notice that for an ATS declaration between any two partic-
ular functions f1 and f2, the above axiom is universally
quantified over M, F, and T associated with F1 (and with F2
because ATS is commutative). In particular, it applies to all
applicable functions of T and for all types T. In addition to
equivalencing the type of the properties that are operands of
an ATS declaration, the operator also equivalences their
values; we do not discuss this aspect any further because it
is not relevant to type semantics.

Determining Most Refined Type

Axiom 14. most refined type (mrt): Because a function may be
associated (through inference) with several types, we write its most
refined type in the context of a model M as mrt(F, M), and define
it as follows:

?T9~~F : M ° T9! ` @T~~F : M ° T! 3

refines~T9 , T!!!3 ~mrt~F , M! 5 T9!

4.3 Integrity Constraints for Operator Declarations
Not all syntactically correct statements are legal in Ascend.
For example, if two functions are declared are-alike, they
must already be type-conformable. In our formalization,
such preconditions for making Ascend declarations are
modeled through integrity constraints.[52] The essential re-
quirement for consistency of user declarations is type-con-
formability of the functions. We note that ensuring this may
be nontrivial, because various rules—applied to existing
user assertions—can result in several inferred assertions
about types. We restate the formal definition of type-con-

Figure 6. Ascend’s Rules for Reasoning with Types: The
convention is the same as in Figure 2. The thick rectangles
and edges indicate the conclusions resulting from type
inference on the statements indicated in the remaining
shaded ellipses (types), rectangles (slots), thin black edges
(declared relations between types) and thin grey edges
(explicitly declared is-a/IRT statements).
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formability, made earlier in this section, for the reader’s
convenience.

conf~F1, F2, M!

7 @T1 @T2S ~~F1 : M ° T1! ` ~F2 : M ° T2!!
3 comp~T1, T2!D

The integrity constraints ensure that various user decla-
rations are consistent with each other. Our objective is that
the system of axioms, combined with user declarations,
should result in a logical contradiction if and only if the
declarations are inconsistent. Therefore, not only will user-
declared statements satisfy the constraints, but so also will
any deductions made using the inference rules (Theorem 1
in Section 5). Note that the constraints are stated in the form
f 3 ' where ' is always false (indicates a contradiction).
For example, assume that there are functions f1 and f2 such
that not all of their types are comparable. Then, if a user
asserts aa( f1, f2), which is not allowed in Ascend, the AA
integrity constraint (Axiom 15) results in a contradiction.

Our intent is that each integrity constraint be enforced
only for the objects for which a relation is being asserted,
rather than for all objects for which that relation is true. In
fact, we will prove (in Theorem 1) that the latter, wider, kind
of check is unnecessary—its satisfaction is guaranteed in our
formalization by the former kind of check.

Axiom 15. Two functions can be declared are-alike only if they
are type conformable.

~aa~F1, F2, M! ` ¬conf~F1, F2, M!! 3 '

Axiom 16. Two functions can be declared are-the-same only if
they are type conformable.

~ats~F1, F2, M! ` ¬conf~F1, F2, M!! 3 '

Axiom 17. The type of a function can directly (including with
IRT) be declared only to one that is comparable with every declared
or derivable type of the function.

~irt~F , M , T! ~ F : M ° T!

` ?T9~F : M ° T9 ` ¬comp~T , T9!! 3 '

Axiom 18. Each type in an Ascend type hierarchy can have at
most one parent. That is, the hierarchy does not admit multiple
inheritance. Therefore, if it is stated (or true through type refine-
ment) that a type M refines two other types, then those types must
themselves be comparable.

S refines~M , T1! `
refines~M , T2! `

¬comp~T1, T2!
D 3 '

Axiom 19. A type M may be declared to refine a type T only if,
for all functions that are applicable to both M and T, all their
associated types in M are comparable to all their types in T.

refines~M, T! ` ?T1 ?T2S ~F : M ° T1! `
~F : T ° T2! `
¬comp~T1, T2!

D 3 '

Axiom 20. A statement of the form T refines M cannot be
compatible with a statement that F has type T in model M. This
also covers the case where T 5 M because “refines” is reflexive.

~irt~F , M , T! ~ F : M ° T! ` refines~T , M! 3 '

Axiom 21. A statement of the form F : M ° T or irt(F, M, T)
cannot be made if F can be composed with another function such
that the domain and range of the composed function are the same.

~irt~F , M , T! ~ F : M ° T!

