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Abstract

Several tasks, such as plan reuse and agent modelling, need to
interpret a given or observed plan to generate the underlying
plan rationale. Although there are several previous methods
that successfully extract plan rationales, they do not apply to
complex plans, in particular to plans with actions that have
conditional effects. In this paper, we introduce SPRAWL, an
algorithm to find a minimal annotated partially ordered struc-
ture in an observed totally ordered plan with conditional ef-
fects. The algorithm proceeds in a two-phased approach, first
preprocessing the given plan using a novel needs analysis
technique that builds a needs tree to identify the dependen-
cies between operators in the totally ordered plan. The needs
tree is then processed to construct a partial ordering that cap-
tures the complete rationale of the given plan. We provide
illustrative examples and discuss the challenges we faced.

Introduction
Analyzing example plans and executions is crucial for plan
adaptation and reuse, e.g., (Fikes, Hart, & Nilsson 1972),
and could be useful for plan recognition and agent mod-
elling, e.g., (Kautz & Allen 1986). One of the most com-
mon approaches to plan analysis has been to create an an-
notated ordering of the example plan, e.g., (Fikes, Hart, &
Nilsson 1972; Regnier & Fade 1991; Kambhampati 1989;
Kambhampati & Hendler 1992; Veloso 1994), in which an
ordered plan is supplemented with a rationale for the or-
dering constraints. Annotated orderings allow systems not
only to reuse more flexibly portions of the plans they have
observed, but also to reuse the reasoning that created those
plans in order to solve new problems.

In recent years, the focus of the planning and agent
modelling community has shifted from the simple STRIPS
domain-specification language (Fikes & Nilsson 1971) to-
wards richer languages like ADL (Pednault 1986) that cap-
ture the nondeterminism in the effects of real-world actions.
Despite the success of the annotated ordering approach for
simple domain-specification languages, it has not been ap-
plied to plans with conditional effects.

In this paper, we introduce the SPRAWL algorithm for
finding minimal annotated consistent partial orderings of
observed totally ordered plans with conditional effects. A
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consistent partial ordering P of a totally ordered plan T is
one in which all relevant effects (those which affect the ful-
fillment of the goal) active in P are also active in T . We
call the partial orderings found by SPRAWL minimal be-
cause they do not include extraneous ordering constrants;
each constraint either:

• provides a term upon which a relevant effect depends, or

• prevents a threat to such a term.

SPRAWL annotates each ordering constraint with the term
the constraint provides or protects.

We assume that we are given or that we observe a plan that
is valid, i.e., all preconditions of the steps are satisfied, and,
when executed, the plan produces the goal state. SPRAWL
links the steps of the plan through the literals or terms that
they support. Partial orderings are capable of representing
these dependencies. 1 In addition, partial orderings can iso-
late independent subplans that can be reused or recognized
separately, and they also identify potential parallelism.

We assume that observed example plans are totally or-
dered as plans of single executors. The annotations on the
ordering constraints should explain the rationale behind the
plans and allow portions of them easily to be matched, re-
moved, and used independently.

Conditional effects make the task much more difficult be-
cause they cause the effects of a given step to change de-
pending on what steps come before it, thus making step be-
havior difficult to predict. In fact, any ordering must treat
each conditional effect in the plan in one of three ways:

• Use: make sure the effect occurs;

• Prevent: make sure the effect does not occur;

• Ignore: don’t care whether the effect occurs or not.

Figure 1 shows totally ordered plans that demonstrate these
three cases. Note that all three plans have the same initial
state and the same operators. We are able to demonstrate all
three cases by changing only the goals. The preconditions

1A partial order is a precedence relation � with the following
three properties 1) reflexivity: a � a; 2) non-symmetric (no cy-
cles): if a � b then not b � a, unless a = b; and 3) transitivity:
if a � b and b � c, then a � c. The relation is a “partial” order
because there may be uncomparable elements: i.e., elements a, b
such that neither a � b nor b � a. Note that a DAG is a partial
order if we define a � b as a path from a to b.
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Figure 1: Three totally ordered plans that illustrate the three possible ways of treating a conditional effect in an ordering: using
it to achieve a goal, preventing it in order to achieve a goal, or ignoring its effect.

