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Abstract

In an adversarial multi-robot task, such as playing robot soccer, decisions for team and single robot
behavior must be made quickly to take advantage of short-term fortuitous events when they occur. When
no such opportunities exist, the team must execute sequences of coordinated action across team members
that increases the likelihood of future opportunities. We have developed a hierarchical architecture,
called STP, to control an autonomous team of robots operating in an adversarial environment. STP
consists ofSkillsfor executing the low-level actions that make up robot behavVamticsfor determining
what skills to execute, anBlaysfor coordinating synchronized activity amongst team members. Our
STP architecture combines each of these components to achieve autonomous team control. Moreover,
the STP hierarchy allows for fast team response in adversarial environments while carrying out actions
with longer goals. In this article, we present our STP architecture for controlling an autonomous robot
team in a dynamic adversarial task that allows for coordinated team activity towards long-term goals,
with the ability to respond rapidly to dynamic events. Secondly, we present the sub-component of
skills and tactics as a generalized, single-robot control hierarchy for hierarchical problem decomposition
with flexible control policy implementation and reuse. Thirdly, we contribute our play techniques as a
generalized method for encoding and synchronizing team behavior, providing multiple competing team
responses, and for supporting effective strategy adaptation against opponent teams. STP has been fully
implemented on a robot platform and thoroughly tested against a variety of unknown opponent teams
under in a number of RoboCup robot soccer competitions. We present these competition results as a
mechanism to analyze the performance of STP in a real setting.
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1 Introduction

To achieve high performance, autonomous multi-robot teams operating in dynamic, adversarial environ-
ments must address a number of key challenges. The team must be able to coordinate the activities of each
team member towards long-term goals, but also be able to respond in real-time to unexpected situations.
Here, real-time means responding at least as fast as the opponent. Moreover, the team needs to be able to
adapt its response to the actions of the opponent. At an individual level, the robots must be able to execute
sequences of complex actions leading towards long-term goals, but also respond in real-time to unexpected
situations. Secondly, each robot must have a sufficiently diverse behavior reportoire and be able to execute
these behaviors robustly even in the presence of adversaries so as to make a good team strategy viable. Al-
though these contrasting demands are present in multi-robot [30, 17] and single-robot problems [9, 2, 32],



the presence of adversaries compounds the problem significantly. If these challenges are not addressed for
a robot team operating in a dynamic environment, the team performance will be degraded. For adversarial
environments, where a team’s weaknesses are actively exploited by good opponents, the team performance
will degrade significantly.

The sheer complexity of multi-robot teams in adversarial tasks, where the complexity is essentially
exponential in the number of robots, creates another significant challenge to the developer. Thus, control
policy reuse across similar sub-problems, as well as hierarchical problem decomposition, are necessary to
make effeciently use of developer time and resources.

Addressing all of these challenges in a coherent, seamless control architecture is an unsolved problem,
to date. In this paper, we present a novel architecture, called STP, for controlling a team of autonomous
robots operating in a task-driven adversarial environment. STP consists of three main comp&ieligs —
Tactics andPlays— built within a larger framework providing real-time perception and action generation
mechanisms. Skills encode low-level single-robot control algorithms for executing a complex behavior to
achieve a short-term, focused objective. Tactics encapsulate what the robot should do, in terms of executing
skills, to achieve a specific long-term goal. Plays encode how the team of robots should coordinate their
execution of tactics in order to achieve the team’s overall goals. We beleive that STP addresses many
of the challenges to multi-robot control in adversarial environments. Concretely, STP provides three key
contributions. Firstly, it is a flexible architecture for controlling a team of robots in a dynamic, adversarial
task that allows for both coordinated actions towards long-term goals, and fast response to unexpected
events. Secondly, the skills and tactics component can be decoupled from plays, and supports hierarchical
control for individual robots operating within a dynamic team task, potentially with adversaries. Lastly, the
play-based team strategy provides a generalized mechanism for synchronizing team actions and providing
for a diversity of team behavior. Additionally, plays can be effectively used to allow for strategy adaptation
against opponent teams. STP has been fully implemented and extensively validated within the domain of
RoboCup robot soccer [23]. In this paper, we detail the development of STP within the domain of RoboCup
robot soccer, provide evidence of its performance in real competitions with other teams, and discuss how
our techniques apply to more general adversarial multi-robot problems.

This article is structured as follows. In the following section, we begin by describing the problem domain
of RoboCup robot soccer within which STP has been developed. Section 3 presents an overview of the STP
architecture and its key modules leading to a detailed description of the single robot components of skills
and tactics in section 4 and team components of plays in section 5. Section 6 describes the peformance of
STP in RoboCup competitions against a variety of unknown opponent teams, and discusses how STP can be
improved and applied to other adversarial problem domains. Finally, section 7 presents related approaches
to STP, and section 8 concludes the paper.

2 The Robot Soccer Problem

The STP architecture is applicable to an autonomous robot team performing a task in an adversarial, dynamic
domain. To concretely explore this problem, we chose RoboCup robot soccer as the test-bed domain. More
specifically, we have chosen the Small-Size League (SSL), a division within the RoboCup initiative. In this
section, the SSL robot soccer problem is concretely defined along with the challenges it poses. This section
also details the specific test-bed, the CMDragons system, used to validate the STP architecture to provide a
backdrop for the ensuing sections.