` ?F9 ?T9~~F + F9 : T9 ° T9! ~ ~F9 + F : T ° T!! 3 '

5. Analysis
We have formalized Ascend’s type system with a collection
of axioms described in the previous section. As stated in
Section 4, the type-inference rules provide tremendous de-
ductive power, which is particularly useful in model reuse.
The integrity constraints restrict the sorts of things that can
be expressed in Ascend, with the aim of endowing the type
system with certain desirable mathematical and computa-
tional properties. Having presented the formalization, we
can now investigate whether the type system indeed has
these properties.

In particular, there are three properties we wish to inves-
tigate. First, do Ascend’s type-inference rules (Axioms 4–14)
preserve consistency with respect to the integrity constraints
(Axioms 15–21)? This is a minimal requirement for any
formal system, and we claim that our construction satisfies
this requirement (Theorem 1). This property has an impor-
tant computational implication in that it frees the implemen-
tor of the type system from having to check integrity con-
straints after each inferential step, thus permitting greater
inferential efficiency.

Second, given that for any function F several deductions
F : M ° T can be made as an application of many different
inference rules, can we guarantee that the most refined type
i) exists uniquely, i.e., a function does not have two types
that cannot be compared, and ii) can be determined in a
finite number of inference steps. These are also critical prop-
erties of any type system. Again, we claim that our formal-
ization satisfies these properties (Lemma 4 and Theorems 2
and 3). These properties also have an important computa-
tional implication beyond the obvious importance of finite-
ness. Once an MRT is computed, the inference engine can
halt because MRT is known to be unique.

Finally, given that the AA and ATS relations are equiva-
lence relations, it is interesting to inquire, from a computa-
tional point of view, whether there is any relationship be-
tween the MRT of different elements in an equivalence class.
We will show, in fact, that all elements of an AA or ATS
equivalence class will have the same MRT (Lemma 7). Going
further, we will show that elements of the union of inter-
secting equivalence classes (referred to here as a clique) also
have the same MRT (Theorem 4). This result implies that an
efficient implementation of the type system should first
compute the clique before computing the most refined types
of the elements.

We now proceed to present a collection of preliminary
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results (Lemmas 1–7) which are used to establish the three
theorems which establish the properties of the Ascend type
system that were discussed above. To help the reader dis-
cern the relationships between the various lemmas and the-
orems, we present a map in Figure 7. All proofs are given in
Appendix B.

5.1 Preliminary Results:
Functions and Types

Definition 5. (Range-Recursion in Functions). A type associ-
ation F : M ° T is considered to be range-recursive if T refines
M. Otherwise it is nonrange-recursive. A function F is non-
range-recursive if each of its type associations is nonrange-recur-
sive. A collection of atomic functions is nonrange-recursive if a)
each atomic function is nonrange-recursive and b) each possible
composition (according to Axiom 5) results in a nonrange-recur-
sive function.

Lemma 1. Given a consistent collection of user-supplied asser-
tions in Ascend, each inferred type association F : M ° T will be
consistent with integrity constraints represented by Axioms 20
and 21. That is, if the initial type associations are consistent, all

the type associations inferred through the type inference rules will
also be nonrange-recursive.

Lemma 2. Any composite function in a consistent collection of
user-supplied Ascend assertions must be composed of atomic func-
tions each of which appears only once in the composition.

Corollary 1. (To Lemma 2). Any valid composite function in
Ascend must have a finite composition length. Precisely, it can be
written in the form f1 + . . . + fn (for some finite n) where all the
functions fi are distinct atomic functions.

Lemma 3. (Finite number of functions). Given any consistent
collection of user-supplied assertions in Ascend, the total number
of functions (atomic and composite) is finite.

Lemma 4. (Comparability of Types). Given a consistent col-
lection of user-supplied assertions in Ascend, for any function f
and any model m, all the types associated with f in m are compa-
rable.

5.2 Consistency of Type System

Lemma 5. (Type conformability for AA equivalence class-
es). Given a consistent collection of user-supplied assertions in

Figure 7. Dependencies between results.
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Ascend, all functions in an AA equivalence class are type-con-
formable. In other words, if aa( f 91, f 92, t) can be deduced for func-
tions f 91 and f 92 and some type t, then, f 91 and f 92 must be type-
conformable in t.

Lemma 6. (Type conformability for ATS equivalence class-
es). Given a consistent collection of user-supplied assertions in
Ascend, all functions in an ATS equivalence class are type-con-
formable. In other words, if ats( f 91, f 92, t) can be deduced for func-
tions f 91 and f 92 and some type t, then, f 91 and f 92 must be type-
conformable in t.

