INFORMS Journal on Computing
Vol. 10, No. 4, Fall 1998

0899-1499/ 98 /1004-0359 $05.00
© 1998 INFORMS

FEATURE ARTICLE

o=

The World Wide Web: Opportunities for Operations Research
and Management Science

HEMANT K. BHARGAVA / Code SM-BH, Naval Postgraduate School, 555 Dyer Road, Room 214, Monterey CA 93943,
Email: bhargava@nps.navy.mil

RAMAYYA KRISHNAN / The Heinz School, Carnegie Mellon University, Pittsburgh PA 15213, Email: rk2x-+@andrew.cmu.edu

(Received: March 1997; revised: December 1997, March 1998, June 1998; accepted July 1998)

The World Wide Web has already affected OR/MS work in a
significant way, and holds great potential for changing the
nature of OR/MS products and the OR/MS software economy.
Web technologies are relevant to OR/MS work in two ways.
First, the Web is a multimedia communication system. Origi-
nally based on an information pull model, it is—critically for
OR/MS—being extended for information push as well. Second,
it is a large distributed computing environment in which OR/MS
products—interactive computational applications—can be
made available, and interacted with, over a global network.
Enabling technologies for Web-based execution of OR/MS ap-
plications are classified into those involving client-side execu-
tion and server-side execution. Methods for combining multiple
client-side and server-side technologies are critical to OR/MS'’s
use of these technologies. These methods, and various emerg-
ing technologies for developing computational applications,
give the OR/MS worker a rich armament for building Web-based
versions of conventional applications. They also enable a new
class of distributed applications working on real-time data. Web
technologies are expected to encourage the development of
OR/MS products as specialized component applications that
can be bundled to solve real-world problems. Effective exploi-
tation, for OR/MS purposes, of these technological innovations
will also require initiatives, changes, and greater involvement
by OR/MS organizations.

T he collection of concepts, languages, tools, and technolo-
gies that compose the World Wide Web* (WWW or Web!™) is
recognized to be as important and wide-reaching a devel-
opment as that of the personal computer. The Web is a
multimedia information system implemented on the Inter-
net. At less than a decade old, it is much younger than the
Internet and even younger than the personal computer, itself

At the end of this article, we have included a glossary of technical
terms (Appendix A) and a list of Web sites (Appendix B). To aid the
reader, we use the following stylistic convention in the body of this
article: Terms in the glossary, when first used, are italicized, and
items for which Web-based links are available are underlined when
they are first used.

Subject classifications: Computers, Information systems
Other key words: World Wide Web, OR/MS

a key component in the phenomenal growth of the Web. Yet,
it has already had a significant impact, more than the Inter-
net itself did, on nearly every branch of work, including
OR/MS (see [42] for a general discussion). A good example
is the Web-based OR Data Library, which presents a more
convenient, and easily discoverable, alternative to the earlier
system of distribution via electronic mail.[* 22

What precisely is it, then, about the Web that has caused
such an explosion of use that the basic Internet never expe-
rienced? How does it relate to OR/MS, and will, or should,
OR/MS never be the same again? Specifically, what OR/MS
activities can benefit from Web technologies and how can
they benefit? This article addresses these questions, and has
three main objectives.

1. Give the OR/MS readership a concise technical and ca-
pabilities overview of the WWW.

2. lllustrate, with inspirational examples, and explain, in
terms of the underlying concepts and technologies, the
potential positive impact that the Web technologies can
make on the OR/MS profession—in research, education,
practice, and general communication.

3. Describe a suite of Web-based technologies available to
OR/MS workers for Web-enabling their applications and
for setting up OR/MS products for execution in a distrib-
uted computing environment.

We begin with a short historical overview. The WWW
grew from an effort at the European Laboratory for Particle
Physics (CERN) aimed at sharing scientific information cre-
ated by CERN scientists. The problem then was that the
large number of file formats, computing platforms, access
tools, and access protocols made it hard to access informa-
tion on remote machines, let alone to jump from one infor-
mation object to another. Berners-Lee, in a proposal®™ to
CERN management in 1989 (significantly, only a year after
CERN was formally connected to the Internet), suggested

360

Bhargava and Krishnan

development of a client-server distributed hypertext system
to address the information management challenges at
CERN. In a revised proposal' the following year, Berners-
Lee and Cailliau proposed developing a world-wide web of
information with easy readability and easy authorship. They
suggested that links may point across machine boundaries
and that this required solutions for problems such as differ-
ent access protocols and different node content formats.

After initial development of the basic technologies at
CERN, Marc Andreesen, a student at the University of Illi-
nois at Urbana Champaign, created a graphical browser (Mo-
saic) that suddenly made the Web attractive and easy to use.
Much has happened in the world of the Web since the early
days. Today, the development and standardization of Web
technology is driven by the W3C (World Wide Web Consor-
tium), an international group of academic researchers and
over 100 companies. However, from a practical marketplace
perspective, Web technology is dominated by a few compa-
nies (primarily Netscape, Microsoft, and Sun Microsystems),
their products (Netscape Navigator, Internet Explorer, and
Java) and their extensions (NSAPI and MSAPI) of the general
Web standards. Often, software products become available
and widely used before there is much debate, analysis, or
agreement about the underlying concepts. In our discussion,
we attempt to remain at the conceptual level but are forced,
at times, to discuss technology and concepts in terms of
particular products.

The OR/MS worker is now presented a suite of tools with
which to build new applications and to disseminate appli-
cations in new ways. The remainder of this article discusses
these developments. Section 1 presents four vignettes that
illustrate ways in which Web technologies can benefit
OR/MS work. Section 2 is a gentle introduction to the ar-
chitecture of the Web and the fundamental technologies
underlying it. The Web is both a medium for communicating
information and a distributed computer; the second perspec-
tive is crucial for OR/MS’s effective exploitation of the Web.
We present the tools underlying the first view in Section 3,
and those relating to the second view in Section 4 and
Section 5. Then we discuss emerging technologies that, we
believe, will be instrumental in the use of Web-based tools
for OR/MS applications (Section 6). In the conclusions (Sec-
tion 7), we discuss some nontechnological issues concerned
with the use of the Web for OR/MS work, and suggest that
the OR/MS community should define and adopt policies
and organizational changes that facilitate the use of the Web
for OR/MS.

1. WWW and OR/MS: Vignettes of Opportunity

In this section, we present four illustrations of the role of the
Web in OR/MS community use, education, practice, and
research. All examples, even when they resemble and are
inspired by real-world objects, are hypothetical. After pre-
senting each vignette, we discuss, in an informal way, the
enabling Web technologies and methods. Technical terms
used in the examples are described in the sections that
follow, and listed in the glossary.

Vignette 1: OR/MS Community Use of the Web

John, a Ph.D. candidate, is looking for a university job.
Using his Web browser, he visits the placement service of
INFORMS Online. There, he registers as a candidate and
enters biographical information (including his URL) into a
form; this information is added to the placement database
and becomes visible to potential recruiters. John then
searches the employment database. Four listings match his
criteria. He follows up one at UCLA, and reads Web pages
about UCLA's faculty, research programs, and professional
programs. He then uses his Web browser to send electronic
mail to the contact person at UCLA. The message includes
URLs of his papers and his detailed résumé. At UCLA,
Professor Jones—chair of the recruiting committee—re-
ceives this Email, views it using her Web browser, and has
immediate access to John’s résumé, publications, and other
information.

Analysis. Although this scenario is not based on a true story,
the technologies that enable it certainly exist. As with all
Web applications, it requires participants to possess certain
client and server technologies. These clients and servers allow
the transfer—using the protocol best suited to the task—of
information in many forms: text (formatted in HTML),
graphics (encoded in the GIF format), sound (encoded in the
WAV format), and video (encoded in the MPEG format).
John, when he visits INFORMS Online, and Professor Jones
when she views John’s pages, must have a standard HTTP
client (a Web browser). Because the browser can also serve
as an SMTP and IMAP client, it can also be used to send and
receive email. INFORMS Online uses HTTP server technol-
ogy to serve both static pages and dynamically generated
HTML pages. Because the placement service allows ad hoc
queries, as well as the capture and storage of user data, it
must have Web-database connectivity, achieved here via a
CGil call to programs that implement SQL queries.

Vignette 2: Education

Professor Ram is discussing the role of sensitivity analysis
in decision support systems, and Susie, a student, asks about
analysis tools that use visualization and animation. Profes-
sor Ram, with her classroom computer, uses a popular Web
search engine—Lycos—to locate relevant Web sites. Eventu-
ally, she clicks on the URL of an applet for traveling salesman
problems. The Java applet gets downloaded to her machine,
begins execution, and projects the display on her screen
(Figure 1). Starting with initial city locations, it plots regions
in which each city may be moved without affecting the
optimal solution, and jumps to a new solution when the
changes go outside these bounds. Thus, Susie is able to
understand the impact, on the final solution, of changing
elements of the problem data.

Analysis. The proliferation of information on the Web
quickly led to the creation of general-purpose document
search engines such as Lycos. Lycos, for example, catalogs
millions of documents served by hundreds of thousands of
Web sites from around the world. Lycos users, such as
Professor Ram, need only have a standard Web browser,
and the Lycos HTTP server provides access to the search

361

The World Wide Web

Figure 1. Java applet for animation of sensitivity analysis
for the traveling salesman problem. Users can move each
city within its region, without causing a change in the
optimal tour; if a city is moved outside its region the
applet computes and displays the new optimal tour. From
Jones’ LP Animation applet.

tools and database via a CGI call. The traveling salesman
problem animation is implemented as a Java applet, a spe-
cial type of mobile software application that can execute on
a Java Virtual Machine (JVM) built into the Web browser.

Vignette 3: Research

Huang, a Ph.D. student, had to solve a complex engineer-
ing design problem that was formulated as a nonlinear
program. His university did not have access to either the
solution algorithms he wanted or the computational plat-
form (a high-end workstation) on which to run them. Pro-
fessor Ram, his advisor, suggested that he use NEOS (Net-
work-Enabled Optimization System). Huang chose to solve
his problem with Lancelot, a nonlinear programming solver
at NEOS. Downloading the submission form (an HTML
form; see Figure 2) on the NEOS site, he entered problem-
specific information (i.e., number of variables, number of
constraints, etc.) and the URLs of his FORTRAN routines
(these defined the initial starting point, upper and lower
bounds on variables, general constraints, and so on). He
filled out the form, and submitted it to the NEOS server,
which executed the solver and returned him the results.

Analysis. NEOS,?*! from the Optimization Technology Cen-
ter (a joint program between Northwestern University and
Argonne Laboratories), is an excellent example of the impact
that the Web is likely to have on OR/MS. NEOS gives
remote users the ability to execute specialized computa-
tional methods on high-performance servers. Huang needs
to have a Web client as well as an HTTP server (to make
Huang’s FORTRAN routines accessible to NEOS). The client
is used to process the HTML forms, submit parameters,

interact with the NEOS server, and obtain the results of
computation. The computational algorithms need not run on
the NEOS server itself because NEOS can direct the request
to registered remote servers maintained by the algorithms’
developers anywhere on the Internet.

Vignette 4: Practice

Financial consultant José needed to conduct fund portfo-
lio analysis for Betty, an important client. After examining
Betty’s investment goals, José pointed his browser to FinNet,
a hypothetical electronic brokerage for financial data and
analytical tools. On FinNet’s yellow pages, José found useful
tools such as data on mutual fund families, an efficient
frontier analysis tool for comparing alternative portfolios,
and a visualization tool for displaying the results of the
analysis. He created a FinNet script to (a) retrieve historical
performance data from the specified mutual fund data serv-
ers, (b) format the data to feed the efficient frontier analysis
model, and (c) create, using a visualization server on FinNet,
a series of overlaid graphs depicting the efficient frontiers.
FinNet executed the script and returned the report to José,
who paid for use of the services and briefed Betty using the
results of the analysis.

Analysis. Although this may appear futuristic, many com-
ponents required to create such electronic markets and bro-
kers for OR/MS products are available. José’s Java-capable
browser gets him access to FinNet via a Java applet that
implements the user interface. The applet (referred to as the
FinNet agent) obtains, using an object request broker (ORB),
the services of several remote objects such as data servers,
model servers, and visualization tool servers. The FinNet
services required by the applet are implemented as CORBA-
compliant objects,*® 4% je., they are implemented and reg-
istered with an ORB.

Discussion: What does the Web Mean for OR/MS?

From an OR/MS point of view, the WWW (and the In-
ternet) can be thought of as a medium and as a computer.
The first perspective—illustrated in Vignette 1—is quite
common and found in a majority of Web applications, and in
existing OR/MS services such as INFORMS Online (we
discuss these applications in more detail in Section 3). Here,
the Web is used mainly as a communication medium to
reach a large dispersed community, via one-many mass
communication of static information (e.g., a professor’s
home page). The basic technologies underlying the Web
(which we discuss in Section 2) are sufficient for most ap-
plications in this category. In addition, customization of
information and many-many communication can also be
achieved with minor extensions and little programming
(e.g., chat rooms or discussion groups).