2.1 Small-size RoboCup Robot Soccer League

RoboCup robot soccer is a world-wide initiative designed to advance the state-of-the-art in robot intelligence
through friendly competition, with the eventual goal of achieving human-level playing performance by
2050 [23]. RoboCup consists primarily of teams of autonomous robots competing against one another
in games of soccer, along with an associated symposium for research discussion. There are a number of
different leagues within RoboCup, which are designed to focus on different parts of the overall problem:
developing intelligent robot teams. This article is primarily focused on the Small-Size League (SSL).

A SSL game consists of two teams of five robots play soccer on a 2.8m x 2.3m field with an orange
golf ball [3]. Each team must beompletelyautonomous for the duration of the game, which typically lasts
for two 10-minute halves. Here, autonomy means that there are no humans involved in the decision making
cycle while the game is in progress. The teams must obey FIFA-like rules as dictated by a human referee. An
assistant referee translates referee commands into a computer-usable format, which is transmitted to each
team via RS-232 using a standardized protocol, via a computer runnirRefB@xprogram [3]. Figure 1
shows the general setup as used by many teams in the SSL. The SSL is designed to focus on team autonomy.
Therefore, global vision via overhead cameras and off-field computers, which can communicate with the
robots via wireless radio, are allowed to be used.

3 robots per team
Color marer for ID

Figure 1: An overview of the CMDragons small-size robot soccer team.

SSL robot soccer involves many research issues. Examples of some of the research challenges include:

Building complete autonomous control systems for a dynamic task with high-performance;

Team control in a dynamic environment, and response to an unknown opponent team;

Behavior generation given real sensor limitations of occlusion, uncertainty, and latency;

Fast navigation and ball manipulation in a dynamic environment are real-world sensors;

Fast, robust, low-latency vision, with easy to use calibration routines;

Robust, high performance robots with specialized mechanisms for ball manipulation.

A typical SSL game is highly dynamic, where ball speeds ¢b 4m.s~! and robots speeds dfto
2m.s~1 are common. With such speeds in a small environment, it becomes critical for information to be
translated into action quickly in order for the team to be responsive to sudden events in the world. For
example, if a robot kicks a ball 8t5m.s~!, a latency ofl00m.s means that the ball will have moved over
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35cm before the robots could possibly respond to the observation that the ball had been kicked. High speed
of motion and latency impact on control in the following ways:

e Vision, tracking, and modeling algorithms must compromise between the need to filter noise and
detect unexpected events in minimum time;

e Prediction mechanisms are required to compensate for latency for effective control;
e Team and single robot control must adapt quickly to dynamic changes.

The last point means that all control decisions need to be recalculated as often as possible to allow the
system to react quickly to unexpected events. As a rough guide, the CMDragons system [12] recalculates
everything for each frame, at a rate3ifH z. Typically, high-level decisions change at a slower rate than
low-level decisions. For an approximate guide, a play typically I&s8s, while a tactic may operate over
a time frame of1-30s, and a skill may operate over30ms-5s time frame. However, any decision at
any level can be switched in the minimum time of one frame perd8adi) to respond to any large scale
dynamic change.

2.2 The CMDragons

Figure 2 shows the major components of the control system developed for our CMDragons SSL team. This
architecture is the result of a long series of developments since RoboCup 1997 [37, 36, 35, 10, 12]. Figure 3
shows the robot team members. As shown, the architecture consists of a number of modules beginning
with vision and tracking, the STP architecture, navigation and motion control, and finally the robot control
software and hardware. We briefly describe each of the non-STP components in the following paragraphs
to provide the context for later discussions.

Information passes through the entire system synchronized with incoming camera fraBig$-at
Thus a new frame arrives, vision and tracking are run on the processed frame, the resulting information is
fed into the world model. The STP architecture is executed, followed by navigation and motion control.
The resulting motion command is sent to the robot and the robot executes the command with local control
routines.

2.2.1 Perception

Vision is the primary means of perception for the CMDragons team. Everything in the SSL is color coded
(see Figure 3), making color vision processing algorithms a natural choice. The ball is orange and the field
is green carpet with white lines and white angled walls. Each robot is predominantly black with a yellow or
blue circular marker in its center. Depending upon who wins the toss of the coin before the game, one team
uses yellow markers while the other uses blue. Each robot typically has another set of markers arranged in
some geometric pattern that uniquely identifies the robot and its orientation. Knowledge of an opponents
additional markers is usually not available before a game.

In the CMDragons team, images from the camera arrive at a frame rate of 30Hz into an off-field com-
puter. For reference purposes, most of the system described here runs on a 2.1GHz AMD Athlon XP 2700+
system, although a 1.3GHz processor was used previously without any difficulties. Using our fast color
vision library, CMVision [11], colored blobs are extracted from each image. The colors are identified based
on prior calibration to produce a threshold mapping from pixel values to symbolic color. With knowledge of
each robots unique marker layout, high-level vision finds each robot in the image and determines its position
and orientation. The position of the ball and each opponent robot is also found. Orientation for opponents
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Figure 2: Overview of the CMDragons team architecture.

cannot be found owing to the lack of advance knowledge on their marker layout. The world position of
each object is then determined via a parametric camera model learned during game setup. Full details on
the vision algorithms can be found in [14].