Now we can establish the first part of our claim about
MRT computation in Ascend.

Theorem 1. (Type-inference rules preserve consistency).
Given a collection of user-supplied assertions that is consistent
with all the integrity constraints (Axioms 15–21), all deductions
will also be consistent with all constraints. That is, the type-
inference rules preserve consistency with respect to the integrity
constraints.

5.3 Most Refined Types and Equivalence Classes

Theorem 2. (Uniqueness of MRT). Given any consistent col-
lection of user-supplied assertions in Ascend, each function has a
unique most refined type.

Theorem 3. (Finiteness of MRT computation). Given any
consistent collection of user-supplied assertions in Ascend, the
most refined type of any function can be computed in a finite
number of steps, as can any other deduction in Ascend.

Definition 6. (Clique) A clique, with respect to a model M, is a
union of equivalence classes (AA and ATS) of applicable functions
for that model, such that each class has a nonempty intersection
with at least one other distinct class in that union. In other words,
every pair of elements X and Y in the clique satisfies one of the
following 3 conditions: i) aa(X, Y, M), ii) ats(X, Y, M) or iii)
there is some element Z in the clique such that the pairs (X, Z) and
(Z, Y) both satisfy one of the 3 conditions.

Note that, by definition of equivalence classes, any two
distinct AA classes (or two distinct ATS classes) must have
an empty intersection. So, in order to determine a clique, we
must look for AA classes that have a nonempty intersection
with ATS classes.

Lemma 7. (MRT of AA or ATS Equivalence Class). All ele-
ments of an (AA or ATS) equivalence class have the same MRT.

Theorem 4. (MRT of a Clique). All elements of a clique of
functions will have the same MRT.

6. Discussion
We have formalized the type system of Ascend using a
bilevel strategy which distinguishes between the class-based
fragment of the language (which in the type-system litera-
ture may be characterized as a first-order system with single
inheritance subtyping[15]) and the type modification opera-
tors. The result has been the development of an axiomatic
system that precisely specifies the semantics of both the
class-based fragment and the operators using predicate

logic. Given that the type-modification operators can asso-
ciate multiple types with an object, we also proved several
desirable properties of the formal system. In particular, we
stated and proved three results relevant to the questions we
posed in Section 3.1 about most refined type. Specifically, we
show that our formal system guarantees that the most re-
fined type of each object in Ascend is unique, that it can be
computed in a finite number of steps, and that each step
preserves the type-integrity constraints.

In [17], Davis articulates six connections between formal-
izations of domain theories and the actual implementation.
Two of these connections are relevant to the formalization of
Ascend (the domain is Ascend’s worldview of modeling),
and we discuss them in this context.

1. “The axioms of the domain may be used directly in
symbolic form as input to a theorem-prover . . .” This is
certainly possible with our formalization, but such a sys-
tem would be inefficient from a computational point of
view. However, it is useful—and we have indeed used
it—as an abstract formal system of which we can inves-
tigate various properties. Some of these are important in
determining the validity of the system, and others have
implications for implementing it. For example, Theorem 1
(consistency of the type-inference rules) makes it unnec-
essary, in any implementation, to check that every deduc-
tion from a consistent collection of statements itself sat-
isfies all the integrity constraints. Similarly, from
Theorem 2, the MRT computation can stop once a most
refined type is found, and Theorem 3 guarantees that it
will indeed be found finitely. Theorem 4 gives us an
important implementation insight: because all elements
of a clique must have the same MRT, it tells us that we
should first compute all cliques, and then compute the
MRT for one element in each clique.

2. “After [a] program has been written, a post hoc logical
analysis may aid in debugging, understanding, present-
ing, and extending it.” There are several features of the
type system in Ascend for which extensions can be in-
vestigated using this formalization:
(a) Type conformability of objects that are operands of

the type-modification operators is a constraint on all
operations. This requires that the organization of the
type hierarchy either anticipate operations one may
want to perform (i.e., arrange the types of properties
on which we want to operate along the same root
path) or require modifications after a need to apply a
type-modification operator has been identified. The
formalization will allow relaxations of the type con-
formability to be investigated in a systematic and
principled manner. Specifically, we can replace the
type-conformability integrity constraint with an alter-
native and determine if the desirable representational
and computational properties (e.g., uniqueness and
finiteness of MRT) of the formal system still hold true.