However, the full potential of the WWW is realized only
when we think of the Web as a computer. That is, users
accessing OR/MS Web sites or OR/MS-enabled Web sites
not only obtain information about OR/MS or the OR/MS-
enabled application but are able to interact with computa-
tional OR/MS products available on these sites. This, of
course, requires online interactive computation. This can be
achieved in several different ways ranging from simple CGI-

Bhargava and Krishnan

Losutien il Wity e oz i)

Vet Sarver Sraca o e iy SACD L ARCELODT Sl i)

o o 2

NEOS

o

L} : | s .
sServer

ThEs Web robmission fors allows you o shosm batween twn inpu formsds. Youoss spscily your grablem
Wﬂmﬂ-mtfﬁhkmmmummnmnm:uhmmm;nmmmﬁ::

WWW Submission
LANCELOT

E1ker Posirig
balow), Youn

You cisad o 1edl us 1be number of wreinbles:

Hussbbr of Varintles
I

Yo e 1o el ue ke s e of cangtraln g
Husber of Consirxints

Humbar of [lement Funcilons:

. : ﬁ-]]
:--l.-a-l.lﬂ :jud.il.:\lum Leudpard)
L] L] n put

[niial Pednt SubroutinedORL L
e m—

Az you nsed 1 sell = the number of slement fanstions which maie up the otjective:

Yoz nised 1o specify the TRL {Uniform Resvures Lecator) af & fite contsining & Partran subrowtins that dsfines the staciia]
Eemember that Hec e fubesating 12 in fecirsn, the spacing ks imporisnt, This patrosdne nesds to be in 1 following 1)

Figure 2. The submission form for the Lancelot solver on NEOS. The figure displays fragments of the form corresponding

to the FORTRAN method of submission.

based architectures to more robust architectures that use
distributed object technologies such as CORBA and compet-
itors such as DCOM™® and the Java distributed object model.[!
These were illustrated in Vignettes 2 through 4. We discuss
this Web as a computer perspective, the enabling technolo-
gies, as well as their applications in OR/MS, in more detail
in Sections 4, 5, and 6.

2. The WWW: An Architectural Overview

The Web, like the proverbial elephant in the old Indian fable
“Five Blind Men and an Elephant,” is different things to
different people. For most users, it is a distributed, hyper-
media repository of information. For creators of information,

it is a publishing medium that offers high speed and wide
reach at low cost. At least two other perspectives are valid:
the Web is a digital library and, as a medium for electronic
commerce, it is an electronic marketplace.

From an architectural point of view, though, the Web is a
massive global network of client and server nodes that ex-
change information using the hypertext transfer protocol,
which itself uses the Internet’s underlying TCP/IP protocols
(see [44] for a detailed discussion of TCP/IP). The wide-
spread use and popularity of the Web is due, in part, to the
existence of browsers. Browsers are client programs that
interpret information encoded in a standard language
(HTML), exploit its hypertext capabilities, and provide a

363

The World Wide Web

Request

HTTP HTTP -

Client | HTTP Se _'C'CII Gateway
Response

HTTF Request HTTF Responss

OFET fwwwdocd. himl HTTRF.O HTTI'LAD 200 O

Accopt wwasoure Daie- Wednesdey, {2-Feb97 ..

Accopt fexthiml Sereer: MCSAN.]

BIDE-versinn: 1.0
Last-meadified: Monday, ...
Comeni-ype: iexnhiml

Aocopts imapedgid

L;;:-:r-u:nu MoxnBar]. 1M

(Windows:]; L6 hit) Contenl-lengih: 2345
*a blank line™
<HTML documeniz=
Figure 3. World Wide Web: Architecture and

Components. The client’s request for a document (labeled
HTTP Request) specifies the document being requested
and types of documents that the client can accept. The
server may return a stored document or one that is
generated by a call to an external program. The server’s
response (labeled HTTP Response) identifies the document
type and contains the document content.

point-and-click interface and transparent access to all Inter-
net protocols. Figure 3 describes this basic architecture.

In the remainder of this section, we discuss components
that define the basic Web architecture and that have been a
part of the Web from its early days. This basic architecture,
however, is quite limited from an OR/MS perspective. For-
tunately, the technologies that make up the Web today are
the result of continued innovations by various groups in-
cluding W3C, academic researchers, and several commercial
enterprises. These innovations make possible a wide variety
of OR/MS-related applications on the Web, and are dis-
cussed in the next three sections.

2.1 Hypertext at the Network Level
Hypertext is a concept derived from Bush’s proposal for a
memex system.*”1 It involves the organization of vast
amounts of knowledge, and navigation of it, via a nonlinear
collection of information and links. The earliest implemen-
tations of hypertext included Nelson’s XANADU project,®!
OWL’s GUIDE software,*® and Apple’s HyperCard soft-
ware.[*] Until the emergence of the Web, hypertext features
had to be implemented at the application level. A recog-
nized research problem and goal was to implement hyper-
text at the system (or machine) level so that information
objects in one application could be linked to objects in an-
other application in an application-independent manner.
The Web’s innovation regarding hypertext is that it ad-
vances the concept of hypertext to the network level. The
Web allows object linking across any machines on the Inter-
net network, independent of the operating system or hard-
ware platforms involved. Link locations are identified using
a unique address called the Uniform Resource Locator
(URL). Hypertext has obvious value to designers and users
of OR/MS applications. Benefits of hypertext for decision
support were demonstrated at the application level by Bhar-

gava, Bieber, and Kimbrough,® and included capabilities
such as the automatic generation of links across various
model components in a modeling system. Via the Web, such
benefits are now available in a global distributed computa-
tion setting.

2.2 Hypertext Markup Language and Multimedia

What makes the Web click? Its popularity stems from the
simplicity of its hypertext delivery vehicle—HTML.?1
HTML permits authors to write, format, and link text. In
addition, through a special set of tags (e.g., IMG, applet,
object), it permits developers to specify meta-information
(e.g., URL) about nontextual digital media (e.g., sound, im-
ages, movies, animations, applets), encoded using standard
MIME (multipurpose Internet mail extension) formats.

Consider the following code fragment.

(p ALIGN=CENTER
(IMG SRC = “welcometoORMS.gif”)

{Ip)

This code fragment illustrates the use of HTML as con-
tainer for nontextual media. Note the reference to an image
file in GIF format. This HTML feature enables delivery of
multiple media types on the Web. In Section 3, we further
discuss MIME formats and the concept of an OR/MS media
type that would allow OR/MS to exploit HTML’s property
as a container for diverse media types.

HTML—in its role as the user interface definition lan-
guage for Web-based applications—has several limitations
regarding its use in OR/MS and in other computational
applications. For example, it offers limited constructs (sin-
gle-level menus, input fields in forms, and submit buttons)
for user interaction. It also restricts an author to a few tools
for controlling the position of objects on screen. These lim-
itations are significant in the design of many OR/MS appli-
cations that involve a lot of user interaction (e.g., animations,
as in Vignette 2), and that require complex visual represen-
tations both for user input and for display of outputs.

2.3 Server and Client (Browser) Software

Web server software allows computers to become providers
of information on the Web. The information provided by
Web servers can either be retrieved from prestored files or
generated on request via the execution of some external
program. This latter capability is important from an OR/MS
perspective (see Section 2.5 and Section 4.1.1).

Web browsers, or clients, are programs that allow com-
puters to request information from Web servers. On receiv-
ing a request from a client, the server delivers the requested
information and supplies its MIME format. The browser
interprets this information on the basis of its MIME format.
If necessary, it selects a viewer (e.g., a streaming-video player
or a spreadsheet program) to display this information.
Again, this feature is useful in providing computational
OR/MS content on the Web (see Section 3 for specific illus-
trations).

The use of MIME formats and the standardization of
markup (via HTML), when coupled with Web client and

364

Bhargava and Krishnan

server software, gives the WWW its two other important
characteristics: universal readability (anyone equipped with
a Web browser can read the documents) and universal au-
thorship (anyone with access to a Web server can be a
publisher of information).

2.4 Hypertext Transfer Protocol

The hypertext transfer protocol (HTTP) defines the set of
rules that Web clients and servers must use to communicate.
The communication itself takes place over a TCP/IP connec-
tion, where the TCP/IP protocols are responsible for reliable
data delivery.

HTTP is optimized to handle certain kinds of transactions.
In these typical Web transactions, a client makes an HTTP
request (using the URL of the document) and the server
returns the file. This process repeats with the client making
another HTTP request to another server and so on. For each
request, a TCP/IP connection is established and held open
until that request is completed. This latter property of hold-
ing the connection open until the request is satisfied is
referred to as the connection-oriented nature of HTTP. Be-
cause each request to a server is, in principle, a new one,
HTTP servers (unlike, say, an FTP server) need not maintain
any memory (or state information) about the request; this
makes the protocol stateless. Finally, because only clients
may initiate requests, HTTP is considered a directional pro-
tocol.

Thus, a critical assumption underlying HTTP is that se-
guential requests between a client and various servers are
independent. Under this assumption, HTTP’s connection-
oriented and stateless properties are optimal. However, this
optimization results in the protocol being inefficient when
handling other kinds of transactions, particularly those in-
volving computational applications (in which, typically, suc-
cessive requests are not independent). The implications of
these properties for OR/MS applications, and solutions to
the problems that are created, are discussed further in Sec-
tion 4.1.3.

We note that our discussion pertains to Version 1.0 of
HTTP, which is the predominant version in use today. A
newer version (HTTP 1.1) addresses some of the limitations
(such as persistence of connections) discussed above.

2.5 Execution of External Programs

In response to some client requests, usually those made by
filling out and submitting HTML forms, an HTTP server
may invoke an external program called a script. The com-
mon gateway interface (CGIl) defines an application pro-
gramming interface (API), and specifies how data sent from
the client to the server are passed to the script and how the
results of executing the script are passed back to the server.
The CGI approach is extremely powerful and flexible be-
cause, in principle, it allows a Web server to interface with
any program written in any language (see Figure 3). We
discuss CGl, and its applications in OR/MS, in more detail
in Section 4.1.1.

2.6 Related Tools

Apart from the core technologies discussed in this section,
the Web technology suite includes related tools and ideas.
Search, cataloging, and indexing agents (see e.g., the Harvest
system[®]) are programs that address the proliferation of
information on the Web. Web spiders and worms are com-
puter programs that query thousands of Web servers, index
the documents available at these servers, and make the
index available to users through search engines. Develop-
ment and authoring tools (e.g., Microsoft’s FrontPage editor)
assist users in creating Web pages and Web sites. Accessory
software for Web servers extends their basic functionality,
e.g., by monitoring and summarizing usage and traffic.

3. Exploiting the Web for OR/MS: The Web as Media

A majority of Web-based applications is based on the con-
cept that the Web provides a new medium for communica-
tion. Some applications even make excellent use of the
unique features that the Web offers as an electronic medium.
For example, INFORMS Online is an application that is
primarily based on the Web as media idea. In addition to
electronic versions of publications (such as OR/MS Today
and the INFORMS conference bulletins) that were—and still
are—available in physical form, the site contains a wealth of
additional information (e.g., pointers to teaching materials)
of considerable value to the OR/MS community. Further,
the Web versions of even the standard publications offer
unique and useful features. A good example is INFORMS
Online’s conference bulletins, which can be searched effi-
ciently in many ways (by author, subject, session), and give
users multiple views of relevant information. Finally, func-
tionality such as online registration to an INFORMS confer-
ence, can be bundled along with the communication.

This section examines the Web as a communication me-
dium and its uses in OR/MS. We organize the discussion
along two dimensions—the alternative ways in which the
medium could be organized and the formats (or data types)
of information that can be communicated via the Web.

3.1 Push vs. Pull

The Web is, inherently, a user pull medium. Web-based
information is available at all times and needs to be down-
loaded on command (i.e., pulled) by the reader. This is
unlike, say, a radio or television broadcast that is sent to all
potential receivers, and is transient. The act of requesting
information from a Web site is similar to tuning in to a
broadcast. In addition, with the use of HTML forms, Web
readers can send information to the sender, making the
medium interactive.

In this user pull model, users must discover information
sources either by searching the document space on the Web
(using a search engine such as Yahoo or Lycos) or by going
to focused gateways (e.g., INFORMS Online or a journal’s
current contents pages). Further, users must remember to
perform these searches with suitable regularity. Thus, ob-
taining relevant information can consume a considerable
amount of user resources.

An alternative model that has begun to emerge is Web-

365

The World Wide Web

casting (or information push). In typical applications of Web-
casting, users locate relevant sites and register their interest
profiles. Following this, the information server itself sends
relevant information, at suitable times, to users without
waiting for additional requests. This approach has been
used to deliver news, stock quotes, and titles of journal
articles.

Two leading examples of Webcasting technology are
Pointcast and Netscape’s Inbox direct service. Pointcast re-
quires users to download and install (free) client software
that communicates over a proprietary TCP/IP-based proto-
col with Pointcast servers. Publishers make their informa-
tion available using Pointcast servers. Users register their
interest profiles with the Pointcast client on their desktop.
This client then initiates requests on the users’ behalf and
displays the results. Netscape’s Inbox direct service does not
need any new client. Interest profiles are registered at the
server (versus the client in Pointcast). Based on these pro-
files, the server filters information from a set of Web sites
and sends relevant information to users via electronic mail.

How might Webcasting be of use in OR/MS work? Con-
sider, for example, registering your areas of interest with the
INFORMS conference bulletin server and having the server
send you the URLs of matching sessions. Similarly, in Vi-
gnette 1, the Ph.D. student could use Webcasting technology
to have information about job postings (or candidates) that
match his needs automatically sent to him.

We point out that the push technology is not limited to
disseminating static information and news. It can be used to
draw the attention of a user to the results of intensive data
mining or computation that might trigger action. For exam-
ple, one could imagine subscribing to an agent that pro-
cesses large stores of financial data in the background and
pushes results of its analysis tailored to interest profiles (e.g.,
risk profile) of users.

In closing, we note that the Web has also been used to
support other community-oriented services traditionally
available on the Internet. For example, Internet bulletin
boards are approximated by chat groups on the Web, allow-
ing for many-many communication. Threaded discussions,
integrated with hyperlinks to obtain additional information,
are also available on the Web.