Filtered position and velocity information is derived using a set of independent Extended Kalman-Bucy
Filters (EKBF) for each object (see [12]). As velocity information cannot be derived from each camera
image alone, and there is too much noise for frame differentials to be effective, the EKBF’s are used to both
nullify the effects of noise and intermittency (missing data). Additionally, the EKBF’s provide a prediction
mechanism through forward modeling which is useful for overcoming latency. In summary, the full vision
and tracking module provides estimates of each robot location and orientation, each opponent location, and

ball location, with velocities for all eleven objects. Taken together, these estimates provide the robot’s belief
state about the state of the world.

2.2.2 World Model Belief State

All beliefs about the state of the world, where the robots are etc., are encapsulated in a world belief model.
In short, the world model acts as a centralized storage mechanism for beliefs for all layers of the control
architecture to use. The belief model contains:

¢ All perceptual information obtained from the tracker (e.g., robot positions and velocities);



Figure 3. The CMDragons robots. The robot on the left is an OmniBot, while the robots on the right are
DiffBots. Each robot fits within an 18cm diameter cylinder that is 15cm tall.
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Figure 4: The CMDragons control architecture is based on way-point primitives.

e Game state information derived from the received referee commands;
e Opponent modeling information derived from statistical models of observed opponent behavior;

e High-level predicates derived from the perceived state, such as which team has possession of the ball,
is in attack, is in a particular role etc.

Each high-level predicate, is a boolean function of the the tracker and/or game state belief. To account
for noise, each boolean function incorporates empirically determined hysteresis to prevent undue oscillation
at the decision boundary. These predicates, due to their boolean nature, provide a symbolic representation
that is often more useful for making decisions than the raw belief models. For example, deciding whether
to run an attacking play or a defensive play.

2.2.3 Navigation and Motion Control Action Interface

The STP architecture consists of team control and individual robot control. Following the common technique
of hybrid hierarchical control [19, 33], we have developed lower modules for obstacle-free navigation and
motion control. Essentially, these modules provide resources to the robot for generating actions in the world.
The resources provide are obstacle-free navigation, motion control, and direct robot commands. Figure 4
shows the control hierarchy.

The navigation module generates a near-optimal, obstacle free path to the goal location using the beliefs
stored in the world model. Based on this path, the motion control module calculates a trajectory to achieve a



short-term target way-point on the path that does not collide with obstacles. Using this trajectory, a velocity
command is issued to the robot hardware to execute.

Due to the dynamic nature of robot soccer, both navigation and motion control are recalculated each
frame, for each robot. This places strict computational limitations on each of these modules. We have devel-
oped and implemented a fast, randomized path planner [13] based on the Rapidly-exploring Random Trees
(RRT’s) algorithm [24]. Similarly, we have developed a trapezoidal-based, near-optimal motion control
algorithm for quickly generating robot motion commands [12].

2.2.4 Robot Hardware

Each robot is an omni-directional platform capable of spinning while driving in any direction. Each robot

is equipped with a ball manipulation device that includes a solenoid actuated ’kicker’ and a motorized
'dribbler’. The kicker moves an aluminium plate to contact with the ball, propelling it at speeds of around
3.5—4m.s~ 1. The dribbleris a rubber coated bar that is mounted horizontally at ball height and connected to
amotor. Asthe bar spins against a ball, it causes the ball to spin backwards against the robot thereby allowing
the robot to move around effectively with the ball. Each robot has an on-board processor, and runs local
velocity-based servo loops using integrated encoder feedback and standard PID control techniques [29].
Additionally, the robot is equipped with an FM radio receiver which it uses to receive movement commands
from the external computer.

3 The STP Architecture

This section overviews the STP architecture leading into a detailed discussion of skills, tactics, and plays.

3.1 Goals

The presence of an opponent has many, sometimes subtle, effeatk lewels and aspects of control.
Generating robust behavior that responds to the actions of the opponent is a significant challenge. The
challenges for team control are:

1. Execute a temporally extended sequence of coordinated activities amongst team members towards
some longer term goal while simultaneously responding as a team to unexpected events both fortuitous
and disastrous ones.

2. The ability to respond as a team to the capabilities, tactics, and strategies of the opponent.
3. Execute robust behavior despite sensor limitations and world dynamics.

4. Provide a modular, compact architecture with facilities for easily configuring team play, and for ana-
lyzing the performance of the decision making process.

The first and second goals are direct impacts from controlling a team of robots in an adversarial environ-
ment. We desire the team control architecture to generate robust behavior that increases the chance of future
opportunities against the opponent. Whenever such opportunities arise, whatever the cause, the team must
take advantage of this opportunity immediately. Conversely, if an opportunity arises for the opponent team,
our team must respond quickly and intelligently to minimize the damage the opponent can cause. Such
responsive behavior must occur throughout the architecture. Building responsive team while overcoming
the usual limitations of real world sensors, such as latency, noise, and uncertainty, is the major goal of the
STP framework.



In robot soccer, robust development is a significant issue. Many teams have gone through bad experi-
ences caused by poor development procedures or facilities. Thus, a good architecture is one that is compact
and modular such that changes in one module have a minimal impact on the operation of another mod-
ule. Given the number of parameters in a complex team architecture, the ability to easily reconfigure those
parameters and to analyze the performance of different parameter settings is extremely useful to the devel-
opment cycle.

3.2 Skills, Tactics and Plays

To achieve the goals of responsive, adversarial team control, we have developed the STP architecture. The
key component of STP is the division between single robot behavior and team behavior. In short, team
behavior results from executing a coordinated sequence of single robot behaviors for each team member.
We now definglays tactics andskills, and how they interact for a team df robots.