(b) Closely related to type conformability is subtyping
with multiple inheritance. Currently, the type system
only permits subtyping with single inheritance. The
addition of multiple inheritance would offer a useful
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representational feature and the implications for the
computational and representational properties can be
investigated using the formalization by adding axioms
that specify the semantics of multiple inheritance.

(c) The integrity constraints on function composition dis-
allow the representation of recursive type structures,
which are both elegant and useful representational
structures to provide in a modeling language. How-
ever, these constraints are required to guarantee
properties about MRT computation—that the MRT
can indeed be computed in finite time. Clearly, other
alternative formulations are possible that allow recur-
sive structures (e.g., introduction of variant types and
associated case operations) but impose additional
constraints. Our formalization can serve as a founda-
tion for the investigation of these formulations and
their impact on representational and computational
properties of Ascend.

(d) In contrast to the previous items, which have advo-
cated investigating additions to the representational
features of the language, we can also investigate trad-
ing away expressive power to realize gains in compi-
lation efficiency. For instance, if certain types of op-
erator declarations that trigger an iterative inferential
process (e.g., when operands are part of both an AA
declaration and an inferred ATS statement), and
therefore increase the computational complexity of
the MRT algorithm, were disallowed, what would be
the gains in computational efficiency of the MRT
algorithm?

Designers of any modeling language must make tradeoffs
between the language’s representation power, deductive
power (which influences representational economy), and
computational properties. A formalization such as the one
presented in this article can facilitate the investigation of
such tradeoffs. More generally, such an approach can lead to
a principled comparison of different typed modeling lan-
guages. One aspect of such a comparison is that alternative
languages (or type systems) use different terms for similar
concepts or similar-seeming terms for different concepts
(e.g., terms such as IS-A , REFINES, and INSTANCE-OF).
Such terminology issues can be examined by developing
and comparing the formal semantics for all the terms. More
importantly, the formal semantics and analysis will make it
possible to compare alternative type systems on the basis of
their representational and computational properties. We
strongly believe that type systems have an importance place
in modeling languages and that many more type systems—
some different from Ascend’s, some an extension of it—will
be developed in the future. We hope that this article will
stimulate this process and, eventually, lead to a generally
applicable standards and theory of typing that can be incor-
porated into various modeling languages.
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Appendix A: Transportation Model (and Components) in
Ascend
ATOM customerId REFINES string;
END customerId;

ATOM plantId REFINES string;
END plantId;

ATOM demand REFINES solver_var;
low_bound : 5 0;

END demand;

ATOM supply_capacity REFINES solver_var;
low_bound : 5 0;

END demand;

ATOM flow REFINES solver_var;
low_bound : 5 0;

END flow;

ATOM unitCost REFINES solver_var;
low_bound : 5 0;

END unitCost;

ATOM cost REFINES solver_var;
low_bound : 5 0;

END cost;

MODEL plant;
sup IS_A supply_capacity;

customerId IS_A set OF symbol;
maxCustomer IS_A integer;
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CARD(customerId) ,5 maxCustomer;

f[customerId], totalFlow IS_A flow;
cost[customerId] IS_A unitCost;
totalFlow 5 SUM(f[customerId]);
totalFlow ,5 sup;

shipmentCost IS_A cost;
shipmentCost 5 SUM(f[i] pcost[i] u i IN

customerId);
END plant;

MODEL customer;
dem IS_A demand;
plantId IS_A set OF symbol;
f[plantId] IS_A flow;
SUM(f[plantId]) 5 dem;

END customer;

MODEL transportation;
plantId, customerId IS_A set OF symbol;
p[plantId] IS_A plant;
c[customerId] IS_A customer;
FOR i IN customerId CREATE

c[i].plantId : 5 [j IN plantId u i IN
p[j].customerId];

END;
FOR i IN plantId CREATE

FOR j IN p[i].customerId CREATE
p[i].f[j], customer[j].f[i] ARE_THE-

_SAME;
END;

END;
obj : MINIMIZE

SUM(p[i].shipmentCost u i IN plantId);
END transportation;

Appendix B: Proofs
B.1 Proofs: Preliminary Results

Lemma 1. Given a consistent collection of user-supplied asser-
tions in Ascend, each inferred type association F : M ° T will be
consistent with integrity constraints represented by Axioms 20
and 21. That is, if the initial type associations are consistent, all
the type associations inferred through the type-inference rules will
also be nonrange-recursive.