3.2 Multimedia

A distinctive feature of the Web is the seamless way in
which multimedia content such as audio, video, images, and
other digital content can be integrated with text. The display
and transport of this multimedia content are enabled by
MIME formats. MIME!R#! defines a standard way of format-
ting and encoding data that are exchanged between Web
servers and clients. This formatting is accomplished using a
collection of header fields (e.g., Content-Type, Content-
Transfer-Encoding). These header fields use a collection of
labels (e.g., application, audio, and multipart with Content-
type) that convey information about the content and the
structure of the message. A fragment of the response from a
HTTP server containing Content-Type declaration of text/
html is shown below.

HTTP/1.0 200 OK
Date: Wednesday, 03-Apr-97 23:04:12 GMT
Server: NCSA/1.1
MIME-version: 1.0
Content-type: text/html

These headers and labels are processed by MIME-aware
clients. In the case of text/html, the Web browser knows it
can display this MIME type. These capabilities can be used
to deliver multimedia enabled OR/MS applications.

Although any kind of information can be digitized, a wide
variety of encoding formats are available. For example,
sound can be encoded in WAV format or in a streaming
audio format such as real audio. The server needs to inform
the browser about the format of the data being sent in
response to a request in order that the browser may correctly
interpret it. For example, if the sound file being downloaded
is in WAV format, the browser could invoke a WAV viewer
to playback the file. WAV is a subtype of the audio MIME
format and corresponds to a particular way of digitally
encoding audio. This method of delivering multimedia con-
tent relies on the following.

= Creator/Generator of Data in Appropriate MIME Format.
These programs are used by publishers of information.
For example, a user wanting to disseminate the results of
an LP run as a GIF bar chart should have a program that
can format this graphic in the desired format. Further, the
server should know the MIME type of the information in
order to supply it (as the value of the Content-Type
header) to a client who wants to download and display
the document.

= Viewer of Data in Appropriate MIME Format. The Web
browser must either have the capability to display the
MIME type (e.g., an image/GIF file) itself or with the help
of a viewer, or be able to download a viewer of the
appropriate type. Technologies such as plug-ins, ActivexX
controls, and Java applets make this possible, each differ-
ently and with its own set of advantages and disadvan-
tages (see Section 4 for details).

e Transport of Data in MIME Format. HTTP provides the
transport from the server to browser.

This ability to deliver data of different MIME types is
already being used by the OR/MS community and presents
new opportunities for delivering OR/MS content. Here are
some possibilities.

= Make Viewers of OR/MS Content Available as Plug-ins, Ac-
tiveX Controls, or Java Applets. Just as Adobe and Microsoft
have made available free PDF (portable document format)
and Powerpoint viewers, respectively, one could create
executors (or viewers) of OR/MS content. For example,
Excel spreadsheets may be easily disseminated over the
Web and shared with users who have either the entire
Excel application or the Excel Viewer made available by
Microsoft. Another example is MathSoft’s MathCad, a
system for publishing and sharing mathematical models
via the Internet. Similarly, OR/MS technology developers
could provide—free of charge—viewers for their OR/MS

366

Bhargava and Krishnan

products (implemented as e.g., applets, ActiveX controls,
plug-ins, or helper applications), while selling the full-fea-
tured software for developing content.

= Exploit Multimedia to Deliver Results of OR/MS Analysis.
Animations (e.g., simulations of manufacturing flow
shops) can be a powerful way of disseminating content.
Given the availability of viewers, particularly those that
can be dynamically loaded, one could deliver results of
complex analysis over the Web. If needed, MIME types
customized to the needs of OR/MS applications may be
developed and registered with the Internet Assigned
Numbers Authority.

4. The Web as Computer: Publishing OR/MS Computational

Products
Although the view of the Web as a medium encompasses
several ways in which the Web can facilitate OR/MS work,
one must expand this view—to that of the Web as a com-
puter—to make fuller use of Web technologies for OR/MS
work. In the following discussion, we use the phrase “pub-
lishing OR/MS applications on the Web” to mean giving
access (to OR/MS products such as solvers, model schemas,
and modeling languages) to users who are remote and on
heterogeneous computing platforms. The question we seek
to answer in this section, from the perspectives of OR/MS
practitioners, educators, and researchers, is: How can | pub-
lish, in ways that overcome the limitations of the basic Web
technologies, my OR/MS application on the Web?

From a technical perspective, the challenge is delivering a
computational application in a distributed and highly het-
erogeneous computing environment, while preserving the
Web’s universal readability property. The Web delivers plat-
form independence when static information is being com-
municated. However, the heterogeneity of client platforms
on the Web makes it undesirable to transfer (i.e., download
to client machine) OR/MS computational products (e.g.,
solver implementations) to users.

At the extreme, there are two ways to deliver execution of
computational products via the Web: server-side computa-
tion (e.g., CGI scripts) and client-side computation (e.g., Java
applets). In each category, there are methods (e.g., CGl, Java)
that are, in theory, consistent with the Web’s platform-inde-
pendence principle. Other methods—including those in-
volving plug-in components, viewers, ActiveX controls, or
various scripting languages®®—are also important though
not necessarily platform independent. The technologies, and
their advantages and disadvantages, are summarized in Ta-
ble I.

4.1 Methods for Server-Side Computation

In methods for server-side computation, the HTTP server
invokes an external program (usually resident on the server)
upon receiving a request from a Web client (see Figure 4).
The motivation behind server-side computation is that pro-
gram execution, because it occurs on the server, is indepen-
dent of the user’s (client’s) computing platform. This not
only frees users from software installation and recompila-

tion (or worse, code modifications and debugging), but fa-
cilitates sharing of specialized hardware and software tech-
nologies for solving OR/MS problems. The programs could
be preexisting code written in any language that executes on
the server, as long as the programs have input-output com-
munication with the server software. Computing is done
entirely on the server, and only data are exchanged between
the client and server. A good example of this approach is the
NEOS site that provides access to the AMPL modeling sys-
tem and a variety of solvers.

Two methods are discussed in this category in Sections
4.1.1 and 4.1.2. Because both essentially rely on HTTP for
data transport, they suffer the same limitations discussed in
Section 2.4. We discuss methods for overcoming these lim-
itations in Section 4.1.3.

4.1.1 Common Gateway Interface

In his initial proposal for the WWW, Berners-Lee® recog-
nized the need for diverse computation. He proposed a
common gateway interface that would allow a Web server to
invoke other computational programs and to transfer to
them data submitted by a Web client. The client’s input
interface is, typically, an HTML form that admits a variety of
static formats for textual input. For example, Figure 5 dis-
plays the input (and output) interface used in a Web-based
optimization system for solving waste disposal and recy-
cling problems (Bhargava and Tettelbachl*?!). Each form has,
at most, one action tag that specifies the URL of its CGI
script. The Web browser, through the HTTP server, commu-
nicates user inputs (in a format that maps input values to
script variables) to the CGI script.

The script itself contains a list of variable definitions and
some code to manipulate the input values. In simple Web
applications, a CGI script could handle the entire computa-
tion. However, from an OR/MS perspective, it is more ap-
propriate to think of a CGI script as an auxiliary program
(also known as a wrapper) whose purpose is to: (a) gather,
parse, and format the input data as required by an existing
OR/MS solver, (b) initiate solver execution, and (c) obtain
solver results and format them for the browser (typically as
HTML text supplemented with images). In the waste dis-
posal and recycling system, the script is actually a collection
of CGI programs that execute various tasks as displayed in
Figure 6. The model manipulation and solution, as well as
data management, are done by external programs.

Thus, CGI provides a simple mechanism to extend the
capability of the Web server and to migrate an existing
command line-oriented desktop OR/MS technology (e.g.,
the GAMSI®! modeling system) to the Web. However, this
simplicity comes with certain limitations. We discuss three
limitations, the last two being particularly relevant to
OR/MS work.

1. CGI implementation is customized to the features of the
operating system on the Web server. For example, on
Unix systems, data from the browser are passed through
Unix environmental variables and results are returned
through standard output. In contrast, on Windows NT
systems, the script is launched as an application process

367

The World Wide Web

Table I. Technologies that Permit Use of the Web as Computer

Technology

Advantages

Disadvantages

CaGl

Server-side Scripting

All Server-side

Client-side Scripting

Plug-ins

Java Applets

ActiveX Controls

LiveConnect

All Client-side

Defines standard API

CGl scripts can be written in a variety of
programming languages

Efficient execution (as threads) of scripts

Support for development of gateways to
external programs and databases

Shared access to resources (e.g., high-end
server machines, quality software)

Enables legacy programs to be accessed over
the Web

Client-side platform independence

Executed within (ubiquitous) browsers on
most client platforms

Software components downloaded on demand

Components remain on client machine

Components are compiled binaries and
execute efficiently

Platform independence (via JVM)

Compile once, run anywhere model

Powerful client-side capabilities (User interface
and computation)

Interoperable with remote components
Software components downloaded on demand

Controls remain on client machine

Linkable to other MS office controls on
desktop

Can integrate with Java applets and VBScript

Controls are compiled binaries; hence execute
efficiently

Allows integration of client side scripting, Java
Applets, and Javascript

Shifts processing from server to client

Can build graphical user interfaces

Makes client a more intelligent platform

CGil scripts are invoked as processes
Inefficient execution, high overhead

API is proprietary
Lack of portability across Web servers

Limited user interface (HTML forms)
Server is called for every operation
Dependence on network

Not suited for complex programs
Source code available to user
OR/MS plug-ins must be developed
Components are platform specific
Can only be invoked within browser
Proprietary Netscape architecture

Not suited for complex programs

Programs must be converted to Java

Applets need to be downloaded each
time

Inefficient execution

Require development of OR/MS
controls

Controls are platform specific

High overhead during initial
download

Mainly a Windows technology

Works only with Netscape browsers

Consume client computing resources
Applications must be rewritten

The first two technologies (CGI and server-side scripting) involve computation on the server machine. The next five
technologies involve client-side computing.

and data are passed through temporary files. This means
that a CGI script developed for use on a Unix-based Web
server will need modification before it can be used on an
NT-based Web server. To keep this limitation in perspec-
tive, we note that it implies only server-side (and not
client-side) platform dependence, and is relevant only
when the application needs to be moved to a different
server platform.

. Each use of a CGI script requires the creation of an
operating system process.[**! Multiple calls to invoke CGI
scripts can consume considerable resources on the server.

This limits the number of simultaneous requests that can
be processed, particularly for computation-intensive
OR/MS applications. Further, if the application is inter-
active and requires user input in a multistep sequence,
then several input forms and scripts must be designed.
Each step requires transport of data from the client to the
server and invocation of a script.

. The script-form interface of CGl is limited by the features

of HTTP. It gives the user no control options other than to
wait for the result or to abort the request. This presents a
problem for OR/MS applications that need to provide

368

Bhargava and Krishnan

) R
HTMIL (b]
| Fommn data, commanids —] le
{win ACTION tag) | Progrem |
Web Weh
Cliemt SErver

Figure 4. Server-side computing on the Web.

interactive capabilities to an end user or algorithm mon-
itoring and control functions to an analyst.

4.1.2 Server-Side Scripting

In the typical client-server transaction using HTTP, the
server retrieves and serves the requested HTML document
without any regard to its content. The server-side scripting
approach extends this basic model. Now the HTTP server
(more specifically, the scripting engine on the server), on
retrieving an HTML document, examines it for certain tags
(the server tag in JavaScript) that identify special script state-
ments. On finding these, it executes them and embeds the
execution results into the document before passing it on to
the client. The server-side scripting approach is exemplified
in Netscape’s server-side JavaScript technology® and in
Microsoft’s Active Server technology.!

Script statements can, for example, manipulate some data,
invoke an executable program, and provide connectivity to
a database. Existing OR/MS applications can be published
over the Web in this way: script statements communicate
with the OR/MS code and the user interface is defined by

.l_—mmmq_lﬁlmtﬁ

Figure 5. Waste disposal and recycling system showing
and output interface (right) is in HTML.

HTML forms. Here, the interface to external programs is an
application programmer interface (Netscape’s NSAPI in the
case of JavaScript) that is typically more efficient. NSAPI-
initiated requests execute as threads*®! in contrast to CGI
scripts, which are executed as processes.

Thus, compared to CGl-based scripts, server-side script-
ing is computationally efficient. Its disadvantage, though, is
the proprietary nature of the technology. Although Java-
Script is portable across server platforms, it can only be used
with Netscape servers. It also suffers from the third limita-
tion that is inherent in all HTTP-based implementations.

4.1.3 Overcoming Limitations of HTTP

Recall, from Section 2.4, that HTTP is connection-oriented,
stateless, and directional. The needs of OR/MS applications
(e.g., stateful, interactive, and computation-intensive) are
not well suited to these HTTP features, but can be addressed
via extensions and newer technologies.

e Dealing with the Connection-Oriented Nature of HTTP.
HTTP’s connection-oriented property means that the
server keeps open the TCP/IP connection to the client as
long as it takes to service the HTTP request. If the execu-
tion (on the server) of an OR/MS algorithm takes a long
time, this results in inefficient use of network resources.
Because HTTP is directional, the server cannot simply
close the connection on receiving a request and open it
again when the result is available. Solutions to this prob-
lem involve treating the Web as a push medium (see
Section 3.1). One alternative complements HTTP with
Email technology. When a request for extensive compu-
tation is made to a Web server, the server invokes the

remote interaction via CGI scripts. The user’s input interface (left)

369

The World Wide Web

Elicit user data,
maintain state

Fetch model file,
create AMPL run file

Y
Retrieve payoff, distance Move AMPL files,
data from database Invoke AMPL
y \
Organize data for Receive AMPL results,
AMPL datafile Convert to HTML

Figure 6. Waste disposal and recycling system showing
remote interaction via CGI scripts. The scripts perform a
series of tasks and provide an interface between the
optimization system, a database system, and the user.

model or algorithm and breaks the connection with the
Web browser. Upon completion of the computation, the
user is notified by electronic mail. With IMAP compliant
mail servers, for example, the user can read this Email
using a Web browser and retrieve the results of the com-
putation by following the URL in the body of the email
message.