A play, P, is afixed team plan which consists of a set of applicability conditions, termination conditions,
and N roles, one for each team member. Each role defines a sequence of facfigs . . and associated
parameters to be performed by that role in the ordered sequence. Assignment of roles to team members is
performed dynamically at run time. Upon role assignment, each rabassigned its tacti€; to execute
from the current step of the sequence for that role. Tactics, therefore, form the action primitives for plays
to influence the world. The full set of tactics can be partitioned into active tactics and non-active tactics.
Active tactics are those involved with ball manipulation. There is only one active tactic amongst the roles
per step in the sequence. The successful completion of the active tactic is used to trigger the transition to the
next step in the sequence fat roles in the play. Plays are discussed in greater detail in section 5.

A tactic, T, encapsulates a single robot behavior. Each reletecutes its own tactic as created by
the current playP. A tactic T; determines the skill state machise M; to be executed by the robat If
the tactic is an active one, it also contains evaluation routines to determine if the tactic has completed. If
the skill state machine differs from that executed previously, then execution begins at the first skill in the
state machine i.eS;. If the skill state machine did not change, then execution continues at the last skill
transitioned to. The tacti€; also sets parametefsParams; to be used by the executing ski}. Thus,
skills form the action primitives for tactics.

A skill, S, is a focused control policy for performing some complex action. Each skill is a member
of one, or more, skill state machin@s M, SSMs,,.... Each skillS determines what skill it transitions
to S’ based upon the world state, the time skilhas been executing for, and the executing tactic for that
robot. The executing tactics may reset, or change and reset, the executing skill state machine. Each skill
can command the robot to perform actions either directly, through motion control, or through navigation.

If commanded through navigation, navigation will generate an intermediate, obstacle free way-point for
motion control which will then generate a command to send to the robot.

Both skills and tactics must evaluate the world state, in sometimes complex ways, to make useful deci-
sions. For example, some tactics determine the best position to move to in order to receive a pass. Alterna-
tively, some defensive tactics evaluate which opponent robot might move to receive a pass and where to go
to prevent the opponent achieving this goal. To prevent unnecessary duplication, and to greater modularize
the architecture, we extract these evaluations into an evaluation module which is usable by both tactics and
skills. Tactics, skills, evaluations are detailed in section 4.

Plays, tactics, and skills, form a hierarchy for team control. Plays control the team behavior through
tactics, while tactics encapsulate individual robot behavior and instantiate actions through sequences of
skills. Skills implement the focused control policy for actually generating useful actions. Table 1 shows the



main execution algorithm for the STP architecture. The clear hierarchical arrangement of plays for team
control, tactics for single robot behavior, and skills for focused control are shown.

ProcessSTP Execution
CaptureSensors()
RunPerception()
UpdateWorldModel()
P — ExecutePlayEngine()
for eachroboti € {1,..., N}
(T;, TParams;) «— GetTactic, i)
(SSM;, SParams;) «— ExecuteTactic{;;, T Params;)
if NewTactic(;) then
10.  (command;, S!) «— ExecuteStateMachin8GM;, S;, SParams;)
11.  robot_command; «— ExecuteRobotContratormmand;)
12.  SendCommand(obot_command;)

CoNokrwD R

Table 1: The main STP execution algorithm.

4 Tactics and Skills for Single Robot Control

Single robot control in the STP architecture consists of tactics and skills. Tactics provide the interface for
team control via plays, while skills provide the mechanisms for generating behavior in a compact, reusable
way. We begin by describing tactics in greater depth, followed by skills, and finally the evaluation module .

4.1 Tactics

Tacticsare the topmost level of single robot control. Each tactic encapsulates a single robot behavior. Each
tactic is parameterized allowing for more general tactics to be created which are applicable to a wider range
of world states. Through parameterization a wider range of behavior can be exhibited through a smaller set
of tactics, making play design easier. Table 2 provides the list of tactics we have implemented for robot
soccer. The meaning of each tactic should be reasonably obvious from the tactic name.

During execution, one tactic is instantiated per robot. A tactic, as determined by the executing play,
is created with the parameters defined for the play. That tactic then continues to execute until the play
transitions to the next tactic in the sequence. As described above, each tactic instantiates action through the
skill layer. In short, the tactics determine which skill state machine will be used, and sets the parameters for
executing those skills. Example parameters include target way-points, target points to shoot at, opponents to
mark, and so on. Different tasks may use many of the same skills, but provide different parameters to achieve
the different goals of the tactic. The shooting and passing tactics are good examples. The skills executed
by the two are very similar, but the resulting behavior can be quite different due to the different parameter
assignments. Finally, each tactic may store any local state information it requires to execute appropriately.

Table 3 shows the algorithm for tlshoot tactic used to kick the ball at the goal or towards teammates
for one-shot deflections on goal. Not shown are the conditioning of the tactic decision tree on the parameters
specified by the active play. In this case, the play can only disable deflection decisions. The tactic consists
of evaluating the options of shooting directly on goal, or shooting to a teammate to deflect or kick on goal
in a so-called one-shot pass. Each option is assigned a score which, loosely, defines a likelihood of success.