Proof. Our proof strategy is to show that the application
of each type-inference rule preserves consistency with re-
spect to Axioms 20 and 21. We need to demonstrate this only
for those rules (Axioms 4–6 and 9–10) from which we
derive new type associations. The remaining axioms result
in inferences of AA or ATS relationships; because we are not
proving their consistency, we will not assume in our proof
that any AA or ATS statements (derived or declared) are
consistent with the integrity constraints.

1. First, consider Axiom 4. We are given that the type asso-
ciation F : T1 ° T2 in the LHS of the rule satisfies con-
straint 20 (i.e., T2 does not refine T1) and 21. For the
conclusion to be in violation of Axiom 20, it must be the

case that T2 refines T. But, we are given (LHS of the
axiom) that T refines T1. From transitivity of refinement,
it follows that T2 refines T1, which contradicts our as-
sumption. Similarly, the possibility of the conclusion
(function F) violating Axiom 21 is easily dismissed be-
cause we already assumed that F (in the LHS) is consis-
tent with it.

2. To show consistency of Axiom 5 with respect to con-
straint 20, we only need to show that T2 cannot refine T1.
That follows simply because we know that F1 and F2 (in
the LHS) satisfy Axiom 21 so that the composition F1 + F2
cannot have a range (T2) that is a subtype of its domain
(T1). Similarly, the composite function cannot violate Ax-
iom 21 because that would imply that F1 or F2 (or both)
violate it too.

3. For the application of Axiom 9, the violation of Axiom 21
is dealt with as in Axiom 4. Similarly, the conclusion
cannot violate Axiom 20, because that would also mean
that F1 is nonrange-recursive, which we are given to be
false.

4. The proof for the consistency of Axiom 10 is exactly the
same as that for Axiom 9.

Because each of the type-inference rules that produces a
type association ensures that this association is consistent
with Axioms 20 and 21, given that it operates on a consistent
database, it follows that the entire set of rules preserves
consistency of these two constraints. n

Lemma 2. Any composite function in a consistent collection of
user-supplied Ascend assertions must be composed of atomic func-
tions each of which appears only once in the composition.

Proof. We will prove this result by refutation. Let us sup-
pose that there is a composite function in which the same
atomic function f appears twice. Therefore, it must contain a
segment of the form f + f or f + g + f, where g may be compos-
ite. For the first form to be a valid composition, f must have
the same domain and range, but that violates the integrity
constraint represented by Axiom 20. The second case vio-
lates the integrity constraint represented by Axiom 21 be-
cause there must be some m and t such that f : m ° t and
g : t ° m. Hence, it is not possible for the same function
name to occur twice in the definition of a composite func-
tion. n

Corollary 1. (To Lemma 2). Any valid composite function in
Ascend must have a finite composition length. Precisely, it can be
written in the form f1 + . . . + fn (for some finite n) where all the
functions fi are distinct atomic functions.

Proof. This is obvious because there is only a finite num-
ber of atomic functions, and each atomic function can occur
at most once in any composition. n

Lemma 3. (Finite number of functions). Given any consistent
collection of user-supplied assertions in Ascend, the total number
of functions (atomic and composite) is finite.

Proof. This is easy to see, given the previous results, be-
cause the number of atomic functions is finite, and because
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the remaining functions are composed of a finite sequence of
atomic functions. n

Lemma 4. (Comparability of types). Given a consistent collec-
tion of user-supplied assertions in Ascend, for any function f and
any model m, all the types associated with f in m are comparable.

Proof. We shall prove the theorem by induction on the
number of types associated with any function. That is, i) we
know that the result is correct (trivially) if a function has
only one associated type; ii) we assume that the result is true
for n types t1 . . . tn associated with f in model m; and iii) we
need to prove that the (n 1 1)th type tn11 is comparable with
all the other types t1 . . . tn. Let us first state our task more
precisely. We are given that

f : m ° ti @i : 1 . . . n
comp~ti , tj! @i @j : 1 . . . n
f : m ° tn11

and we need to show that

comp~ti , tn11! @i : 1 . . . n (3)

Examining our rules for type inference, we can see that
there are several ways that f : m ° tn11 could be true: we
shall show in each case that the required condition (3) is met.

1. f : m ° tn11 is obtained by refinement—i.e., by combining
a declaration irt( f, m, tn11) with Axiom 6. Then it must
satisfy Condition 3 as a result of the integrity constraint
17, which requires tn11 to be comparable with every
existing type ti of f in m.

2. f : m ° tn11 is a user declaration. Then, as above, it must
satisfy Condition 3 as a result of the integrity constraint
17.