= Maintaining State. A common feature of OR/MS applica-
tions is that user interaction involves a series of steps.
Because HTTP is a stateless protocol, each request from a
client to the server is considered to be independent of
previous requests. This is a problem, for example, if in-
stantiating data for an optimization model are to be col-
lected in a sequence of interactions that are interdepen-
dent. Suppose that a user wishes to change only certain
parameters (e.g., during what-if analysis) in a large data-
set. If all data had to be sent together, every small change
would require sending the entire dataset. The earliest, and
still the most general, solution to this problem involves
the use of hidden variables in HTML forms. For example,
in the waste disposal and recycling system, user data (i.e.,
state information) are cumulatively stored on the server
and mapped to an identifier. The hidden variables carry
this identifier between the client and server, allowing the
program to relate multiple interactions, and also to sup-
port multiuser access. Another, but proprietary, solution
involves storage of session identifiers on the client ma-
chine: Web servers and clients process an additional
HTTP header component called a cookie that can be used
to uniquely identify session or transaction data that span
multiple HTTP requests.

= Support for Two-Way, Real-Time Interaction. In HTTP, all
the data from the client to the server are sent when the
client initiates the transaction. Although the server can
communicate with the client until it closes the connection,
no further data can be sent from the client to the server as
part of the ongoing transaction. This prevents the imple-
mentation of truly interactive applications over HTTP.
Addressing this problem involves other methods, dis-
cussed in Section 5, that involve client-side computation
and distributed computing technologies.

Hierlneeriice ———requests HTML file—=
Emum.m|
Program el HTTP with HTMWL | roun |
—_ — file as contxiner ot e
Web Weh
Client Server
Figure 7. Client-side computing on the Web.

4.2 Methods for Client-Side Computation

Recall (from Section 2.3) that, in the basic Web transaction, a
Web browser on the client machine does little more than
interpret and display the HTML document sent by the
server. In methods for client-side computation, the Web
browser does much more. Richer types of documents can be
delivered over the Web. These documents may be execut-
able programs that run on the client machine (see Figure 7).
We discuss five alternative client-side computation methods
and their relative advantages and disadvantages.

4.2.1 Scripting Languages

Scripting languages were the first direct extension to plain
HTML processing and display on the Web browser. The
basic idea is to embed, within an HTML document, pro-
grams written in an interpreted language. Client-side Java-
Script (from Netscape Corp.) and VBscript (from Microsoft
Corp.) are two popular scripting languages. We use JavaS-
cript to illustrate the concepts. Consider the following frag-
ment of JavaScript code that is used to evaluate an expres-
sion specified in an HTML form.

(HEAD
(SCRIPT LANGUAGE"JavaScript”)
function compute(form) {
if (confirm(“Are you sure?”))
form.result.value
expr.value)
else
alert(“"Please come back again.”)

eval(form.

}
(ISCRIPT)
(IHEAD})

Note that the JavaScript program is specified in the HEAD
of the HTML file. An HTML form in the body of the same
file can reference and use this program as shown below.

(BODY

(FORM

Enter an expression:

(INPUT TYPE=“text” NAME =“expr” SIZE

(INPUT TYPE="button” VALUE =“Calculate”
ONCLICK="compute(this.form)”)

(BR

Result:

(INPUT TYPE="text” NAME

(BR

(/[FORM

(/BODY)

=15)

=“result” SIZE =15)

370

Bhargava and Krishnan

The HTML form enables the user to enter an algebraic
expression and, following a mouse click, use the JavaScript
program to compute the expression. JavaScript is often used
to implement context-sensitive interfaces through its ability
to capture and respond to user events such as mouse clicks,
form input, and page navigation. It can also be used as a
full-fledged programming language to implement OR/MS
algorithms. We now briefly discuss both uses of JavaScript.

< Data Error Checking in HTML Forms. In the standard Web
architecture, HTML forms allow users to submit data to a
Web server. Input data validation must be done at the
server. This round trip to the server—even for minor data
checks—degrades the quality of the interaction with an
OR/MS application. Error checks on data are easily
achieved with a client-side scripting language. Elements
of HTML forms are associated with events that the user
can trigger with keyboard or mouse actions (e.g., mouse
clicks). These events invoke the script programs that can
perform the desired check and provide immediate feed-
back to the user. Only valid data are sent to the server.
This strategy also permits a clean separation between the
user interface logic—implemented using JavaScript—and
the algorithmic logic implemented on the server using the
methods described in the previous section.

= Implementing OR/MS Methods using JavaScript. As noted
earlier, JavaScript could also be used to implement
OR/MS algorithms. This strategy would require the de-
velopment of the interface and processing components of
the application in JavaScript. WORMS is a leading exam-
ple of this approach in the OR/MS arena. WORMS makes
available JavaScript implementations of methods such as
dynamic programming. Although this approach bundles
the entire application for processing on the client plat-
form, it does have several disadvantages. First, JavaScript,
being an interpreted scripting language, is not well suited
to developing and maintaining efficient implementations
of complex algorithms. Second, because JavaScript imple-
mentations are embedded in HTML documents that are
transported to the client, the source code for the imple-
mentation is available to the user. Third, if the implemen-
tation is complex and long, it can increase the time re-
quired to download the application.

4.2.2 The Plug-in Model
Although scripting languages enable computation on the
client platform, they rely on the Web browser to serve as the
language interpreter. This permits programs written in
JavaScript to be processed by any Web browser on any
platform. In contrast, plug-ins, part of a Netscape-defined
architecture, are platform-specific compiled components.
They provide a way of packaging and distributing existing C
and C+ + implementations of OR/MS algorithmic products
for installation and use within a Web browser on the client
platform. Plug-ins conform to an application programmer
interface and are invoked by the browser when it attempts to
load a file of a given MIME type.

Although plug-ins are typically used to process special-
ized content such as sound, video, and animation files, the

same approach can be used to define and process OR/MS-
specific MIME types. Thus, for example, one might define a
nonlinear optimization model MIME type, causing the
browser to invoke a nonlinear optimizer (packaged as a
plug-in) to process the model. Because the plug-in software
resides on the user’s machine, version management becomes
an issue. The plug-in architecture addresses this problem
through methods for updating plug-ins without having to
reinstall the entire software. We examine these advanced
features later in this section.

4.2.3 Java Applets

Originally envisioned as a language for use in embedded
applications such as home appliances (e.g., set-top boxes in
applications such as WebTV), the Javal® programming lan-
guage (from Sun Microsystems) has fast become the vehicle
for delivering interactive and computational applications on
the WWW. The Java toolkit includes much more besides the
language (e.g., database connectivity and remote method
invocation; see [43] for a brief introduction to the various
parts).

Java is an object-oriented language that shares certain
syntactic similarities with C and C+ +. Due to its support for
network protocols, it is especially suited to network-centric
computing. Interested readers are referred to two gentle
introductions ([28] and [47]) for the features and benefits of
Java as a programming language. With respect to its use for
OR/MS applications on the Web, Java’s key feature is its
platform independence (write once run anywhere) that re-
sults from compilation of Java programs into an intermedi-
ate platform neutral representation called bytecode. Bytecode
is executed by interpreters (Java virtual machines®®) that
are available on major platforms. Because leading Web
browsers implement the JVM, mobile Java programs (ap-
plets) can execute within the browser. This capability has
captured the imagination of Web developers and several OR
researchers (see e.g., work by Gagliardi and Spera®” on
classroom scheduling, Hochbaum on the RIOT project with
several optimization problems, Jones on the TSP and LP
animation, and Bradley on graph coloring heuristics).

Java applets use HTML as a container and are down-
loaded using HTTP from a Web server. For example, con-
sider the following excerpt from an HTML file in Jones’ LP
animation. The applet (which interacts with the user) is
embedded within applet tags in an HTML page. The width
and height specify the space available on the Web browser
screen for the applet. Parameters for the linear programming
algorithm are specified using the PARAM tag.

(APPLET codebase =“Beta/Classes”

code =“NULP.class” width =600 height =500)
(PARAM nameobjsense value =“max”)
(PARAM nameobjective value =“6 5")
(PARAM nameconstraints value ="12 <1821

<1811 >31-1<6-11<6©6")
(PARAM namegraphwidth value =200)
(PARAM namegraphheight value =200)
(PARAM nameshowrect value ="-1 -1 15 15")
(PARAM namevarlabels value =“Ch Ta")

371

The World Wide Web

(PARAM nameroundrhsto value
(/APPLET)

=0.1)

In this example and the illustration in Vignette 2, the
applet is a standalone implementation of an OR/MS
method. Although this is feasible, there are certain prob-
lems. First, this often requires reimplementation of a method
in Java. Second, as the size of the applet grows, there are
delays both in downloading the applet over the network and
in loading it on the Web page. Third, the client platform may
not have the computational power to execute the model.

In such cases, Java applets can be used to implement
platform-independent user interfaces that can be used with
a Web browser on any platform. The user interface applet
can communicate with a computationally intensive applica-
tion (written in Java or another language) running on a
server. There is considerable attention paid to such commu-
nication in Java between the applet and the server. In addi-
tion to HTTP, Java supports the remote method invocation
(RMI, discussed in Section 5.1) method and the CORBA-
based Internet InterOrb (11OP) Protocol (CORBA and IIOP
are discussed in Section 5.2). RMI and IIOP provide persis-
tent two-way interaction between client and server. Using
RMI or 1IOP, Java applets can be used to implement inter-
active OR/MS applications on the Web.

4.2.4 LiveConnect: Integrating Plug-ins, JavaScript and Java
Applets

LiveConnect is a Netscape object technology that allows each
of the client-side technologies that we have discussed to be
integrated within an object-oriented framework. This is
done by making any Java applet (that gets downloaded into
a Netscape browser) an object that can be referenced from a
JavaScript program. After an applet is downloaded, a Java-
Script program is able to access any Java public classes
defined in the applet. Similarly, functions that are available
in plug-ins can also be addressed as objects by a JavaScript
program. When OR/MS technology is packaged as plug-ins
and applets, JavaScript can be used to script these compo-
nents (and potentially others) to deliver OR/MS-based ap-
plications to a remote desktop.

Although we are not aware of existing OR/MS applica-
tions that make use of LiveConnect, consider the following
illustrative application modeled after an example on the
Netscape Web site. A Java applet gathers live stock market
information through the Internet. It calls a JavaScript func-
tion that implements a model (say, a neural network) for
determining whether a user should buy or sell a certain
stock. When a buy or sell condition is identified, this triggers
an event that results simultaneously in an audio alert (raised
by a plug-in) and a pop-up dialog box. The advantage of this
technology is the ability to package OR/MS applications in
rich multimedia contexts. The disadvantage is that it uses
proprietary technology (LiveConnect and plug-ins) and can
only be used with Netscape browsers. However, these tech-
nologies represent new and exciting opportunities for the
distribution and packaging of OR/MS content, particularly
instructional material.

4.2.5 ActiveX Controls

An ActiveX control is a reusable software component and is
part of Microsoft’'s Component Object Model (COM) tech-
nology.™*® In contrast to Java components, ActiveX controls
are platform-specific binaries. Although computationally in-
tensive ActiveX controls are usually implemented in lan-
guages such as C++, simple controls can be implemented in
popular scripting languages such as Visual Basic 5. Cur-
rently, ActiveX can only be used on Windows platforms.
However, Microsoft has indicated plans to port its technol-
ogy to Unix and Macintosh platforms as well.

Controls are embedded in client software called contain-
ers. Originally, ActiveX control containers were written in
Visual Basic. Following the growth of the Web, Microsoft
has designed the Internet Explorer browser to be an ActiveX
control container as well. The browser, when encountering
data that require a specialized viewer, loads a viewer (e.g.,
an Excel viewer or an OR/MS algorithm) implemented as an
ActiveX control. The control may already be present on the
client machine or it might have to be downloaded as shown
in the following example.

(OBJECT

CLASSID="classid:B16553A0-06 DB-101B-85B4-
00000C0009BE05”

CODEBASE“http://www.traveling
com/mapshow.ocx”

ID =Mapdisplay

Data ="http://www.traveling
mpadata.geo”

width =600 height

(/OBJECT)

_salesman.

_salesman.com/

=500)

Because they are platform-specific binaries, ActiveX con-
trols are resident after downloading on the client platform.
This can pose security problems and the user has to ensure
that the control is being downloaded from a trusted server.
In contrast, Java applets have to be downloaded every time
they need to be used and execute within the browser. The
user of a Java applet is assured of using the latest version.
With ActiveX programs, however, when a new version be-
comes available, the onus of fetching and updating the
program falls on the user. The overhead incurred to down-
load an ActiveX control (a control is usually much larger
than a comparable applet) is offset by the faster speed of
execution of the control (because it is an executable binary)
when compared to an interpreted Java applet (even account-
ing for the availability of Java just-in-time compilers).

At present, ActiveX controls work best with Internet Ex-
plorer browsers. Netscape browsers require a plug-in to
process ActiveX controls. Therefore, as an option for imple-
menting and distributing OR/MS algorithms on the Web,
ActiveX controls are a natural migration path optimized for
users with Internet Explorer browsers on Windows ma-
chines.

Scripting ActiveX Controls

Just as JavaScript can be used to access public methods of
Java applets, scripting languages can obtain access to meth-
ods implemented as ActiveX controls. This is usually done

372

Bhargava and Krishnan

using VBScript and the process is conceptually similar to the
process with JavaScript. This allows trapping of—and sub-
sequent action on—events (such as mouse clicks) generated
by a user interacting with an interface (such as a map
display of a traveling salesman tour) generated by an Ac-
tiveX control.