(pre) are listed, as are the effects, which are represented as
conditional effects {a} → b, i.e., if a then add b. A non-
conditional effect that adds a literal b is then represented as
{} → b. Delete effects are represented as negated terms
(e.g., {a} → NOTb. In the first plan, the conditional effect
of op1 is used to generate the goal term c. In the second
plan, it is prevented from generating the term c, and in the
third plan, the effect is irrelevant, so it is ignored.

Figure 2 shows the annotated partial orderings generated
by SPRAWL for each of these cases. The ordering con-
straints are annotated with a rationale explaining why they
are necessary. Although the plans for these three cases are
composed of the same steps, SPRAWL is able to reveal that
the partial orderings are very different. In the “use” case,
SPRAWL identifies that op2 threatens the goal term c, which
is created by op1, and enforces the ordering op1 → op2 to
protect c. In the “prevent” case, SPRAWL is able to surmise
that the step op1 must not be able to execute the conditional
effect that adds the term c, and so ensures that the condition
of this effect, the term b, is not true before the step executes.
In this way, SPRAWL discovers the ordering constraint op2
NOTb→ op1. It also notes that the START step, since it adds
b, is a threat to this link, and must therefore come before
op2. Finally, SPRAWL is able to identify that, in the “ig-
nore” case, the conditional effect is irrelevant, so op1 and
op2 may run in parallel.

Treating any conditional effect in a plan in a different way
will result in a different partial ordering, creating exponen-
tially (in the number of conditional effects) many partial or-
ders, many of which may be invalid. One way to deal with
this difficulty is to insist that exactly the same conditional
effects must be active in the partial ordering as are active in
the totally ordered plan, but this will result in an overly re-
strictive partial ordering in which some ordering constraints

may not contribute to goal achievement. Instead, we per-
form needs analysis on the totally ordered plan to discover
which conditional effects are relevant. Needs analysis al-
lows us to ignore incidental conditional effects in the totally
ordered plan.
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Figure 2: The annotated partially orderings generated by
SPRAWL for the three totally ordered plans shown in Fig-
ure 1.

Instead of looking for the optimal (according to some met-
ric) partially ordered plan to solve a problem, we chose to



focus on finding partial orderings consistent with the given
totally ordered plan, or those in which all relevant effects
were also active in the total ordering. There are two reasons
for this. The first is that the totally ordered plan contains a
wealth of valuable information about how to solve the prob-
lem, including which operators to use and which conditional
effects are relevant. The second is that for many applica-
tions, including plan modification and reuse and agent mod-
elling, it is important to be able to analyze an observed or
previously generated plan (for example, to find characteris-
tic patterns of behavior or to identify unnecessary steps).

However, since our purpose is to reveal underlying struc-
ture, we do have some requirements on the form of the re-
sulting partial ordering; we allow only ordering constraints
that affect the fulfillment of the goal terms—those that pro-
vide for or protect relevant effects. SPRAWL achieves this
via a two-phased approach. It first uses needs analysis to
identify the relevant effects of each operator and the needs of
each operator (which terms must be true before the operator
executes in order to ensure that the relevant effects occur).
SPRAWL is able to use this to find the annotated partial order
by treating the operators almost as though they have no con-
ditional effects—using the needs as preconditions and the
relevant effects as non-conditional effects.

The remainder of this paper is organized as follows. We
first discuss related work in plan analysis. Then we intro-
duce the needs analysis technique, illustrate its behavior and
discuss its complexity. Next, we explain how the SPRAWL
algorithm uses needs analysis to find a partial ordering and
discuss the complexity of the entire algorithm. We then dis-
cuss the limitations and capabilities of the algorithm and
present our conclusions.

Related Work
Many researchers have addressed the problems of annotat-
ing orderings and of finding partially ordered plans. We dis-
cuss a selection of the research investigating annotation and
partial ordering.