3. f : m ° tn11 is inferred through refinement as an applica-
tion of Axiom 4. For that to be true, it must be the case
(using the LHS of Axiom 4) for some t9 that ( f : t9 ° tn11)
and that refines(m, t9). From integrity constraint 19, the
statement refines(m, t) can be true only if for each appli-
cable function of t9 and m, in particular, for function f, all
its existing types in t9 are comparable with all its existing
types in m. Specifically, this means that tn11 (a type of f in
t9) must be comparable with all types ti (i [ [1, n]) of f in
m. That leads to a satisfaction of Condition 3.

4. f : m ° tn11 is inferred as an application of Axiom 9
combined with a declaration aa( f 9, f, m). For that to be the
case, it must be true that ( f : m ° tn11). From the AA
integrity constraint (Axiom 15), for aa( f 9, f, m) to be true,
it must be the case that f and f 9 are type-conformable.
That is, all of their existing associated types must be
comparable. In particular, tn11 (a type of f 9) must be
comparable with all the types ti (i [ [1, n]) of f. Again,
Condition 3 is satisfied.

5. f : m ° tn11 is inferred as an application of Axiom 10
combined with a declaration ats( f 9, f, m). This is analo-
gous to the previous case.

6. Finally, there is the possibility that Axiom 5 (function
composition) was applied in inferring f : m ° tn11. Now
f can either be an atomic function or a composite of two or
more atomic functions. If it is atomic, this possibility does

not arise (i.e., one of the previous 5 cases must be valid).
Therefore, our proof is now complete for atomic func-
tions.

If f is composite, it follows that f must be of the form
f1 + f2 where (without loss of generality) f1 is atomic. For
Axiom 5 to have been applied then, it must be true that
there is some type t such that f1 : m ° t and f2 : t ° tn11.
Because f is the same as f1 + f2, and we know that f has
types ti (i [ [1, n]) in m, it follows (Axiom 5) that there
must be types ti (i [ [1, n]) such that f1 : m ° ti and
f2 : ti ° ti. Because f1 is atomic, all of its types in m (i.e., all
ti and t) must be conformable; let G be the most refined of
these (i.e., refines(G, ti) and refines(G, t) for all i).

Next, because i) f2 : ti ° ti, ii) refines(G, ti), iii) f2 : t °
tn11, and iv) refines(G, t), it follows (from Axiom 4) that
f2 : G ° ti (i [ [1, n]) and f2 : G ° tn11. Therefore, if we can
show that all the types of f2 in G are comparable (in
particular, that tn11 is comparable) with the rest, we are
done. If f2 is atomic, we have already shown that all its
types must indeed be comparable. If it is composite, then,
by the same process, we can infer that there is an f 92 that
has these same types in some G9. Again, if f 92 is atomic, we
are done; else, we recurse through the proof. From
Lemma 1, it follows that this process will terminate in a
finite number of steps with an atomic function that has
the types ti (i [ [1, n 1 1]), and that these types are all
comparable.

That concludes our proof of the comparability of all types
associated with a function in a model. n

B.2 Proofs: Consistency of Type System

Lemma 5. (Type conformability—AA). Consider functions f1
and f2 and a type t such that aa( f1, f2, t) is deduced from a
consistent collection of user-supplied assertions in Ascend. Then,
f1 and f2 must be type-conformable in t.

Proof. To prove the result, we need to show that for any
types t1 and t2 such that f1 : t ° t1 and f2 : t ° t2, t1 and t2 are
comparable. Our proof relies on the fact that a statement
such as aa( f1, f2, t) can only be inferred using either Axiom 7
or Axiom 11. Further, if f1 and f2 were atomic, it must be that
Axiom 7 was applied.

1. First, consider the case where both f1 and f2 are atomic.
Because Axiom 7 must have been used, it must be true
that aa( f1, f2, t9) for some type t9 where t refines t9. Be-
cause the number of types is finite, we can assume that
aa( f1, f2, t9) is a declared statement and, hence, satisfies
type-conformability (Axiom 15). Because f 91 and f 92 are
type conformable in t9, all their types in t9 are compara-
ble. Let t* be the most refined of these. Axiom 9 (applied
to aa( f1, f2, t9) ensures that t* is associated with both f1
and f2 in t9. Now, consider the types t1 and t2 of f1 and f2,
respectively, in t. Either t* refines both t1 and t2 (which
are not required to be types of f1 and f2, respectively, in t9)
or at least one of them refines t*. For the former to be true,
t1 and t2 must be comparable (because of constraint 18),
and we are done. For the latter to be true, assume (with-

206
Bhargava et al.



out loss of generality) that t1 refines t*. Then, applying
Axiom 9 (because aa( f1, f2, t), f1 : t ° t1, and f2 : t ° t*), we
get f2 : t ° t1. But, because we already know that f2 : t °
t2, it must be the case (using Lemma 4) that t1 and t2 are
comparable.