The following example illustrates a VBScript program
that accesses methods (in the example, SpinUp) of the Ac-
tiveX control using its ID tag, Mapdisplay. The script is
capable of providing feedback as the user interacts with a
traveling salesman tour being displayed by the ActiveX
control.

(SCRIPT LANGUAGE"VBSCRIPT")
Sub Mapdisplay _SpinUp()
MsgBox “(Route Moved)”

End Sub

(/SCRIPT)

Integration with Java

ActiveX controls can be integrated with Java using certain
Windows-specific extensions. ActiveX controls can be im-
ported as Java classes into Java applications, and Java objects
can be used wherever ActiveX controls are used. This inte-
gration is presently only supported by Microsoft’s imple-
mentation of Java.[*®! Because ActiveX controls are binaries,
applications developed using this model will not be plat-
form independent. However, it does allow the use—as Ac-
tiveX controls on the client platform—of existing software.
Further, it offers OR/MS developers writing to Windows
platforms the opportunity to draw on a large market in
reusable ActiveX software components.

Summary

A key difference between ActiveX controls and Java ap-
plets is that ActiveX controls are binaries that are perma-
nently installed on the client platform after they have been
downloaded. They share this feature with plug-ins. The
advantage of this approach is access to resources (superior
execution speeds achievable with compiled code and access
to other ActiveX controls) on the client platform. The disad-
vantages are concerns about security, the need to write
controls for multiple target platforms, and dedicated use of
client resources. A summary of the technologies discussed in
this section is given in Table 1.

5. The Web and Distributed Computing Technologies

The previous section described several recent technologies
that allow the deployment of OR/MS and other computa-
tional products over the Internet. Because of the limitations
of each alternative, no single alternative may be sufficient
for implementing a Web-based version of an OR/MS prod-
uct. For example, consider the vehicle routing and traveling
salesman problems. Both problems require complex OR/MS
solvers and sophisticated graphical user interfaces. CGI and
related technologies, although allowing the use of a suitable
solver, are inappropriate for the user interface because they
are limited by the capabilities of HTML and HTTP. On the
other hand, Java applets may deliver a nice user interface,

but, because they are interpreted, are unsuitable for the
solution algorithm.

More recent developments, enabled by the integration of
distributed computing technologies, provide solutions to
these problems. In this section, we seek to answer questions
that relate to the view of the Web as a distributed computing
environment for OR/MS application development: (a) How
can OR/MS products be packaged as independent compo-
nents with well-understood interfaces, and (b) How can
these components communicate with other remote compo-
nents and with remote users?

Techniques discussed in the previous section provide an
initial, but unsatisfactory solution. For example, although
CGl applications allow remote interaction, the external pro-
gram that is invoked in response to a CGI call does not have
a published interface. The interfaces are implemented as
part of a CGI script. When there is an increase in either the
number of external programs that have to be called from a
CGI script or in the complexity of the interface, the CGI
script becomes complex. This makes it difficult to debug and
maintain.

Communication in CGI systems uses HTTP between the
client and the server. Any other communication, either be-
tween an applet serving as an interface to an application on
the server or between the CGI application and other remote
servers, requires use of communication mechanisms such as
TCP/IP sockets and cumbersome application-specific proto-
cols. Once again, these solutions are difficult to maintain.

Recent developments such as the RMI system (defined as
part of the Java object model) and the 11OP,*37 411 3 mes-
saging standard defined as part of CORBAP® “1 address
these shortcomings. Both approaches enable the develop-
ment of objects with clearly specified interfaces—using an
IDL (interface definition language) in the case of CORBA,
and a special type of class called interface classes in the case
of Java. IIOP is used in CORBA to enable communication
between remote objects, whereas RMI does the same for Java
objects executing on remote JVMs. The principal difference
between the two is that RMI assumes that communicating
processes run on a JVM (i.e., are written in the Java lan-
guage), whereas the CORBA/I1IOP solution admits a heter-
ogeneous world with object implementations in various lan-
guages (presently, CORBA supports C, C++, lJava,
Smalltalk, Cobol, and Ada). We discuss these two technol-
ogies—and how they help answer both questions—in Sec-
tions 5.1 and 5.2.

5.1 Java RMI: Java-Based Distributed Computing

Section 4.2.3 described how an OR/MS method could be
implemented as a stand-alone Java applet, contained in an
HTML page, and transported using HTTP from a Web
server to a client. However, once an applet is executing on a
client JVM, it can communicate with objects executing on the
Web server from which it was served. Similar communica-
tion is possible between two objects executing as Java appli-
cations on remote JVMs. In both cases, the enabling technol-
ogy is the RMI system, introduced to integrate a distributed
object model into the Java language. RMI defines a struc-

The World Wide Web

HTTP
Client

HTTP Java application
Server on HTTP server

request applet

applet downloaded using HTTP

ot

Java applet-application

Time ¥ communication using RMI Y

Figure 8. Distributed computing via Java RMI. An
OR/MS algorithm residing on an HTTP server can
present, as a Java applet, a graphical user interface to a
remote user.

tured and transparent way in which a Java object, executing
on one JVM, can invoke methods of another Java object
executing on a remote JVM.

RMI is based on a simple concept. A Java object whose
methods are to be invoked remotely defines its interface (i.e.,
a declaration of its methods). We will refer to such an object
as the server. We will refer to the object that makes remote
calls to the methods of the server object as the client. The
server object is registered with the RMI system, a process
that generates stubs and skeletons. A stub serves as a proxy or
surrogate for the server object implementation by support-
ing the same set of interfaces as the server. The skeleton is a
server-side entity that dispatches calls to the implementation
of the server object. The implementation of the client (either
an applet or an application) uses the stubs to make the calls
to the methods of the remote server object. When the meth-
ods are invoked, the RMI system uses the skeleton to invoke
the methods on the remote object and returns the result.

We describe two alternative ways in which this technol-
ogy could be employed for implementing OR/MS applica-
tions.

5.1.1 Applet as User Interface with an OR/MS Algorithm on
the Server

In this case, a Java applet manages the user interface. The
method resides and executes on the server. The time-se-
quenced communication between the different components
is shown in Figure 8. The applet is loaded into the browser
using HTTP. Further communication between the applet
and the application uses RMI.

As Figure 9 indicates, there are now two possibilities. The
application (the OR/MS algorithm) itself may be written in
Java (Option 1). An existing (say, C++) implementation of
the algorithm can be wrapped in a simple Java application
that executes it upon receiving an RMI request from an
applet (Option 2). In both options, the wrapper or the algo-
rithm is implemented as an RMI object using a specialized
set of class and interface libraries. This is a simple and
powerful way to make existing implementations (also re-
ferred to as legacy systems) available on the Web. The

additional work involves redesigning the user interface as
an applet and writing a wrapper application in Java. The
first approach is taken in the design of CSLab,*1 a Web-
accessible simulation environment for use in teaching and
research. CSLab users construct, and interact with, simula-
tion experiments—realized as Java classes on a remote serv-
er—through a worksheet implemented as a Java applet in
their Web browser.

5.1.2 Applet Interface: Distributed Implementation

Remote method invocation is not limited to communication
between an applet and a Java application on a server. As
noted earlier, it can be used for communication between
Java applications on different machines as well (see Figure
10). This approach permits distributed applications to be
built out of well-tested and maintainable components with
relative ease and robustness. For example, consider an ap-
plication that requires the integration of a database server, a
forecasting model, and a logistics planning model, all avail-
able as independent components. Now, each component is
implemented as an RMI object on its own server. The client
for each is a Java application executing on a Web server that
also serves the user interface applet(s). This Java application
mediates between the user interface applet and the compo-
nents implemented on the remote servers. On receiving user
requests (e.g., for a forecast, access to data, or the logistics
planning model) communicated by the applet using RMI, it
invokes methods—again using RMI—on the corresponding
component objects.

Although this is a clear improvement over older TCP/IP
socket-based approaches, the RMI system has some short-
comings. First, RMI is specific to Java. It is designed to
enable objects to invoke methods on objects executing on
remote JVMs. Second, and perhaps more importantly, it
does not support features required to discover and invoke
these methods at run time. Why might this be important to
OR/MS application development? In the logistics planning
scenario described above, RMI was used to construct a dis-
tributed OR/MS application. However, this assumes that
stubs for RMI objects are available at the time clients for
these RMI objects are written. Stated another way, RMI
works under the assumption that clients for RMI-based ser-
vices are written (using the server stubs) and compiled
when the service is developed. If an application needs a new
service, a new client for that service would have to be
written, integrated into the (intermediary) application
(which would have to be recompiled). Clearly, this is not
feasible in an environment in which OR/MS products—
packaged as components—are added and removed in a
flexible manner and assembled together on demand (see
e.g., [33]). This is essentially the underlying premise of the
DecisionNet project.[® 2% 111 DecisionNet seeks to create a
flexible environment for creating OR/MS applications from
a set of available components. The technology that makes
this possible is CORBA 4 discussed in the next section.

5.2 CORBA and Il10P-based Distributed Computing on the Web
CORBA is an open cross-platform communications architec-
ture. CORBA is based on two important concepts—an IDL

374

Bhargava and Krishnan

Llser Interface
R - , O
option 1 v | Legend
Applet RMI OR/MS
App (Java) |
— document
iransfe
Web Web g
Client Serve :
s . inter-process
communication
U*”ILT““ Lt HTTP cerrereere -— =
option2 || Applet e RMI O Swh
e 0 Skeleton |
& |
—— .1r
ORMS
Application
Figure 9. Applet-based interface, using Java RMI, to a server-based OR/MS Application.

HTTP HTTP Java application Java application
Client Server on HTTP server on remote server
request applet
applet downloaded using HTTP
>
Java applet to application
communication using RMI
inter application
- Java application to applet communication
Time ¥ y using RMI \J

communication using RMI

Figure 10.
applets) on remote machines.

and ORB. In contrast to RMI, CORBA allows the use of
many programming languages (e.g., C, C++, ADA, Java).
CORBA also provides a set of services—user interface, in-
formation management, systems management, and task
management—required in any distributed implementation
as infrastructural (horizontal) services. CORBA's relevance
as an architecture for Web-enabled distributed computing
has increased considerably following Netscape’s decision to
implement CORBA technology in its Web browser, giving

Distributed computing via Java RMI. RMI makes possible communication between Java applications (not just

Web users access to CORBA-compliant objects. Users with
Java-enabled browsers that do not implement ORBs (e.g.,
Internet Explorer) may still obtain access to CORBA facilities
by downloading an ORB implemented in Java.

The development of a CORBA-compliant object begins
with a declaration of its interface in IDL. In essence, this defines
an API to the object. IDL-specified methods can be written in
and invoked from any language that is supported within
CORBA. The ORB is the middleware that enables objects to

375

The World Wide Web

make requests transparently to (e.g., to execute a simplex al-
gorithm and return its results) and receive responses from
other objects located locally or remotely. ORBs are developed
by multiple vendors and interoperate on the Internet using
11OP.

5.2.1 Distributed Application Development using CORBA:
Static Invocation Interface

The simple way to set up an OR/MS application for execu-
tion in a distributed environment is to perform the following
steps. The interface to the OR/MS algorithm is specified
using IDL. A suitable compiler (e.g., an IDL-C compiler if
the algorithm is implemented in C) is used to produce
skeletons in C for the algorithm server classes. The methods
in the skeletons are implemented using the existing imple-
mentation of the OR/MS algorithm. Compilation of the
IDL-specified methods results in the client stubs and the
server skeletons. Binding the class definitions in the inter-
face repository, and registering the run time objects in the
implementation repository, completes the creation of a
CORBA-compliant OR/MS algorithm server object.

A user interface to such an OR/MS algorithm server
object may be constructed as an applet that is downloaded
on demand by a user from a Web server. The client stubs
generated during the creation of the OR/MS algorithm
server are used in the construction of the user interface
applet. The applet uses the services of an ORB on the Web
browser to invoke, in a transparent manner, methods of the
object (e.g., that implements the OR/MS algorithm) regis-
tered with the ORB on the Web server. The interorb com-
munication is via the 11OP protocol.

This approach is based on the Static Invocation Interface
(SI) of CORBA. The reader might note that, although the
discussion used CORBA terminology, the remote invocation
of server object methods from a client is similar to the Java
RMI system. In both cases, the client needs a precompiled
stub to invoke operations on the server object. Here, the
primary advantage of Sl over RMI is the ability to work
with object implementations in a variety of implementation
languages.

5.2.2 Distributed Application Development using CORBA:
Dynamic Invocation Interface

The SII model is insufficient (as is Java RMI) when OR/MS
algorithmic services are made available as components (as in
a marketplace for computational services) that users may
need to combine, on demand, to develop an OR/MS appli-
cation. CORBA’s dynamic invocation interface (DII) ad-
dresses this requirement. OR/MS algorithm servers offer
new services and interfaces whenever they become avail-
able. Clients (such as the user interface applet) discover
these objects at run time (e.g., by browsing the interface
repository using the ORB) and construct the requests (i.e.,
calls to methods) using the interface information about the
discovered object. Although DIl is more complex than SlI, it
offers considerable flexibility and the opportunity for
OR/MS developers to contribute to the electronic market-
place for specialized analytic services.