Triangle tables are one of the earliest forms of annota-
tion (Fikes, Hart, & Nilsson 1972). In this approach, totally
ordered plans are expanded into triangle tables that display
which add-effects of each operator remain after the execu-
tion of each subsequent operator. From this, it is easy to
compute which operators supply preconditions to other op-
erators, and thus to identify the relevant effects of each op-
erator and why they are needed in the plan. Fikes, Hart, and
Nilsson used triangle tables for plan reuse and modification.
The annotations help to identify which subplans are useful
for solving the new problem and which operators in these
subplans are not relevant or applicable in the new situation.

Regnier and Fade alter the calculation of the triangle ta-
ble by finding which add-effects of each operator are needed
by subsequent operators (instead of which add-effects re-
main after the execution of subsequent operators) (Regnier
& Fade 1991). They use the dependencies computed in this
modified triangle table to create a partial ordering of the to-
tally ordered plan.

The triangle table approach has been applied only to plans
without conditional effects. When conditional effects are in-

troduced, it is no longer obvious what conditions each opera-
tor “needs” in order for the plan to work correctly. Although
we do not use the triangle table structure, our needs analysis
approach can be seen as an extension of the triangle table
approach to handle conditional effects.

Another powerful approach to annotation is the validation
structure (Kambhampati 1989; Kambhampati & Hendler
1992; Kambhampati & Kedar 1994). This structure is an
annotated partial order created during the planning pro-
cess. Each partial order link is a 4-tuple called a valida-
tion: < e, t′, c, t >, where the effect e of step t′ satisfies the
condition C of the step t. The validation structure acts as a
proof of correctness of the plan, and allows plan modifica-
tion to be cast as fixing inconsistencies in the proof. This
approach is shown to be effective for plan reuse and modifi-
cation (Kambhampati & Hendler 1992) and for explanation-
based generalization of partially ordered and partially in-
stantiated plans (Kambhampati & Kedar 1994). The ap-
proach has not been applied to plans with conditional ef-
fects. Although (Kambhampati 1989) presents an algo-
rithm for using the validation structures of plans with condi-
tional effects to enable modification and reuse, no method is
presented for finding these structures. And since the struc-
tures are created during the planning process, no method is
presented for finding validation structures of any observed
plans, even those without conditional effects.

Derivational analogy (Veloso 1994) is another interest-
ing approach to and use of annotation. In this approach,
decisions made during the planning process are explicitly
recorded along with the justifications for making them and
unexplored alternate decisions. This approach has been
shown to be effective for reusing not only previous plans,
but also previous lines of reasoning. The approach can han-
dle conditional effects, but, like the validation structure ap-
proach, is applicable only to plans that have been created
and annotated by the underlying planner.

The final approach to annotation that we will discuss is the
operator graph (Smith & Peot 1993; 1996). This approach
does not analyze plans, but rather interactions between oper-
ators relevant to a problem. The operator graph includes one
node per operator, and one node per precondition of each
operator. A link is made between each node representing a
preconditions of an operator and the operator node, and be-
tween the node of each operator which satisfies a particular
precondition and the node representing that precondition. A
threat link is also added between the node of each operator
which deletes a particular precondition and the node repre-
senting that precondition. Smith and Peot use these operator
graphs before the planning process to discover when threat
resolution may be postponed (Smith & Peot 1993) and to
analyze potential recursion (Smith & Peot 1996). Operator
graphs do not apply to domains with conditional effects, and
are less applicable to plan reuse and behavior modelling than
other approaches, since they analyze operator interactions,
not plans.

There has been some previous work on finding partial or-
derings of totally ordered plans. As previously mentioned,
Regnier and Fade (Regnier & Fade 1991) used triangle ta-
bles to do this for plans without conditional effects. Veloso



et al also presented a polynomial-time algorithm for finding
a partial ordering of a totally ordered plan without condi-
tional effects (Veloso, Pérez, & Carbonell 1990). The algo-
rithm adds links between each operator precondition and the
most recent previous operator to add the condition. It then
resolves threats and eliminates transitive edges. However,
Bäckström shows that this method is not guaranteed to find
the most parallel partial ordering, and that, in fact, finding
the optimal partial ordering according to any metric is NP-
complete (Bäckström 1993).