Active Tactics

shoot (A_im | N oaim | D eflect (role )
steal [(coordinate )]

clear

active _def [(coordinate )]

pass (role )

dribble _to _shoot (region )

dribble _to _region (region )

spin _to _region (region )

receive _pass

receive _deflection

dribble _to _position (coordinate ) (theta )
position _for _start (coordinate ) (theta )
position  _for _kick

position  _for _penalty

charge _ball

Non-Active Tactics

position  _for _loose _ball (region )

position  _for _rebound (region )

position  _for _pass (region )

position  _for _deflection (region )

defend _line (coordinate-1 ) (coordinate-2 ) (min-dist ) (max-dist )
defend _point (coordinate-1 ) (min-dist ) (max-dist )
defend _lane (coordinate-1 ) (coordinate-2 )

block (min-dist ) (max-dist ) (side-pref )

mark (orole ) (ball | our  _goal | their _goal | shot)
goalie

stop

velocity (vx) (vy) (vtheta )

position (coordinate ) (theta )

Table 2: List of tactics with their accepted parameters.

Much of the operation of determining the angles to shoot at and generating the score is pushed into the
evaluation module, described in section 4.3.

The tactic, indeed nearly all tactics, make use of additive hysteresis in the decision making process.
Hysteresis is a necessary mechanism to prevent debilitating oscillations in the selected choice from frame
to frame. Each action in thghoot tactic, as with any other tactic, takes a non-negligible period of time to
perform that is substantially greater than a single decision cy@lerat. With the dynamics of the environ-
ment further complicated by occlusion, noise, and uncertainty, its is often the case that two or more choices
will oscillate over time in terms of its score. Without hysteresis, there will be corresponding oscillations in
the action chosen. The end result is often that the robot will oscillate between distinctly different actions and
effectively be rendered immobile. The physical manifestation of this behavior, ironically, is that the robot
appears to ‘twitch’ and be ’indecisive’. In most robot domains, such oscillations will degrade performance.
In adversarial domains like robot soccer, where it is important to carry out an éetforethe opponent can
respond, such oscillates completely destroy. Hysteresis provides a usable, easily understandable, mechanism
for preventing such oscillations and is used pervasively throughout the STP architecture.
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Tactic Execution shoot¢):
bestscore — 0
(score, target) «— evaluation.aimAtGoal()
if (was kicking at goaljhen
score «— score + HYSTERESIS
SParam; «— setCommand(MoveBaltarget, KICK_IF_-WE_CAN)
bestscore < score

ok wpnpE

7. foreachteammate do
8. if (evaluation.deflectiop] > THRESHOLD)then

9. (score, target) «— evaluation.aimAtTeammatg)(

10. if (was kicking at playey) then

11. score «— score+ HYSTERESIS

12. if (score > bestscore) then

13. SParam; «— setCommand(MoveBaltarget, KICK _IF_-WE_CAN)
14, bestscore < score

15.if (No target foundOR score < THRESHOLD)then
16. target «+ evaluation.findBestDribbleTarget()
17.  SParam; «— SetCommand(MoveBaltarget, NO_KICK)

Table 3: Algorithm for theshoot tactic for shooting on goal directly or by one-shot passes to teammates.
Each action is evaluated and assigned a score. The action with the best score better than the score for the
previously selected action, is chosen and its target passed to the running skill. The skill state machine used
is the M ove Ball state machine.

4.2 Skills

Most tactics require the execution of a sequence of recognizable skills, where the actual sequence may
depend upon the world state. An example skill sequence occurs when a robot tries to dribble the ball to the
center of the field. In this case, the robot w#l) go to the ball,(b) get the ball onto its dribbleKc) turn

the ball around if necessary, thé) push the ball toward the target location with the dribbler bar spinning.

A different sequence would be required if the ball were against the wall, or in the corner. Additional skills
would be executed, such as pulling the ball off the wall, in order to achieve the final result.

In our other work, we have developed a hierarchical behavior based architecture, where behaviors form
a state machine with transitions conditioned on the observed state and internal state [25]. Although we make
no use of the hierarchical properties of the approach here, we do make use of the state machine properties
to implement the sequence of skills that make up each tactic. Each skill is treated as a separate behavior and
forms a unique state in the state-machine. In contrast to tactics, which execute until the play transitions to
another tactic, each skill transitions to itself or another skill at each time step.

Each skill consists of three components: sensory processing, command generation, and transitions.
Sensory processing consists of using or generating the needed sensory predicates from the world model.
Commonly used sensors are generated once per frame, ahead of time, to prevent unnecessary duplication
of effort. Command generation consists of determining the action for the robot to perform. Commands
can be instantiated through the navigation module or motion control. In some cases, commands are sent
directly to the robot. Transitions define the appropriate next skill that is relevant to the execution of the
tactic. Each skill can transition to itself or another skill. Transitions are conditioned on state variables set
by the tactics or state machine variables, such as the length of time the active skill has been running. This
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makes it possible to use the same skill in multiple sequences. A skill can be used for different tactics, or
in different circumstances for the same tactic. Thereby allowing for skill reuse and the minimizing of code
duplication.

Table 4 shows our algorithm for thidriveToGoal  skill used to drive the ball toward the ball towards
the desired target, which is continually adjusted by the tactic as execution cycles. The skills first determines
what skill it will transition to. If no skill is found, it transitions to itself. The decision tree shows conditioning
on the active state machingoveBall in this case, and conditioning upon the active tactic. Decisions are
also made using high level predicates, for exanbplé_on_front, derived from the tracking data by the
world model. References to the world are not shown to aid clarity.