5.3 Comparison and Implications

It should be obvious that an OR/MS practitioner or re-
searcher, as any other Web application developer, is faced
with an array of choices for developing distributed Web-
based applications. We discussed two alternatives that use
Java/RMI and CORBA/IIOP (the user interface, in both
cases, is assumed to be delivered as a Java applet). Within
each category there are further variants. Besides these cate-
gories, one could also use a pure CGI approach (but with all
the limitations of CGI) or a pure CORBA approach (how-
ever, users would no longer be able to use merely a Java-
enabled Web browser to interact with the application). Table
Il summarizes the features of the Java/RMI and CORBA/
IIOP alternatives. Interested readers may refer to two other
articles for a comparison of technologies for building dis-
tributed applications on the Web:

1. Evans and Rogers®¥ discuss how to build sophisticated,
but easy to use, client software (interface) as Java applets
that use CORBA to interact with (sharable) remote server
software. They compare the pure CGIl approach to a
Java/CORBA approach along several dimensions: flexi-
bility of design and development (Java/CORBA is better
suited for complex applications); maintainability of com-
ponents (Java/CORBA is better, given the more rigorous
interface definitions, among other things); client deploy-
ment (with CGlI, a user needs only a Web browser, but
Java/CORBA wins over pure CORBA because users can
still interact through a Java-enabled browser); respon-
siveness (JavaZ/CORBA is better; many responses can be
coded into a Java applet); and user interface intuitiveness
(Java/CORBA offers many advantages in this area).

2. Baker, Cahill, and Nixon discuss the role of CORBA as
a bridging technology, and compare it to several alterna-
tives, including Java (RMI and Java Beans), DCOM, and
the CGI approach.

The technologies discussed in this section hold consider-
able promise for OR/MS developers thinking about imple-
menting their techniques on the WWW. In addition to tech-
nological issues, several industry trends must be kept in
mind when selecting a distributed computing platform to
use for OR/MS application development. First, a set of
conflicts involving major computing companies threatens
the universal readability property of the Web. For example,
Microsoft’s Internet Explorer browser does not implement
the complete Java specification (e.g., RMI is not imple-
mented) in its Java Virtual Machine. Similarly, CORBA tech-
nologies are not supported in Microsoft browser and server
products. Only Netscape servers (e.g., the Netscape ONE
environment!®!) and browsers and Sun’s Hotlava browser
implement these technologies. Second, in the area of distrib-
uted computing (where CORBA is the result of an industry-
wide effort), Microsoft has offered a competing approach
called DCOM. DCOM shares CORBA'’s objectives and sup-
ports both the static and dynamic invocation interfaces.
However, it is currently available only on Windows NT and
Windows ’95 platforms. Furthermore, CORBA, which is in
its third generation (having been in development since
1991), is presently considered to be more robust.

376

Table II.

Bhargava and Krishnan

Technologies for Building Web-Based Distributed Applications

Technology

Advantages

Disadvantages

Algorithm (in Java) on server and
user interface as Java applet
Wrapper (in Java) with algorithm
on server and user interface as

Java applet

Algorithm components
implemented in Java;
distributed over network

CORBA static invocation interface

Simple to set up
Separates user interface and algorithm

Works with legacy implementations
Algorithm can be coded in any
programming language

Allows distribution of components and
support for a peer-to-peer architecture
No need for interface definition language;

interfaces can be written in native Java
classes
RMI does garbage collection

Can make use of core CORBA services

Objects can be registered with multiple
ORBs

Inter-ORB communication through I1OP

Enables robust and efficient distributed

Must rewrite algorithm in Java limited to
client server architecture

Efficient wrappers only for languages (e.g.,
C/C++) for which Java has native
language interface

Limited to client server architecture

RMI does not offer core services (e.g.,
discovery, security)

Components must be predefined

No equivalent protocol to 1IOP for Inter-
ORB communication, making RMI less
scalable

Need to write interfaces in IDL
Few browsers support CORBA/IIOP (Java
ORBs are available and supported)

implementations

CORBA dynamic invocation

interface invocation of objects

Robust and flexible architecture
Clients discover, and request, new objects

at run time

Dynamic discovery and dynamic

Client stubs and server skeletons pre-
defined and registered; therefore not
very flexible

Need to write interfaces in IDL

More complex than SlI

Few browsers support CORBA/IIOP (Java
ORBs are available and supported)

Flexibility of DII results in loss of efficiency

The first three alternatives progressively use Java RMI for communication. Advantages are inherited going from alternative top
to bottom and disadvantages are inherited in the reverse order. The last two technologies are based on CORBA. In each case,

we assume that the user interface is rendered as a Java applet.

6. Emerging Technologies and Trends

The technologies discussed in the previous two sections—
though fairly new and underexploited for OR/MS applica-
tions—are relatively well established in the Web industry in
comparison to some even newer developments that will
soon be broadly available in commercial Web browsers and
servers. These are XML (the extensible markup lan-
guage®® *2ly and RDF (the resource description framework).
We believe that XML and RDF will be instrumental in en-
abling the use, for OR/MS applications, of the technologies
previously discussed. In this section, we briefly discuss these
developments and their implications for OR/MS.

6.1 XML: Extensible Markup Language

XML is a language being developed by the W3C to enable
the use of SGML (standard generalized markup lan-
guage®®) on the WWW. To understand the connections
between XML and HTML, it is important to recognize that
SGML is the international standard metalanguage for defin-
ing markup languages. Markup languages provide tags that
allow information providers to describe their content.
HTML is an example of such a markup language and is
defined (more precisely, as a document type definition or
DTD) using SGML. XML also has its roots in SGML. How-
ever, like SGML and unlike HTML, XML is a metalanguage

for creating markup languages (for a broader discussion of
this subject, and the role of XML for document definition,
see [34]).

Thus, XML permits information providers to design their
own markup languages (i.e., introduce tags specialized to
their needs and define the grammar of a document that uses
these tags). For example, one could develop document type
definitions for documents (model statements) created in al-
gebraic modeling languages. These features are already be-
ing used to develop specialized markup languages.

Another relevant example of a specialized markup lan-
guage is MathML (mathematical markup language), an
XML application developed by the W3C. Consider the fol-
lowing fragment from the MathML site used to encode the
expression x* + 4x + 4 = 0.

(EXPR

(EXPR

(EXPR
(MDX{ML)
(POWERY
(MN2(/MN)

([EXPR)

(PLUS/)

(EXPR
(MN4({/MN)

377

The World Wide Web

(TIMES/)
(MDX(MI)
([EXPR)
(PLUS/)
(MN4(/MN)
(EXPR)
(El)
(MNO(/MN)
(JEXPR)

The various MathML tags used to encode the algebraic
expression contain information that could be used both to
display the expression as well as to compute it. The gram-
mar of these tags is specified in an XML document-type
definition that could be used by XML parsers to structurally
validate the MathML document. However, the semantics
that guide the processing of the tags (either for display or for
computation) are not specified within XML. The semantics
can be encoded in a scripting language (JavaScript pro-
grams) or in dynamically loaded applets written in lan-
guages such as Java. XML parsers will become widely avail-
able with the next generation of Web browsers, and APIs for
Java are under development. This will facilitate distribution
of content requiring specialized representations (e.g.,
OR/MS models and methods) and permit interoperability
between information services that can now exchange struc-
tured data formatted in XML-specified markup languages.
We discuss both XML-enabled capabilities from an OR/MS
perspective in the next section.

6.1.1 Specialized OR/MS Markup Languages

Currently, OR/MS modeling systems and applications use
specialized representations to specify models or input data.
Examples include modeling languages such as AMPL®!
and the standard input data format (SIF) used to specify
problems for nonlinear optimizers.

Specialized markup languages—say, an AMPL/ML
(AMPL markup language) or an SIF/ML—with tags cus-
tomized to express the concepts underlying these represen-
tations, could be defined in XML. Documents containing
problems specified using these specialized markup lan-
guages can be parsed by XML-compliant Web browsers.
Processing required to either display the documents or com-
pute expressions is made possible using an API (e.g., the
document object model API). This APl permits applets im-
plementing the semantics of the specialized tags to be down-
loaded and used as needed.

For instance, with AMPL/ML, one could imagine pub-
lishing models marked up in the AMPL/ML language. Us-
ers who would like to use the model would download the
model—an AMPL/ML document. The parsing and valida-
tion of the AMPL model specification—an activity currently
performed within the standalone AMPL system—would be
performed by parsers available within an XML-compliant
browser. The parser would use a document type definition
of AMPL/ML downloaded from a server. The structures
extracted by the parser would be handed over using a
standard API to a Java applet. The applet would interpret
the semantics associated with the AMPL/ML tags and in-

teract with an AMPL server—using RMI or CORBA—to
obtain access to the AMPL engine and the solvers.

6.1.2 Structured Document Interchange

As discussed in Sections 4 and 5, the Web will enable dis-
tributed OR/MS applications. In some of these applications,
a Web client may have to mediate between two or more
solvers. For example, a user might interact with a forecasting
tool to develop a forecast and take the resulting forecast and
use that to initialize parameters of a linear programming
model. How might this application work currently? The
user might interact with the forecasting application using
HTML forms. However, the results of the forecasting appli-
cation cannot be fed automatically into the linear program-
ming application because a well-defined data interchange
structure cannot be specified using the limited set of tags in
HTML. Therefore, the forecasts may have to be re-entered by
hand. XML, with its ability to define a specialized markup
language, can be used to define a document interchange
language between the forecasting and linear programming
applications. This would permit a user to employ a drag and
drop metaphor by dragging the XML document returned by
the forecasting application and dropping it in as input to the
linear programming application.

6.2 Resource Description Framework

The Resource Description Framework (RDF) provides the
infrastructure for specifying metadata. Specifically, it pro-
vides a simple, yet expressive, data model that can be used
to make assertions about Web resources. These RDF asser-
tions can be used in a variety of application areas. Examples
include resource discovery (in which current search engines
provide only keyword-based search) and cataloging (pro-
viding a site map of content relationships between compo-
nents at the site). RDF assertions can be expressed using
XML. They leverage the capability of XML to define special-
ized markup languages.

There are two key principles underlying RDF. The first is
the core data model built around the concept of nodes,
properties, and values. Consider, for example, a fragment
taken from the W3C’s RDF pages. Consider expressing the
statement “Ora Lassila” is the “author” of the Web page
“http://www.w3.org/People/Lassila.” This is represented
as the RDF statement, author, [http://www.w3.0rg/Peo-
ple/Lassila], “Ora Lassila”. The first element of the tuple is
the author property of the object (the Web document) and
the third element is the value of the property. This syntax
provides a general language that can be used to make as-
sertions about Web sites. The second important principle in
RDF is support for reification. Reification permits an asser-
tion (such as the example above) to be treated as an object
and to have assertions made about it. Thus, one could assert
the statement that “Ralph believes that Ora Lassila was the
author of http://www.w3.org/People/Lassila.” Space lim-
itations prevent a more complete discussion. The interested
reader is referred to the W3C site devoted to RDF.

What are the implications of RDF for OR/MS on the Web?
As the Web grows as a platform for commerce, we expect to

378

Bhargava and Krishnan

see commerce in OR/MS software components packaged as
CORBA, Java, or ActiveX controls. Supporting the discovery
of these resources in a distributed platform, such as the Web,
will require more than the keyword-based search that is
possible today with search engines such as Yahoo and Ly-
cos. In particular, metadata about the computational fea-
tures of a component (such as its inputs and outputs and
their associated types, execution times on benchmark prob-
lems, and implementation language) can be asserted using
RDF. Such assertions can be used by RDF-aware search
engines to discover a component or a collection of compo-
nents that could solve a problem faced by a user.

RDF can also be used to specify rankings and ratings of
Web-based content. This will permit ratings along dimen-
sions such as speed of solution, numerical accuracy, and
stability of an OR/MS product to be reported and compiled.
Once again, this sort of metainformation can be put to use to
selectively discover resources of interest. Finally, it should
be noted that RDF assertions can be supplied by either the
content provider or by any third party in a secure manner
(e.g., through the use of digital signatures). This latter option
for specifying metadata could enable a whole class of third
party OR/MS rating services.

7. Discussion and Conclusions

The Web, Internet, and associated technologies have been
evolving at an astonishing rate. In this article, we have
attempted to describe a wide range of Web technologies,
with particular emphasis on technologies and methods that
affect OR/MS work. We began with four examples that
described the impact of Web technologies on OR/MS prac-
tice, research, education, and professional interaction. Fol-
lowing that, and a brief overview of the Web, we discussed
the important developments in Web-related technologies,
and ways in which OR/MS workers could exploit these new
technologies. Our analysis can be summarized as follows.

1. The Web is a new—and high-speed—medium for com-
municating OR/MS materials and for communication be-
tween OR/MS professionals. Because of its multimedia
capability and the MIME standards, the Web can be used
to exchange a powerful and extensible set of data formats.
However, for OR/MS to fully exploit this feature requires
the creation of new OR/MS media types and correspond-
ing viewer applications. Also, although the Web is basi-
cally a user pull medium, many OR/MS applications
would require looking at associated technologies that
allow the use of the Web as a push medium.

2. The Web and Internet technologies create a new comput-
ing environment for OR/MS applications. They offer
OR/MS a new development environment and distribu-
tion channel in which software development is platform-
independent and distribution occurs on demand. Alter-
natives for computation and user-interaction fall into two
categories, involving either client-side computing (via cli-
ent-side scripting, Java applets, ActiveX controls, plug-ins
or viewers, and LiveConnect) or server-side computing
(via CGI programs or server-side scripting). For most

complex OR/MS applications it may be necessary to use
a combination of technologies.

3. Three major alternatives are now available for distribu-
tion of computing tasks in a complex application. Each of
these alternatives enable this distribution through the
formal declaration of the interfaces. Java RMI allows com-
munication between applets and applications written in
Java and running on any platform. CORBA, an industry-
wide approach, allows components programmed in any
language, and resident on any computing platform, to be
combined at run time. It also supports registration of
computing resources and dynamic resource discovery.
DCOM is a solution from Microsoft that has similar ob-
jectives as CORBA, but is presently limited to the Win-
dows platform.