There has been a great deal of research into generating
partially ordered plans from scratch. UCPOP (Penberthy &
Weld 1992) is one of the most prominent partial-order plan-
ners that can handle conditional effects. One of the strengths
of UCPOP is its nondeterminism; it is able to find all par-
tially ordered plans that solve a particular problem. How-
ever, it is difficult to use the same technique to partially order
a given totally ordered plan. The total order contains valu-
able information about dependencies and orderings, but the
UCPOP method would discard this information and analyze
the orderings from scratch. Not only is this inefficient, but
it may result in a partial ordering of the totally ordered steps
that is not consistent with the total order.

Graphplan (Blum & Furst 1997), another well-known
partial-order planner, is also able to find partially ordered
plans in domains with conditional effects (Anderson, Smith,
& Weld 1998). However, it produces non-minimal (overcon-
strainted) partial orderings, which does not suit our purpose.
Consider the plan in which the steps op a 1 . . . op a n may
run in parallel with the steps op b 1 . . . op b n. Graphplan
would find the partial ordering shown in Figure 3 because
it only finds parallelism within an individual time step. In
the first time step, op a 1 and op b 1 may run in parallel,
but there is no other operator that may run in parallel with
them, so Graphplan moves to the second time step (in which
op a 2 and op b 2 may run in parallel). Graphplan con-
strains the ordering so that no operators from one time step
may run in parallel with operators from another. None of
the ordering constraints between op a steps and op b steps
help achieve the goal, so they are not included in the partial
ordering created by SPRAWL, shown in Figure 4. SPRAWL
reveals the independence of the two sets of operators.

op_a_1

op_b_1 op_b_2

op_a_2

START

op_a_n

FINISH

op_b_n

Figure 3: This partial ordering, found by Graphplan, con-
tains many irrelevant ordering constraints.

Needs Analysis
Needs analysis, the first step of the SPRAWL algorithm, com-
putes a tree of needs for the totally ordered plan. We first cre-
ate a goal step called FINISH with the terms of the goal state

op_a_1

op_b_1 op_b_2

op_a_2

START

op_a_n

FINISH

op_b_n

Figure 4: This partial ordering, found by SPRAWL, contains
only necessary ordering constraints.

as preconditions. Needs analysis calculates which terms
need to be true before the last step in the plan in order for
the preconditions of FINISH to be true afterwards. Then it
calculates which need to be true before the second-to-last
plan step in order for those terms to be true. This calcula-
tion is executed for each step of the plan, starting from the
last step and finishing at the START step, creating a tree of
“needs.” This needs tree allows us to identify the relevant
effects of a given step and most of the dependencies in the
plan. However, not all threats are identified in Needs Anal-
ysis; SPRAWL uses the needs tree to calculate the remaining
threats.

Needs Tree Structure
In this section, we will discuss the needs that compose the
needs tree as well as the structure of the tree. The needs tree
consists of three kinds of needs:

1. Precondition Needs: the preconditions of a step are
called precondition needs of the step—they must be true
for the step to be executable. For example, the precondi-
tion needs of the FINISH step are the goals of the plan.

2. Creation Needs: terms that must be true before a step n
in order for n to create a particular term or to maintain a
previously existing term are called creation needs of the
term at the step n. In the “use” example in Figure 2, one
creation need of the term c at the step op1 is b, since op1
will generate c if b is true before it executes.

3. Protection Needs: terms that must be true before step
n in order for n not to delete a particular term are called
protection needs of the term at the step n. In the “prevent”
example in Figure 2, one protection need of the term NOT
c at the step op1 is NOT b, since if NOT b is not true
before step op1, then op1 will add c (thereby deleting
NOT c).

For the sake of simplicity, instead of abstract plan steps,
we will illustrate the three kinds of needs using plan steps
from a domain in which we have a sprinkler that, if on,
can wet the yard as well as any object that may be in the
yard. Figure 5 shows the operator sprinkle front-yard. The
term on sprinkler is a precondition need of the step sprinkle
front-yard.