2. Next, consider the case where at least one of f1 and f2 is
composite. We have already shown that Axiom 7 pre-
serves type-conformability. If Axiom 11 were used in
inferring aa( f1, f2, t), there must be i) functions f, f 91 and f 92
such that f1 5 f + f 91 and f2 5 f + f 92, and ii) a type m such
that aa( f 91, f 92, m) and f : t ° m. Again, because the com-
posite functions f1 and f2 must have a finite length (Cor-
ollary 1), repeated application of Axiom 11 would leave
us with atomic functions that are-alike. Without loss of
generality, let us assume that f 91 and f 92 are these atomic
functions that are-alike in m. From Part 1 of the proof, it
follows that they must be type conformable.
Now we know that f1 : t ° t1 and f2 : t ° t2. Because f1 5
f + f 91, there must be an m1 such that f : t ° m1 and f 91 : m1

° t1. Similarly, there must be an m2 such that f : t ° m2

and f 92 : m2 ° t2. Because f is associated with both m1 and
m2, as well as m, in t, Lemma 4 ensures that m, m1, and m2

are comparable. Either i) both m1 and m2 refine m, or ii) m
refines both m1 and m2, or iii) one of them (say, m1) refines
m and m refines the other (m2). We consider each of these
cases below.
(a) Both m1 and m2 refine m: Assume, without loss of

generality, that m1 refines m2. Because m1 refines m,
we get from Axiom 7 that aa( f 91, f 92, m1). Because the
two functions are atomic, they must be type-conform-
able in m1 as well. Because m1 refines m2 and f 92 : m2 °
t2, Axiom 4 gives us f 92 : m1 ° t2. Because f 91 and f 92 are
type-conformable in m1, all their types, including t1 of
f 91 and t2 of f 92, must be comparable.

(b) m refines both m1 and m2: Because m refines m1 and
f 91 : m1 ° t1, it follows from Axiom 4 that f 91 : m ° t1.
Similarly, we get f 92 : m ° t2. But we know that f 91 and
f 92 are conformable in m. Hence it follows that t1 and
t2 are comparable.

(c) m1 refines both m which refines m2: Because m refines
m2, Axiom 4 gives f 92 : m ° t2. Because m1 refines m,
Axiom 4 gives f 92 : m1 ° t2 and Axiom 7 gives
aa( f 91, f 92, m1). Therefore, f 91 and f 92 are conformable in
m1. Hence all their types, including t1 of f 91 and t2 of f 92,
must be comparable.

We have shown that arbitrary types t1 and t2 of f1 and f2,
respectively, are comparable. That establishes that any two
functions in an AA equivalence class are type-conformable.

n

Lemma 6. (Type-conformability—ATS). Consider functions f1
and f2 and a type t such that ats( f1, f2, t) is deduced from a
consistent collection of user-supplied assertions in Ascend. Then,
f1 and f2 must be type-conformable in t.

Proof. The proof is an extension of the proof for Lemma 5.
Given ats( f1, f2, t), we need to show that for any types t1 and
t2 chosen as before, t1 and t2 are comparable. In this case, the

proof relies on the fact that ats( f1, f2, t) can only be inferred
through Axioms 8, 12, and 13.

1. If f1 and f2 are atomic, the proof is entirely analogous to
Part 1 of the previous proof.

2. If f1 and f2 are composite, ats( f1, f2, t) must have involved,
in the general case, repeated application of Axioms 12
and 13. Given that any composite function has a finite
length, the statement must have been derived from
ats( f 91, f 92, m) for some atomic functions f 91 and f 92. If Ax-
iom 12 were applied, the proof that type conformability is
preserved is analogous to Part 2 of the previous proof. If
Axiom 13 were applied, we know that m 5 t, and there is
an applicable function f (of m, or t) such that f1 5 f 91 + f and
f2 5 f 92 + f.

Now consider the types t1 and t2. Because f1 : m ° t1,
there must be an m1 such that f 91 : m ° m1 and f : m1 ° t1.
Similarly, because f2 : m ° t2, there must be an m2 such
that f 92 : m ° m2 and f : m2 ° m2. Because ats( f 91, f 92, m), all
their types, in particular, m1 and t2, in m are comparable
(from Part 1 of the proof). Assume that m1 refines m2. By
applying Axiom 4 to f : m2 ° t2, we get f : m1 ° t2. But we
already know that f : m1 ° t1. Because all types of f must
be comparable (Lemma 4), it follows that t1 and t2 are
comparable.