4. The widespread availability of XML in the near future
will enable several features useful for OR/MS computing
on the Web. These include the use of XML as a metalan-
guage to create specialized markup languages custom-
ized to the needs of OR/MS, definition of interchange
languages to facilitate semantic interoperability between
distributed applications, and the use of RDF with XML to
define broad categories of metadata that will facilitate
resource discovery in distributed repositories of OR/MS
content.

7.1 The Web and the Future of OR/MS

Will the Web change the future of OR/MS? If so, in what
ways? As the old joke about economists goes: it is hard to
predict, especially the future. There is little doubt, given the
variety of existing uses of the Web in OR/MS work, that the
Web has already had an impact on OR/MS activities. How-
ever, at the risk of being wrong, we explore some more
significant possibilities, that we arrange into two categories:
impact of the Web on the nature of OR/MS products and on
the OR/MS software economy.

7.1.1 The Nature of Future OR/MS Products

The Web continues a trend in which information technolo-
gies have had an important influence on the shape and
functionality of OR/MS products. Any software product is
the result of design tradeoffs, made implicitly or explicitly,
between various criteria such as cost, functionality, ease of
use, and performance. Web-related technologies—new pro-
gramming paradigms and languages, new methods for in-
terprocess communication, and powerful communication
capabilities between remote nodes—will introduce new de-
sign tradeoffs and opportunities.

One possibility involves the interface between OR/MS
models and data. Although most real-world problems have
elements of uncertainty, corresponding models do not cap-
ture this directly because the resulting stochastic models
would be very hard to solve. Often, uncertainty is caused by
the dynamic nature of data, and lack of access to current or
real-time data. This occurs, for example, in a military logis-
tics planning problem (known as support requirements
planning™e).

Support requirements planning helps determine the set of

379

The World Wide Web

combat support forces required to sustain a combat force
that is to be deployed. Traditionally, methods for solving
this problem relied on forecasts of demand imposed by the
combat forces for various services. The quality of the plan-
ning was dependent on the quality of the forecasts. Adjust-
ments to incorrect forecasts and data could not be easily
obtained and integrated into the planning process. Krishnan
and Padmant®*® present an alternative approach—enabled
by a Web-based architecture—that relies on the ability to
integrate real-time data feeds from the field into the plan-
ning process and to deploy forces using such data on short
notice. This type of just-in-time planning is enabled by the
distributed computing architectures. As Web technologies
become widely deployed in organizations, we believe that
integration of real-time data feeds will result in the devel-
opment of new types of planning and control systems.

7.1.2 The Future of the OR/MS Software Economy

The availability of several levels of Web-based computing
solutions—basic technologies such as CGI and Java, distrib-
uted computing technologies such as CORBA, and emerging
technologies such as XML and RDF—may cause fundamen-
tal changes in the way OR/MS products are developed and
distributed. As discussed in this feature article, (distributed)
component frameworks result in the creation of well-speci-
fied components.l*®! That is, rather than one monolithic do-
everything application, the market contains smaller compo-
nents that users can combine to create tools either for their
own needs or for use as services. For example, there is a
market for user interface software components programmed
in Microsoft’s Visual Basic language. Similar markets will
form—and have already begun forming—for OR/MS algo-
rithm implementations. One could imagine markets—likely,
electronic and hosted on the Web—in which one could
purchase components or make use of their services. A good
illustration of this trend is the recent release by DRA Sys-
tems of OR/MS algorithm implementations as Java compo-
nents (OpsResearch). Another example is the DecisionNet
system[°! in which OR/MS software components, capable
of interoperation, are offered as services for specialized tasks
or problems.

These capabilities for Web-based computing and interop-
eration open up a new market for OR/MS content providers
in which services may be paid for in various ways (e.g., on
a subscription basis or under a pay-per-use model). Access
to these services could leverage the expected growth in
simple network computing devices such as the Java station
(from Sun Microsystems), the network computer (various
hardware and software companies), and other hand-held or
mobile communication and computing devices. This will
permit electronic commerce in software services and we
expect that OR/MS software designed for vertical industry
segments (e.g., real estate, finance, or logistics) can deliver
their services over the network.

7.2 Issues for the OR/MS Community and Leadership
To date, several initiatives that benefit the INFORMS com-
munity as a whole are, or were created out of, individual

volunteer efforts. Examples—in the areas of research, prac-
tice, teaching, and communication—include the electronic
journal ITORMS (also, see Bradley’s article on interactive
and dynamic Research Publications using Java), Practice Online,
Greenberg’s Mathematical Programming Glossary, and Michael
Trick’s OR page. As this feature article demonstrates, the Web
presents many more opportunities for positively affecting
OR/MS work.

But, besides technology, what else is required to realize
the potential of the Web? Must individuals fend for them-
selves, or can the INFORMS organization do something to
facilitate the process? Imagine, for example, in the absence of
the INFORMS Online pages about our national conferences,
that individual authors tried to disseminate information
about their role in the conference. Can certain structures or
generic systems serve as catalysts? Can certain software be
developed at the community level rather than be developed
multiple times at the individual level? For example, if refer-
ees are to be given the capability to test and execute algo-
rithms described in a submitted paper, can generic software
be developed that makes it easy for authors to place these
algorithms for access and execution by referees? In this
section, we examine some of these questions with the aim of
provoking further discussion among various INFORMS con-
stituents.

7.2.1 Electronic Community

Given the widespread impact that the Web has had on
society and, in particular, on academic communities, we
believe INFORMS can play an important role as a catalyst to
educate members in the technology and facilitate the use of
the technology in the following ways.

= Technology Demonstration Sites. We believe that INFORMS
can play an active role in educating its membership by
hosting technology demonstration sites. These sites
should be designed to facilitate inspection (e.g., one
should be able to look at well-documented code and be
able to understand how it works) and should help answer
questions that arise in implementing OR/MS applica-
tions. Emphasis should be placed on both basic technol-
ogies and on the software component technologies that
we expect will revolutionize development, deployment
(e.g., embedded systems), and distribution of computa-
tional products. The online tutorials hosted by informa-
tion systems magazines such as Network Computing are
models worthy of study.

= Monitoring Web Technology Developments. INFORMS
should monitor and inform its membership on key tech-
nology developments such as electronic commerce, elec-
tronic payment systems, and encryption. OR/MS devel-
opers will be content providers in evolving electronic
markets and need to be aware of developments on these
fronts. ISWORLD is an example of a voluntary effort in
the information systems community that could serve as a
good model.

380

Bhargava and Krishnan

7.2.2 Setting Standards

< Involvement in Standard Setting Bodies. OR/MS products
are computational applications. As such, they benefit
from all the innovations in distributed computing such as
the Web and distributed object technologies. However,
they do have specialized requirements. They are compu-
tation and data intensive and usually designed to support
interactive problem solving. Although custom solutions
demanded by these requirements can always be devel-
oped for specific applications, it would be useful to make
such features available as part of the infrastructure. A case
in point is the need to maintain state in HTTP/CGI-based
OR/MS implementations. There are several alternative
ways in which applications implement the features re-
quired to maintain state. If a state maintenance feature
was made part of the HTTP/Web infrastructure, this
would make development of OR/MS products much eas-
ier. INFORMS could play a role to ensure that the needs
of OR/MS products are taken into account in the stan-
dardization process either formally, by becoming in-
volved in W3C, or by actively commenting on all public
drafts of proposed standards.

= Developing INFORMS Standards. The availability in the
near future of XML will enable the creation of custom
markup languages. Interoperability between applications
depends on a standard set of tags with well understood
rendering and processing semantics. Although the cus-
tom languages will likely be developed by individuals
and vendors, INFORMS should provide an online fo-
rum—Ilike W3C does for Web technologies—for public
discussion of proposals that will likely have an impact on
the INFORMS community.

In conclusion, it is evident that Web technologies present
a major opportunity for the OR/MS community. This im-
plies that individual OR/MS practitioners, educators, and
researchers need to be made aware of, and need to be able to
take advantage of, developments in this area. We hope that
this feature article provides a broad and readable introduc-
tion to Web technologies and their relevance to OR/MS, and
encourages exciting new Web-based developments in OR/MS.

Acknowledgment

We are extremely grateful to the Feature Article Editor, Ed Wasil,
for his thorough reviews and suggestions for revision. These have
significantly contributed to improvements in the style and content
of the feature article. This work was partially funded by ARO grant
DAAH04-96-10385 and ARPA grant DASW 0197R007.

Appendix A: Glossary of Terms

ActiveX A software component technology from Microsoft,
and part of the Component Object Model. ActiveX con-
trols are platform-specific binaries that can be down-
loaded and used over the Web.

APl Application Programmer Interface. A set of classes and
associated methods that enables an external program to
obtain access to a system.

Applet A (Java) program that can be downloaded over the
network and executed on a Java Virtual Machine.

Binary Compiled version of a program designed to be exe-
cuted on a specific operating system and CPU.

Browser A program that is used to browse the World Wide
Web. It provides transparent access to a variety of other
Internet protocols such as FTP, Gopher, SMTP, IMAP4,
and POP3 that are used to transfer files and send and
receive electronic mail.

Bytecode Intermediate target representation for Java com-
pilers. Bytecodes, in turn, are interpreted by Java virtual
machines that then execute them on the target machine.

CGIl Common Gateway Interface. Defines the standard ap-
plication programmer interface by which a Web server
transfers data (obtained from a Web client) to an external
program.

Class In object-oriented programming, a class defines the
structure and behavior of a family of objects.

Client Defined as part of a client-server architecture. Gen-
erates requests for service in a protocol understood by the
server. All Internet protocols work using a client-server
architecture resulting in the need for HTTP clients, FTP
clients, IMAP clients, and so on.

Cookie A mechanism by which a Web server can remember
several users’ status in their interaction with the server. It
involves placing state information on each user’s ma-
chine.

CORBA Common Object Request Broker Architecture.
Middleware, standardized by the Object Management
Group, that enables the implementation of robust distrib-
uted systems using object-oriented concepts.

DCOM Distributed Component Object Model. A Microsoft
technology that enables software components to commu-
nicate directly with each other across networks, including
the Internet and intranets. Based on COM.

GIF Graphic Interchange Format. A standard for storing
graphic files; most Web browsers can directly display GIF
files.

Helper Application An application launched by the Web
browser to display or process a MIME format that it is
incapable of processing. Examples are audio players and
video players.

HTML Hypertext Markup Language. The language for en-
coding, and creating links between, information in textual
and certain other forms.

HTML as Container Use of HTML tags to contain URL
references to nontextual media.

HTTP Hypertext Transfer Protocol. The rules that define
communication between Web servers and clients.

Hypertext Transfer Protocol See HTTP.

IDL Interface definition language. A declarative language,
independent of any operating system or programming
language, used to define the interfaces that object imple-
mentations provide and client objects call. It is used in
distributed-component architectures such as CORBA and
COM.

11OP Internet InterOrb Protocol. Standard protocol for com-
munication over TCP/IP networks.

381

The World Wide Web

IMAP Internet Mail Access Protocol. A standard protocol
used to receive mail on the Internet.

Java A network-centric programming language. Compila-
tion of Java programs yields platform-independent byte-
codes that can be executed on any platform that has a Java
Virtual Machine.

Java Applet See applet.

Java Beans A software component technology defined for
the effective reuse of Java software components.

Java Distributed Object Model A distributed object model
supported within the Java programming language. Makes
use of Java RMI.

Java Just-in-time Compiler A Java just-in-time compiler
converts a Java bytecode representation of a program into
machine-executable instructions for a specific platform
when the program is to be executed.

Java RMI A system that permits a Java object (part of an
applet/application) executing on a Java Virtual Machine
to invoke methods of another Java object executing on
another Java Virtual Machine.

JavaScript Standard scripting language for use on Web
browsers. JavaScript can also be used with Netscape serv-
ers to facilitate server side scripting.

Java Virtual Machine Interpreter of Java bytecodes; maps
them into executable instructions for the given platform.
Itis the key to realizing the “compile once, run anywhere”
philosophy of Java, and is implemented within leading
Web browsers.

JVM See Java Virtual Machine.

LiveConnect A Netscape-defined technology that enables
developers to combine Java applets, JavaScript, and plug-
ins.

Lycos A popular search engine and catalog of Internet sites.

Metadata Metadata are data about data. The type of meta-
data recorded (and its format) is a function of its antici-
pated use. On the Web, metadata are used to support the
identification, description, and location of networked
electronic resources.

MIME Multimedia Internet Mail Extension. Defines a stan-
dard way of formatting and encoding data that are ex-
changed between Web servers and clients.

MPEG Standard format, defined by the Movie Producers
and Experts Group, for video on the Web.

MSAPI Microsoft Application Programmer Interface. It is
the API used on Microsoft Web servers to provide CGI
functionality.

NSAPI Netscape Application Programmer Interface. It is
the API used on Netscape Web servers to provide CGI
functionality.

ORB Object Request Broker. A key component of the
CORBA architecture. ORBs provide a range of services
required to build robust distributed systems based on
object-oriented concepts.

Parser A program that processes and validates expressions
to ensure that they conform to some specified grammar.

Plug-in A software component installed on the client plat-
form that is part of a Netscape-defined architecture. Plug-
ins can be invoked by the browser (as a helper applica-
tion) and scripted using JavaScript.

RDF Resource Description Framework. A metadata de-
scription framework under development by the World
Wide Web Consortium.

Real Audio A standard for streaming audio files. It is
widely used to disseminate sound files on the Internet.

RMI See Java RMI.