To illustrate creation needs, let us assume that, after exe-
cuting the step sprinkle front-yard, wet shoe must be true.
This could be accomplished in two ways:

• by ensuring that at shoe front-yard was true before
sprinkle front-yard executed, or
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Figure 5: The step sprinkle front-yard.
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Figure 6: Expanding the need wet shoe in the step sprinkle
front-yard. The term wet shoe may be satisfied in either of
two ways; this is represented by an OR operator.

• by ensuring that wet shoe was already true before sprin-
kle front-yard executed, as shown in Figure 6.

These two terms are called creation needs of wet shoe at
the step sprinkle front-yard, since they provide ways for the
term wet shoe to be true after the step sprinkle front-yard.

We must also make a distinction between maintain cre-
ation needs and add creation needs. 2 As mentioned above,
there are two ways to ensure that wet shoe is true after the
execution of the step sprinkle front-yard, both illustrated in
Figure 6. 3 One way is for wet shoe to have been true pre-
viously. We call this a maintain creation need since the step
does not generate the term, but simply maintains a term that
was previously true. However, the step sprinkle front-yard
could generate the term wet shoe if at shoe front-yard
were true before the step executed. We call this an add cre-
ation need, since we have introduced a new need in order to
satisfy another.

Note that, because there may be multiple ways to create a
term, the description of needs must include the OR logical
operator, as shown in Figure 6. It must also include the AND
logical operator, since we allow a conditional effect to have
multiple conditions, and in order to guarantee that the effect
occurs, we must be able to specify that all must be true.

To illustrate protection needs, assume that, after executing
the step sprinkle front-yard, the term NOT wet shoe must
be true. In order to protect the term NOT wet shoe, we must
ensure that NOT at shoe front-yard is true before sprinkle

2Precondition needs and protection needs are always add needs.
3In the remainder of the sprinkler examples, we abbreviate the

literals sprinkler as sp, front-yard as fy, back-yard as by, and
shoe as sh.

front-yard executes. This is called a protection need be-
cause it protects the term from being deleted (i.e., prevents
wet shoe from being added).

It is not always necessary to generate new needs to satisfy
a need term; it may also be satisfied if a non-conditional ef-
fect of the step satisfies it, as illustrated in Figure 7. We call
such needs accomplished, and indicate this in our diagrams
with a double circle.

effects:
{} −> wet fy
at ?obj fy −> wet ?obj

pre:
on sp

precondition

wet fy

sprinkle fy next step

Figure 7: A term may be true after a particular step if a non-
conditional effect of the previous step accomplishes it. We
indicate this with a double circle around the term.

Needs Analysis Algorithm
The needs analysis algorithm is shown in Table 1. We now
describe in detail how needs analysis generates the needs of
an individual term. Each needed term t must be created and
protected from deletion; we represent this as two branches
of needs: creation needs and protection needs. As explained
previously, t’s creation needs at a particular step n are terms
which must be true before step n to ensure that t is true after
step n. There are two possibilities for creation needs: either
t may have been true before step n, or a conditional effect of
step n may generate t 4. The protection needs of t at step n
are terms which must be true before step n to ensure that step
n does not delete t. Prevention needs are therefore negated
conditions of any conditional effects of step n that delete t. 5

Figure 8 illustrates the needs created to satisfy each needed
term.

We will use the totally ordered plan from the sprinkler
domain shown in Figure 9 to illustrate the behavior of the
needs analysis algorithm. First, the algorithm will analyze
the last plan step (sprinkle front-yard), which has one pre-
condition need (on sprinkler), to determine how to satisfy
the needs of the subsequent step FINISH (wet shoe and wet
front-yard). As previously discussed, there are two ways for
the step sprinkle front-yard to satisfy wet shoe: either wet
shoe could be true before this step executes, or at shoe
front-yard must be true before this step executes. So the
needs of the term wet shoe are maintain wet shoe OR add
at shoe front-yard. As for wet front-yard, the other pre-
condition need of the FINISH step, it is accomplished by the

4Non-conditional effects of step n that add t do not add needs—
nothing needs to be true before step n in order for them to occur

5If t is deleted by a non-conditional effect of step n, then we
call it unsatisfiable and end its branch of the needs tree.
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Figure 9: A totally ordered plan in the sprinkler domain and its complete needs tree.