Skill Execution DriveToGoal():

1. if (SSM; = MoveBall AND ball_on_front AND can_kick AND shot_is_good) then
2 Transition(Kick)

3. if Gall_on_front AND ball_is_visible) then

4. Transition(GotoBall)

5. if (robot_distance_from_wall < THRESHOLDAND robotstuck) then

6 Transition(SpinAtBall)

Command generation
7. command;.navigate < true
8. command,;.target < calculateTarget()

Table 4. TheDriveToGoal skill which attempts to push the ball towards the desired direction to kick.
Shown is the transitions decision tree, which includes conditioning on the active tactic, the active state
machine, and predicates derived from the world model. The command generation calculations are simplified
here to aid clarity, but require a number of geometric calculations to determine the desired target point.

4.3 Evaluation Module

There are numerous computations about the world that need to be performed throughout the execution of
plays, tactics, and skills in order to make good decisions. Many of these computations are evaluations of
different alternatives, and are often used numerous times. Aim evaluation is a good example, as the same
evaluation of alternatives is called at le@dttimes during a single cycle of execution! We combine all of
these evaluations into a single module. There are three classes of evaluations that occur; aiming, defense,
and target positions.

Aim Evaluations. Aiming evaluations determine the best angle for the robot to aim toward to kick the
ball through a specified line segment while avoiding a list of specified obstacles. Using the world model, the
aim evaluations determine the different open angles to the target. It then chooses the largest open angle with
additive hysteresis if the last chosen angle, assuming there is one, is still a valid option. The use of a line
segment as the target allows the same evaluation to be used for aiming at the goal, for opponents aiming at
our goal, as well as for passes and deflections to teammates or from opponents to their teammates.

Defensive Evaluations. Defensive evaluations determine where the robot should move to best defend a
specified point or line segment. Although similar to target position evaluations, the technique used is quite
different. There are a number of different variations of defensive evaluations for defending lines, points, or
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defending along a given line. Each evaluation uses similar techniques, but the point chosen, and hence the
behavior generated vary and are useful in different situations.

The most commonly used defensive evaluation is line defenses. For line defenses, the evaluation at-
tempts to blend between choosing a defensive point that is good if the ball could be kicked at any angle
from its observed location and a point to intercept the ball if it were to remain moving at its current velocity.
We first create a linear Gaussian to describe the desirability of each point on the line for defending against
a static kick. The Gaussian is centered on the point that, when accounting for the robot size, equalizes the
time it would take for the robot to move to block a shot at either end of the defended segment. A second
linear Gaussian is generated by predicting the ball motion forward in time to where it crosses the defended
line, and calculating the corresponding tracker uncertainty projected onto this line. Essentially, the faster
the ball is kicked, the more certain its crossing point, which results in a much narrower, taller Gaussian. In
addition, obstacles along the trajectory can add also add substantial uncertainty into the interception Gaus-
sian. When these two Gaussian functions are multiplied, the result represents a smooth blending between
the two alternatives. Generally, the static kick Gaussian dominates, but as the ball is kicked faster toward the
defense line the interception Gaussian pushes the defender to intercept the current trajectory. Such a smooth
shift is desirable to avoid having to develop techniques for deciding between intercepting or defending, and
the corresponding hysteresis that would be required.

Target Position Evaluation. The final type of evaluation determines the best target position to achieve a
given task. Examples include the best position to receive a deflection, the best position to acquire a loose
ball, the best location to dribble toward to get a shot on goal or to pass to a teammate. In each case, there
is a range of competing criteria that the evaluation ideally would optimize that can often be represented as
an objective function of some kind. For example, to receive a pass for a shot on goal the robot needs to
get into a position that gives it a clear shot on goal, a reasonable deflection angle so it has an opportunity
to receive and kick the ball, and a clear shot to its teammate with ball possession. Clearly, one could write
an objective function to describe this problem, and attempt to find the optimal solution. This approach is
problematic due to the computational constraint that only a fraction of the processor is available for this
task, and it needs to be repeated many times during a single execution cycle. Additionally, the dynamics
of the environment, combined with sensing noise, mean that the optimal point will invariably be unstable
over time. Thus, the robot will never stabilize, which is essential for situations like receiving a pass as its
teammate needs a steady target. In many cases, however, if we consider near-optimal values, reasonably
stable sets form over extended periods. Thus, we require an evaluation method with low computational
requirements find quasi-static, near-optimal locations.

We have taken a sample-based approach to this problem. For each evaluation, a series of points are
generated randomly drawn uniformly from the region of space of interested specified in the evaluation call.
The objective function is evaluated at each point, and the best value is recorded. If there was a point chosen
previously, its value is calculated and if it is withinstandard deviations of the score of the best point, for
some definedy, it is again selected as the target point. If there was no target point previously, or it is no
longera-optimal, the best point is chosen as the target. Thusytveue imparts a hysteresis effect as used
in the other evaluations.

5 Plays for Multi-Robot Team Control

The final component of the STP architecture are plays. Plays form the highest level in the control hierarchy
providing strategic level control of the entire team. The strategic team problem involves selecting each
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robot’s behavior in order to achieve team goals, given a set of tactics, which are effective and parameterized
individual robot behaviors. We build team strategy around the concepplafyeas a team plan, and the
concept of gplaybookas a collection of team plans. We first explore the goals for the design of a team
strategy system and then explore how plays and playbooks achieve these goals.