That concludes our proof that all functions in an ATS class
are type conformable. n

Theorem 1. (Type-inference rules preserve consistency).
Given a collection of user-supplied assertions that is consistent
with all the integrity constraints (Axioms 15–21), all deductions
will also be consistent with all constraints. That is, the type-
inference rules preserve consistency with respect to the integrity
constraints.

Proof. We prove this result by proving the impossibility of
violation for each integrity constraint. The result follows
trivially from Lemma 5, in the case of Axiom 15, and from
Lemma 6 for Axiom 16. In the case of Axiom 17, note that i)
IRT statements are never inferred (so cannot cause a viola-
tion), and ii) Lemma 4 established that all types of a function
are comparable (and so any inferred type association cannot
violate the constraint). Similarly, Axiom 18 cannot be vio-
lated because type refinement is never inferred except by
transitivity (which, by definition, guarantees comparability).
The same argument applies to ensure that Axiom 19 can
never be violated. Finally, Lemma 1 established that the
constraints represented by Axioms 20 and 21 are preserved
by the type-inference rules. n

B.3 Proofs: MRT and Equivalence Classes

Theorem 2. (Uniqueness of MRT). Given any consistent col-
lection of user-supplied assertions in Ascend, each function has a
unique most refined type.

Proof. From the definition of MRT, this requires us to
establish, given any model m and any function f applicable
to m, that all the types associated with f in m are comparable.
That is exactly what Lemma 4 establishes. Hence the result.

n
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Theorem 3. (Finiteness of MRT computation). Given any
consistent collection of user-supplied assertions in Ascend, the
most refined type of any function can be computed in a finite
number of steps, as can any other deduction in Ascend.

Proof. We assume a control strategy based on forward-
chaining reasoning as discussed below. The method will
consist of several iterations, beginning with the database of
user-supplied assertions. Let us denote this database by D0.
(It will consist of ground atomic sentences of the form
F : M ° T, refines(T1, T2), irt(F, M, T), aa(F1, F2, M), and
ats(F1, F2, M).) In each iteration i, various inference rules
will be applied and inferred results (also ground atomic
sentences as above) added to the database. Without loss of
generality, assume that the results are added at the end of
the iteration. Let Di denote the state of the database at the
end of iteration i. The process is terminated when Di 5 Di11

for any i Ä 0. We will show that each iteration is finite, and
that the termination criterion is satisfied in a finite number
of iterations. The most critical aspect of this procedure is
what happens in each iteration, which we define below. It
should be evident to the reader that this reasoning proce-
dure is consistent and complete with respect to the axioms.

Each iteration consists of a number of steps, where each
step corresponds to one of the type-inference rules (Axioms
4–13). These rules are applied in conjunction with Axioms
1–3 that describe the mathematical properties of the Ascend
operators. In each step of iteration i, the corresponding rule
is applied, over and over again, to the sentences in the
database Di21 until no more inferences can be generated.

Each step will be finite, because the number of objects (type
names, function names) and sentences in the database is
finite. Therefore, each iteration will terminate finitely.

Next, we note that the total number of ground atomic
sentences is bounded because the number of constant terms
is finite. Recall that at the end of any iteration, we continue
the procedure only if the iteration produced at least one new
sentence. Therefore, the number of iterations is bounded, in
the worst case, by the maximum possible number of sen-
tences in the database. Hence, the process will terminate in
a finite number of steps. At that time, the MRT of each
function can be computed as an application of Axiom 14. In
fact, any particular sentence will be true if and only if it is
present in the final database of sentences. n

Lemma 7. (MRT of AA or ATS Equivalence Class). All ele-
ments of an (AA or ATS) equivalence class have the same MRT.

Proof. Lemma 5 (Lemma 6) establishes that all elements
(functions) in an AA (ATS) equivalence class are type-con-
formable. That means all their types in the given model are
comparable. Let t be the most refined of these. Axiom 9 (10)
ensures that t will be inferred as an associated type for all
the functions in the AA (ATS) equivalence class. Hence, all
of them will have the same MRT, t. n

Theorem 4. (MRT of a Clique). All elements of a clique of
functions will have the same MRT.

Proof. This follows as a corollary to Lemma 7 and by
definition of a clique. n
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