Input: A totally ordered plan T = S1, S2, . . . , Sn,
the START operator S0 with add effects set to the
initial state, and the FINISH operator Sn + 1 with
preconditions set to the goal state.

Output: A needs tree N .

procedure Needs Analysis(T , S0, Sn + 1):
1. for c← n+1 down-to 1 do
2. for each precond of Sc do
3. Expand Term(c, precond)

procedure Expand Term(c, term):
4. Find Creation(c, term)
5. Find Protection(c, term)

procedure Find Creation(c, term):
6. for each conditional effect of Sc do
7. if effect adds term then
8. term.accomplished← true
9. otherwise
10. Add Conditions To Creation Needs(effect, term)
11. for each condition of effect do
12. Expand Term(c-1, condition)

procedure Find Protection(c, term):
13. for each conditional effect of Sc do
14. if effect deletes term then
15. term.impossible← true
16. return
17. otherwise
18. Add Conditions To Protection Needs(effect, term)
19. for each condition of effect do
20. Expand Term(c-1, condition)

Table 1: Needs Analysis algorithm.

step sprinkle front-yard since it is a non-conditional effect
of the step. However, the algorithm continues to look for
other ways to accomplish the term. Since there are no con-
ditional effects of sprinkle front-yard that either generate or
delete wet front-yard, the algorithm just adds the maintain
creation need, maintain wet fy.

Next, the algorithm moves back to the previous plan step,
move shoe back-yard front-yard, which has the precondi-
tion need at shoe back-yard. The needs carried over from
previous steps are maintain wet shoe OR add at shoe
front-yard, the creation needs of wet shoe from the FIN-
ISH step; maintain wet front-yard, the creation need of
wet front-yard from the FINISH step; and on sprinkler, the
precondition need of the step sprinkle front-yard. The term
at shoe front-yard is a non-conditional effect of this step,
so it is accomplished, but, as with wet fy in the previous
step, the algorithm adds a maintain creation need (maintain
at shoe front-yard) in order to find other ways to accom-
plish the term. The terms maintain wet shoe, maintain wet
front-yard, and on sprinkler cannot be prevented or created
by this step, so each is satisfied by a maintain creation need
(maintain wet shoe, maintain wet front-yard, and main-
tain on sprinkler).

Finally, the algorithm reaches the initial state, or START

step, and is able to determine which branches of the needs
tree can be accomplished and which can not. The remaining
branches of the tree are at shoe back-yard, maintain at
shoe front-yard, maintain wet shoe, maintain wet front-
yard, and maintain on sprinkler. Two of the needs, at shoe
back-yard and maintain on sprinkler are accomplished by
the START step. However, all of the other remaining needs
are not accomplished by the START step. We call these
needs unsatisfiable and indicate this in our diagrams with a
dashed circle.

The complexity of needs analysis is O(mP (EC)n),
where m is the number of steps without conditional effects,
n is the number of steps with conditional effects, P is the
bound on the number of preconditions, E is the bound on
the number of conditional effects in each step, and C is the
bound on the number of conditions per conditional effect.
Note that the complexity of needs analysis on a plan with no
conditional effects is linear: O(mP ).

The SPRAWL Algorithm
Table 2 shows the SPRAWL partial ordering algorithm.
SPRAWL performs needs analysis, then walks backwards
along the needs tree and adds causal links in the partial or-
dering between steps that need terms and the steps that gen-
erate them. The complexity of the SPRAWL algorithm is
O(mP (EC)n +A ∗ (m+n+2)3), where m is the number
of steps without conditional effects, n is the number of steps
with conditional effects, P is the bound on the number of
preconditions, E is the bound on the number of conditional
effects in each step, and C is the bound on the number of
conditions per conditional effect.

Resolving Threats
We rely heavily on the totally ordered plan to help us resolve
threats. There are three ways to resolve threats in a plan with
conditional effects, as described in (Weld 1994):

1. Promotion moves the threatened operators before the
threatening operator;

2. Demotion moves the threatened operator after the threat-
ening operator;

3. Confrontation may take place when the threatening ef-
fect is conditional. It adds preconditions to the threaten-
ing operator to prevent the effect causing the threat from
occurring.