5.1 Goals

Obviously the main criterion for a team strategy system is performance. A single, monolithic team strategy
that maximizes performance, though, is impractical. In addition, there is not likely to be a single optimal
strategy independent of the adversary. Instead of focusing directly on team performance, we enumerate a
set of six simpler goals, which we believe are more practical and lead to strong overall team performance:

. Coordinated team behavior,
. Temporally extended sequences of action (deliberative),

. Inclusion of special purpose behavior for certain circumstances,

1

2

3

4. Ease of human design and augmentation,

5. Ability to exploit short-lived opportunities (reactive), and
6

. On-line adaptation to the specific opponent,

The first four goals require plays to be able to express complex, coordinated, and sequenced behavior
among teammates. In addition, the language must be human readable to make play design and modification
simple. These goals also require a powerful system capable of executing the complex behaviors the plays
describe. The fifth goal requires the execution system to also recognize and exploit opportunities that are not
explicitly described by the current play. Finally, the sixth goal requires the system to alter its overall behavior
over time. Notice that the strategy system requires both deliberative and reactive reasoning. The dynamic
environment makes a strictly deliberative system unlikely to be able to carry out its plan, but the competitive
nature often requires explicitly deliberative sequences of actions in order to create scoring opportunities.

We first introduce our novel play language along with the coupled play execution system. We then de-
scribe how playbooks can provide multiple alternative strategies for playing against the unknown opponent.

5.2 Play Specification

A play is a multi-agent plan, i.e., a joint policy for the entire team. Our definition of a play, therefore, shares
many concepts with classical planning. A play consists of four main components:

Applicability conditions,

Termination conditions,

Roles, and

Execution details.
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PLAY Naive Offense

APPLICABLE offense
DONE aborted !offense

ROLE 1

shoot A

none

ROLE 2

defend_point {-1400 250} 0 700
none

ROLE 3

defend_lane {B 0 -200} {B 1175 -200}
none

ROLE 4

defend_point {-1400 -250} 0 1400
none

Table 5: A simple example of a play.

Applicability conditions specify when a play can be executed and are similar to planning operator precon-
ditions. Termination conditions define when execution is stopped and are similar to an operator’s effects,
although they include a number of possible outcomes of execution. The roles describe the actual behavior
to be executed in terms of individual robot tactics. The execution details can include a variety of optional
information that can help guide the play execution system. We now look at each of these components
individually.

5.2.1 Applicability Conditions

The conditions for a play’s applicability can be defined as any logical formula of the available state predi-
cates. The conditions are specified as a logical DNF usingBfeLICABLE keyword, with each disjunct
specified separately. In the example play in Table 5, the play can only be executed from a state where the
offense predicate is true. Theffense predicate is actually a fairly complex combination of the present
and past possession of the ball and its present and past position on the field. Predicates can be easily added
and Table 6 lists the current predicates used by our system. Note that predicates can also take parameters,
asinthe case djall x_gt X, which checks if the ball is over the distané&own field.

Like preconditions in classical planning, applicability conditions restrict when a play can be executed.
By constraining the applicability of a play, one can design special purpose plays for very specific circum-
stances. An example of such a play is shown in Table 7. This play usémbkhein _their _corner
predicate to constrain the play to be executed only when the ball is in a corner near the opponent’s goal. The
play explicitly involves dribbling the ball out of the corner to get a better angle for a shot on goal. Such a
play only really makes sense when initiated from the play’s applicability conditions.

5.2.2 Termination Conditions

Termination conditions specify when the play’s execution should stop. Just as applicability conditions are
related to operator preconditions in classical planning, termination conditions are similar to operator effects.
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Play predicates

offense our _kickoff

> defense their  _kickoff

> their _ball our _freekick

> our _ball their _freekick

> loose _ball our _penalty

> ball _their _side their  _penalty

> ball _our _side ball x_ gt X
ball _midfield ball Xt Yy
ball _in _our _corner ball  _absy gt Y
ball _in _their _corner ball _absy It Y

nopponents _our _side N

Table 6: List of state predicates.

PLAY Two Attackers, Corner Dribble 1

APPLICABLE offense in_their_corner
DONE aborted !offense
TIMEOUT 15

ROLE 1
dribble_to_shoot { R { B 1100 800 } { B 700 800 } 300}
shoot A
none

ROLE 2
block 320 900 -1
none

ROLE 3
position_for_pass { R { B 1000 0 } { B 700 0 } 500 }
none

ROLE 4
defend_line { -1400 1150 } { -1400 -1150 } 1100 1400
none

Table 7: A special purpose play that is only executed when the ball is in an offensive corner of the field.
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Unlike classical planning, though, there is too much uncertainty in execution to know the exact outcome of
a particular play. The termination conditions list possible outcomes and asso@atdtaith each possible
outcome. The soccer domain itself defines a number of stopping conditions, e.g., the scoring of a goal or
the awarding of a penalty shot. The play’s termination conditions are in addition to these and allow for play
execution to be stopped and a new play initiated even when the game itself is not stopped.

Termination conditions, like applicability conditions, use logical formulas of state predicates. In addition
to specifying a conjunction of predicates, a termination condition also specifies the result of the play if the
condition becomes true. In the play specification, they are delineated yQhd&keyword, followed by
the result, and then the list of conjunctive predicates. Multip@\Econditions can be specified and are
interpreted in a disjunctive fashion. In the example play in Table 5, the only terminating condition, beside
the default soccer conditions, is if the team is no longer on offense (*!” is used to signify negation). The
play’s result is then “aborted”.