Script Programs written in a high-level scripting language
such as JavaScript or VBScript. They are useful in tying
software components together.

Search Engine Technology that is used to develop an in-
dexed collection of Web sites and to search it. Alta Vista
from Digital is a popular search engine.

Server Defined as part of the client-server architecture, the
server is software that responds to requests from a client.

Set-top Box A hardware device containing a CPU that is
used in conjunction with television sets. It enables com-
putational processing, e.g., Internet access, using a TV as
a monitor.

Skeleton The skeleton for a remote object is a server-side
entity that dispatches calls to the actual remote object
implementation.

SMTP Simple Mail Transfer Protocol. A standard protocol
used to send mail on the Internet.

SQL Structured Query Language. The standard language
used to query relational databases.

Stub The object that serves as a surrogate for an actual
implementation of a remote object. The stub has the same
set of remote interfaces defined by the implementation of
the remote object.

TCP/IP A suite of protocols for networking computers and
transmission of data between them. IP (Internet Protocols)
breaks data into packets and routes them in best-effort
delivery. TCP (transmission control protocols) provides
reliability of the delivery.

TCP/IP Socket In TCP/IP-based networks, a socket defines
a logical address for a program. Sockets allow communi-
cation between client and server programs.

Thread A single sequential flow of control within a pro-
gram. Traditional programs consist of a single thread.
Modern programming languages permit programs con-
sisting of multiple threads. These threads can execute
concurrently. Using multiple threads allows a server to
handle clients’ requests in parallel, instead of artificially
serializing them or creating one server process per client.

Threaded Discussion An Internet-based discussion forum
that allows users to join or follow an individual discus-
sion, i.e., a message and a sequence of responses to it, in
a newsgroup or bulletin board.

URL Uniform Resource Locator. An address that specifies
the access protocol used for access, the Internet node (by
domain name, or by IP address), and a complete path to
the resource being requested.

VBScript Microsoft-defined scripting language that has
been adapted for use with Microsoft Web servers and
browsers.

Viewer Specialized software that is designed to display or
process data encoded according to a specified format (e.g.,
MIME type). Often used as helper applications on the
Web.

382

Bhargava and Krishnan

W3C World Wide Web Consortium. A group of represen-
tatives from several companies and universities, it is the
official body for setting standards for Web technologies.

WAV One of several standards for encoding audio on the
Web.

World Wide Web A distributed hypermedia information
system implemented on the Internet.

XML Extensible Markup Language. A metalanguage for
markup languages under development by the World
Wide Web Consortium.

Yellow Pages A listing (usually indexed) of service, goods,
and products available in an electronic market. Modeled
after the familiar Yellow Pages phone directory.

Appendix B: List of URLs

ActiveX http://www.microsoft.com/activex/default.htm

Browser http://w3c.org/WWW/

CGI http://hoohoo.ncsa.uiuc.edu/cgi/

Classroom Scheduling DSS http://turing.dmgq.unisi.it/
allocate.html

Client http://w3c.org/WWW/

Cookie http://developer.netscape.com/find/index.html

CORBA http://www.omg.org

DecisionNet http://dnet.sm.nps.navy.mil/

Document interchange using XML http://sunsite.unc.
edu/pub/sun-info/standards/xml/why/xmlapps.htm

Graph coloring heuristic http://dubhe.cc.nps.navy.mil/
~gbradley/JavaPaper/JavaPaperFeb96/7-nodeColoring.
html

GUIDE http://wwwis.win.tue.nl/2L670/static/guide.
html

HTTP http://w3c.org/Protocols/

HyperCard http://hypercard.apple.com/

I1OP http://www.omg.org/corba/corbaiiop.htm

IMAP http://www.imap.org/

INFORMS Online http://www.informs.org/

Internet Assigned Numbers Authority http://www.
isi.edu/div7/iana/

ISWORLD http://www.isworld.org/Zindex.html

ITORMS http://catt.bus.okstate.edu/itorms/index.html

Java http://java.sun.com/

JavaScript http://developer.netscape.com/one/
javascript/index.html

LiveConnect http://developer.netscape.com/library/
documentation/communicator/jsguide4/livecon.htm

LP Animation http://weber.u.washington.edu/cvj/
animalp.html

Lycos http://www.lycos.com/

Mathematical Programming Glossary http://www-math.
cudenver.edu/~hgreenbe/glossary/glossary.html

MathML http://www.w3.org/ TR/WD-math-970515/
section2.html

Mathsoft http://mwww.mathsoft.com

Media type ftp://ftp.isi.edu/in-notes/iana/assignments/
media-types/media-types

Michael Trick’s OR page http://mat.gsia.cmu.edu/

Microsoft http://www.microsoft.com/

MIME http://www.fokus.gmd.de/mtl/mime/entry.html

NEOS http://www.mcs.anl.gov/otc/Server/

Netscape http://home.netscape.com

Network Computing journal http://techweb.cmp.com/
nc/docs/default.html

OpsResearch.com http://opsresearch.com

OR Data Library http://\-mscmga.ms.ic.ac.uk/\-info.html

ORB http://www.omg.org/news/begin.htm

Plug-in http://developer.netscape.com/one/plugins/
index.html

Practice Online http://silmaril.smeal.psu.edu/pol.html

RDF http://w3c.org/Metadata/RDF/Overview.html

Research Publications using Java http://dubhe.cc.nps.
navy.mil/~gbradley/JavaPaper/versionsjava.html

RIOT http://riot.ieor.berkeley.edu/riot/

Server http://w3c.org/WWW/

SIF http://www.rl.ac.uk/departments/ccd/numerical/
lancelot/sif/sifhtml.html

SMTP whatis.com/smtp.htm

Sun Microsystems http://www.sun.com/

TSP (Jones) http://weber.u.washington.edu/ cvj/tsp/
tspnew.html

URL http://www.w3c.org/pub/WWW/Addressing/

VBScript http://www.microsoft.com/vbscript/

W3C http://www.w3c.org/

WORMS http://www.maths.mu.oz.au/~worms

XANADU http://www.xanadu.net/the.project

XML http://w3c.org/ XML

References

1. AppLE COMPUTER, INC., 1988. HyperCard Script Language Guide,
Addison-Wesley, Reading, MA.

2. K. ARNOLD and J. GOSLING, 1996. The Java Programming Lan-
guage, Addison Wesley Publishing Company, Reading, MA.

3. S. BAKER, V. CAHILL, and P. NIxoN, 1997. Bridging Boundaries:
CORBA in Perspective, IEEE Internet Computing 1:6, 52-57.

4.). BEASLEY, 1990. OR-library: Distributing Test Problems by
Electronic Mail, Journal of the Operational Research Society 41,
1069-1072.

5. T. BERNERS-LEE, 1989. Information Management: A Proposal,
Technical Report, European Laboratory for Particle Physics
(CERN).

6. T. BERNERS-LEE and R. CAiLLIAU, 1990. World Wide Web: Pro-
posal for a Hypertext Project, Technical Report, European Lab-
oratory for Particle Physics (CERN).

7. T.BERNERS-LEE, R. CAILLIAU, A. LUOTONEN, H. NIELSEN, and A.
SECRET, 1994. The World-Wide Web, Communications of the ACM
37, pp. 76-82.

8. H.K. BHARGAVA, M. BIEBER, and S. KIMBROUGH, 1988. Oona,
Max, and the WYWWYW!I Principle: Hypertext and Model
Management in a Symbolic Programming Environment, in Pro-
ceedings of the Nineth International Conference on Information Sys-
tems, Minneapolis, MN, J.I. DeGross and M.H. Olson (eds.),
179-192.

9. HK. BHARGAVA, R. KRISHNAN, M. CAsey, D. KAPLAN, S.

ROEHRIG, and R. MULLER, 1997. Model Management in Elec-

tronic Markets for Decision Technologies: A Software Agent

Approach, in Proceedings of the Thirtieth Hawaii International Con-

ference on System Sciences, Maui, HI, R. Sprague (ed.), pp. 1-11.

H.K. BHARGAVA, R. KRISHNAN, and R. MULLER, 1997. Decision

Support on Demand: Emerging Electronic Markets for Decision

Technologies, Decision Support Systems 19, 193-214.

10.

383

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

The World Wide Web

H.K. BHARGAVA, R. KRISHNAN and R. MULLER, 1997. Electronic
Markets for Decision Technologies: A Business Cycle Analysis,
International Journal of Electronic Commerce 1, 109-127.

H.K. BHARGAVA and C.G. TETTELBACH, 1997. A Web-Based
Decision Support System for Waste Disposal and Recycling,
Computers, Environment, and Urban Systems 21, 47-65.

J. BisscHoP and A. MEERAUS, 1982. On the Development of a
General Algebraic Modeling Language, Mathematical Program-
ming Study 10, pp. 1-29.

N. BORENSTEIN, 1993. MIME: A Portable and Robust Multime-
dia Format for Internet Mail, Multimedia Systems 1.

C.M. BowMAN, P.B. DANZIG, D.R. HARDY, U. MANBER, and M.F.
SCHWARTZ, 1994. The Harvest Information Discovery and Ac-
cess System, in Proceedings of the Second International World Wide
Web Conference, Chicago, Illinois, 763-771.

D. BREWER, 1997. Netscape One Sourcebook, John Wiley & Sons,
New York, NY.

V. BUSH, 1945. As We May Think, Atlantic Monthly 176, 106-107.
D. CHAPPELL, 1996. Understanding ActiveX and OLE, Microsoft
Press, Redmond, WA.

S. CHATTERIEE, M. PARAMASIVAM, and W.J. YAKOWENDO, 1997.
Architecture for a Web-Accessible Simulation Environment,
IEEE Computer 30, 88-90.

D. CONNoOLLY, 1997. XML: Principles, Tools, and Techniques,
World Wide Web Journal 2.

J. CzyzyK, J. OWEN, and S.J. WRIGHT, 1997. Optimization on the
Internet, OR/MS Today 24, 48-51.

J.J. DONGARRA and E. GROSSE, 1987. Distribution of Mathemat-
ical Software via Electronic Mail, Communications of the ACM 30,
403-407.

T. DOwNEY and J. MEYER, 1996. The Java Virtual Machine,
McGraw Hill, New York, NY.

E. EVANS and D. ROGERS, 1997. Using Java Applets and CORBA
for Multi-User Distributed Applications, IEEE Internet Comput-
ing 1, 43-58.

D. FLANAGAN, 1997. Javascript: The Definitive Guide, O’Reilly &
Associates, Sebastopol, CA.

R. FOURER, D.M. GAY, and B.W. KERNIGHAN, 1990. A Modeling
Language for Mathematical Programming, Management Science
36, pp. 519-554.

M. GAGLIARDI and C. SPERA, 1997. A Java DSS for Solving
University Scheduling Problems, Technical Report, University
of Siena, Siena, Italy.

. J. GOSLING, 1997. The Feel of Java, IEEE Computer 30, 53-57.

29.

30.
3L

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

I.S. GRAHAM, 1996. The HTML Sourcebook: A Complete Guide to
HTML 3.0, John Wiley & Sons, New York, NY.

W. HERSHEY, 1987. GUIDE (Hypertext Package), BYTE 12, 244-246.
S. HILLIER and D. MEzIck, 1997. Active Server Page Programming,
Microsoft Press, Seattle, WA.

S. HOLZNER, 1997. XML Complete, McGraw-Hill, Boston, MA.
M. JEUSFELD and T. Bul, 1995. Interoperable Decision Support
System Components on the Internet, in Proceedings of the Fifth
Workshop on Information Technologies and Systems, Amsterdam,
Holland, S. Ram and M. Jarke (eds.), RWTH Aachen, Fach-
gruppe Informatik, 56-67.

R. KHARE and A. RIFKIN, 1997. XML: A Door to Automated Web
Applications, IEEE Internet Computing 1, 78-87.

D. KRIEGER and R.M. ADLER, 1998. The Emergence of Distrib-
uted Computing Platforms, IEEE Computer 31, 43-51.

R. KRISHNAN and R. PADMAN, 1997. On Using Web Technolo-
gies to Architect DSS: The Case of Support Requirements Plan-
ning, in Proceedings of the Fourth International Society for Decision
Support Systems Conference, Y. Pigneur (ed.), Lausanne, Interna-
tional Society for DSS, 257-276.

G. MINTON, 1997. 1IOP Specification: A Closer Look, Unix Re-
view 14, 41-50.

T. NELSON, 1990. On the Xanadu Project, BYTE Magazine 15:9,
298-299.

R. ORFALI, D. HARKEY, and J. EDWARDS, 1996. The Essential
Distributed Objects Survival Guide, John Wiley & Sons, Inc., New
York, NY.

J.K. OSTERHOUT, 1998. Scripting Languages: Higher-Level Pro-
gramming for the 21st Century, IEEE Computer 31, 23-30.

J. SIEGEL, 1996. CORBA Fundamentals and Programming, John
Wiley & Sons, New York, NY.

M.S. SoDHI, 1995. An OR/MS Guide to the Internet, Interfaces 25,
14-29.

K. SRINIVAS, V. JAGANNATHAN, Y.V.R. REDDY, and R. KARINTHI,
1997. Java and Beyond: Executable Content, IEEE Computer 30:6,
49-52.

W.R. STEVENS, 1996. TCP/IP lllustrated, Volume 3, Addison Wes-
ley Longman, Reading, MA.

A. TANNENBAUM, 1995. Distributed Operating Systems, Prentice
Hall, Inc., Saddle River, NJ.

E. VAN HERWUNEN, 1994. Practical SGML, Kluwer Publishers,
Dordrecht, The Netherlands.

A. VAN HOFF, 1997. The Case for Java as a Programming Lan-
guage, IEEE Internet Computing 1, 51-56.