To find all possible partial orderings, all these possibilities
should be explored. However, since we are provided the
totally ordered plan, we do not need to search at all to find a
feasible way to resolve the threat; we can simply resolve it
in the same way it was resolved in the totally ordered plan.
In fact, if threats are resolved in a different way, then the
resulting partial ordering would not be consistent with the
totally ordered plan.

If, in the totally ordered plan, the threatening operator oc-
curs before the threatened operators, then promotion should
be used to resolve the threat in the partial ordering. Sim-
ilarly, if it occurs after the threatened operators, demotion
should be used to resolve the threat in the partial ordering. If



Input: A totally ordered plan T = S1, S2, . . . , Sn,
the START operator S0 with add effects set to the
initial state, and the FINISH operator Sn + 1 with
preconditions set to the goal state.

Output: A partially ordered plan shown as a directed graph P .

procedure Find Partial Order(T , S0, Sn + 1):
1. tree← Needs Analysis(T , S0, Sn + 1)
2. tree← Trim Unaccomplished Need Tree Branches(tree)
3. for c← n+1 down-to 1 do
4. for each precondition of Sc do
5. Recurse Need(c, precondition, P)
6. Handle Threats(tree, P)
7. Remove Transitive Edges(P)

procedure Recurse Need(c, term, P):
8. Add Causal Link(choose one way to create term, Sc, P)
9. Recurse Need(c-1, term.create, P)
10. Recurse Need(c-1, term.protect, P)

procedure Handle Threats(tree, P):
11. for each causal link Si → Sj do
12. for c← 1 up-to i− 1 do
13. if Threatens(Sc, Si → Sj) then
14. DEMOTE: Add Causal Link(Sc, Si, P)
15. for c← j + 1 up-to n
16. if Threatens(Sc, Si → Sj) then
17. PROMOTE: Add Causal Link(Sj , Sc, P)

Table 2: The SPRAWL algorithm.

the threatening operator occurs between the threatened op-
erators in the totally ordered plan, then we know that con-
frontation must have been used in the totally ordered plan
to prevent the threatening conditional effect from occurring.
Needs analysis takes care of confrontation with protection
needs, shown in Figure 8, which ensure that steps that oc-
cur between a needed term’s creation and use in the totally
ordered plan do not delete the term.

Discussion
The SPRAWL algorithm does not create a partially ordered
plan from scratch; its purpose is to partially order the steps
of a given totally ordered plan to aid in our understanding
of the structure of the plan. Because of this, SPRAWL is
restricted to partial orderings consistent with the totally or-
dered plan.

However, frequently there are many partial orderings con-
sistent with the totally ordered plan. Here, we discuss the
space of possibilities explored by SPRAWL as we have de-
scribed it, and how that space can be extended to include all
possible partial orderings consistent with the totally ordered
plan.

Different Total Orderings of the Same Steps May
Produce Different Partial Orderings
In some cases, a different total ordering of the same plan
steps would produce a different partial ordering, but these
are cases in which the relevant effects differ. Consider the

two totally ordered plans shown in Figures 10 and 11. Al-
though they consist of the same operators, in the first totally
ordered plan, the sequence of relevant effects that produces
the goal term z is different than the sequence that produces
z in the second totally ordered plan. We consider these two
plans to be non-equivalent, though they solve the same prob-
lem. SPRAWL would never produce the same partial order-
ing for both of them; the partial orderings would each pre-
serve the same relevant effects as are active in the respective
totally ordered plans.

Active Conditional Effects May Differ from Those
in Totally Ordered Plan
Though SPRAWL is restricted to partial orderings consistent
with the totally ordered plan it is given, this does not mean
that all conditional effects active in the totally ordered plan
must be active in the partial ordering, or vice versa. There
are sometimes irrelevant conditional effects in the totally or-
dered plan or in the partial ordering, and SPRAWL does not
seek to maintain or prevent these irrelevant effects. The ig-
nore case shown as a totally ordered plan in Figure 1 demon-
strates this. In this problem, one of the active effects in the
totally ordered plan is wet shoe. However, this effect does
not affect the fulfillment of the goal state, and so is not a rel-
evant effect. In fact, as is shown in Figure 2, SPRAWL would
enforce no ordering constraints between the two steps in its
partial ordering. Though the different orderings produce dif-
ferent final states, the goal terms are true in each of these
final states, so it doesn’t matter which occurs.

Partial Ordering May Not Include All Relevant
Effects in Total Ordering
Although, as we discussed, SPRAWL is restricted to partial
orderings with no relevant effects not active in the given to-
tally ordered plan, this does not mean that all relevant ef-
fects in the totally ordered plan must be relevant effects in
the partial ordering. Sometimes, there are several relevant
effects in the totally ordered plan that achieve the same aim.
Bäckström presented an example that neatly illustrates this.
The totally ordered plan is shown with its needs tree in Fig-
ure 12. In this plan, two different relevant effects provide the
term q to step c—both step a and step b generate q. Choos-
ing a different relevant effect to generate q creates a different
partial order. The two partial orders representing each of the
two relevant effect choices are shown in Figures 13 and 14.

Finding Multiple Partial Orderings
In the interest of speed, SPRAWL finds exactly one partial
ordering and does not search through different partial order-
ings to find a “better” one according to any measure. The
needs analysis algorithm shown in Table 1 produces a needs
tree that encompasses all possible partial orderinsg consis-
tent with the totally ordered plan, but the version of SPRAWL
shown in Table 2 arbitrarily chooses one possible partial or-
dering from those represented by the needs tree. SPRAWL
can be modified to search through more possible partial or-
derings, however, finding the best partial ordering according
to any measure is NP-complete (Bäckström 1993).
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Figure 10: One possible totally ordered plan. In this plan, the goal z is achieved via the first conditional effect of each operator.
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Figure 11: Another possible totally ordered plan achieving the same goals. In this plan, the goal z is achieved via the second
conditional effect of each operator.
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Figure 12: Bäckström’s example plan, and the needs tree created if the algorithm does not terminate branches when they are
accomplished. Note that the term q is accomplished by two different steps: a and b. This means that two partial orderings are
possible: one in which step a provides q to step c, and one in which b does. If branches are terminated as they are accomplished,
the accomplished need marked q*, which represents step a providing q to step c, would not be found.
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Figure 13: The only partial ordering of Bäckström’s example
plan permitted by the presented version of the needs analysis
algorithm
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Figure 14: Another partial ordering of Bäckström’s example
plan. If we make the discussed modifications to the needs
analysis algorithm, both this partial ordering and the one
shown in Figure 13 would be represented in the needs tree,
as shown in Figure 12.



When an OR logical operator is encountered in the needs
tree, SPRAWL arbitrarily chooses which of its branches to
follow and ignores the others (Table 2, step 8). Instead, we
could search through the possibilities to find the branch that
contributes to the best partial ordering.

If we modify the needs analysis algorithm as discussed
above, there is sometimes more than one way to accomplish
a need, as with the need q in Figure 12. SPRAWL arbitrar-
ily chooses one of these ways to be the need’s creator in the
partial ordering (Table 2, step 8). Again, we could search
through all possibilities instead, and choose the one that con-
tributes to the best partial ordering.

SPRAWL resolves threats in the same way they were re-
solved in the totally ordered plan. It is possible instead to
search over all three ways (promotion, demotion and con-
frontation) to resolve each. However, the partial ordering
will only be consistent with the totally ordered plan if threats
are resolved in the same way.

Conclusions
In this paper, we have described our SPRAWL algorithm for
finding minimal annotated consistent partial orderings of ob-
served totally ordered plans. We first described some of the
previous work in plan analysis. We then described our novel
needs analysis approach to finding the relevant effects and
needs of each operator, presented the needs analysis algo-
rithm in detail, illustrated its behavior with an example, and
discussed its complexity. We then presented and explained
the complete SPRAWL algorithm for finding partial order-
ings. Finally, we discussed the limitations of the algorithm
and some techniques which can extend its capabilities.
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