The results for plays are one of: succeeded, completed, aborted, and failed. These results are used to
evaluate the success of the play for the purposes of reselecting the play later. This is the major input to
the team adaptation system, which we describe later. Roughly speaking, we use results of succeeded and
failed to mean that a goal was scored, or some other equivalently valuable result, such as a penalty shot.
the completed result is used if the play was executed to completion. For example, in the play in Table 5,
if a robot was able to complete a shot, even if no goal was scored, the play is considered completed. In a
defensive play, switching to offense may be a completed result iD@Econditions. The aborted result
is used when the play was stopped without completing.

BesidesDONEconditions, there are two other ways in which plays can be terminated. The first is when
the sequence of behaviors defined by the play are executed. As we mentioned above, this gives the play a
result ofcompleted . This will be described further when we examine the play execution system. The
second occurs when a play runs for a long time with no other termination condition being triggered. When
this occurs the play is terminated with ahorted result and a new play is selected. This allows the team
to commit to a course of action for a period of time, but recognize that in certain circumstances a particular
play may not be able to progress any further.

5.2.3 Roles

As plays are multi-agent plans, the main component are the roles. Each play has four roles, one for each
non-goalie robot on the field. A role consists of a list of behaviors for the robot to perform in sequence. In
the example play in Table 5, there is only a single behavior listed for each role. These behaviors will simply
be executed until one of the termination conditions apply. In the example play in Table 7, the first role has
two sequenced behaviors. In this case the robot will dribble the ball out of the corner. After the first tactic
finishes, the robot filling that role will switch to thehoot tactic and try to manipulate the ball toward the

goal.

Sequencing also requires coordination, which is a critical aspect of multi-agent plans. Coordination in
plays requires all the roles to transition simultaneously through their sequence of behaviors. For example,
consider the more complex play in Table 8. In this play, one player is assigned to pass the ball to another
player. Once the pass behavior is complettdhe roles transition to their next behavior, if one is defined.

So, the passing player will switch to a mark behavior, and the target of the pass will switch to a behavior to
receive the pass, after which it will switch to a shooting behavior.

Roles are not tied to any particular robot. Instead, they rely on the play execution system to do this role
assignment. The order of the roles presented in the play act as hints to the execution system for filling the
roles. Roles are always listed in order of priority. The first role is always the most important and usually
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PLAY Two Attackers, Pass

APPLICABLE offense
DONE aborted !offense

OROLE 0 closest_to_ball

ROLE 1

pass 3

mark O from_shot

none

ROLE 2

block 320 900 -1

none

ROLE 3

position_for_pass { R { 1000 0 } { 700 O } 500 }
receive_pass

shoot A

none

ROLE 4

defend_line { -1400 1150} {-1400 -1150} 1000 1400
none

Table 8: A complex play involving sequencing of behaviors.

involves some manipulation of the ball. This provides the execution system the knowledge needed to select
robots to perform the roles and also for role switching when appropriate opportunities present themselves.

Tactics in Roles. The different behaviors that can be specified by a role are the individual robot tactics
that were discussed in Section 4.1. As mentioned, these tactics are highly parameterized behaviors. For
example, thelefend _point tactic takes a point on the field and a minimum and maximum range. The
tactic will then position itself between the point and the ball, within the specified range. By allowing for
this large degree of parameterization the different behaviors can be combined into a nearly infinite number
of play possibilities. The list of parameters accepted by the different tactics is shown in Table 2.

Coordinate Systems. Many of the tactics take parameters in the form of “coordinates” or “regions”. These
parameters can be specified in a variety of coordinate systems allowing for added flexibility in specifying
plays in general terms. We allow coordinates to be specified either as absolute field position or ball relative
field positions. In addition, the positive y-axis can also be specified to depend on the side of the field that
the ball is on, the side of field that the majority of the opponents are on, or even a combination of these two
factors. This allows tremendous flexibility in the specification of the behaviors used in plays. Regions use
coordinates to specify non-axis aligned rectangles as well as circles. This allows, for example, a single play
to be general with respect to the side of the field and position of the ball.
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5.2.4 Execution Details

The rest of the play specification are execution details, which amount to providing hints to the execution
system about how to execute the play. These optional components are: timeout and opponent roles. The
timeout overrides the default amount of time a play is allowed to execute before aborting the play and
selecting a new play.

Opponent roles allow robot behaviors to refer to opponent robots in defining their behavior. The play
in Table 8 is an example of this. The first role, switches to marking one of the opponents after it completes
the pass. The exact opponent that is marked depends upon which opponent was assigned to opponent Role
0. Before the teammate roles are listed, opponent roles are defined by simply specifying a selection criteria
for filling the role. The example play uses thi®sest _to _ball criterion, which assigns the opponent
closest to the ball to fill that role, and consequently be marked following the pass. Multiple opponent roles
can be specified and they are filled in turn using the provided criterion.

5.3 Play Execution

The play execution module is responsible for actually instantiating the play into real robot behavior. That
is, the module must interpret a play by assigning tactics to actual robots. This instantiation consists of key
decisions: role assignment, role switching, sequencing tactics, opportunistic behavior, and termination.

Role assignment uses tactic-specific methods for selecting a robot to fill each role, in the order of the
role’s priority. The first role considers all four field robots as candidates to fill the role. The remaining robots
are considered to fill the second role, and so on. Role switching is a very effective technique for exploiting
changes in the environment that alter the effectiveness of robots fulfilling roles. The play executor handles
role switching using the tactic-specific methods for selecting robots, using a bias toward the current robot
filling the role. Sequencing is needed to move the entire team through the sequence of tactics that make up
the play. The play executor monitors the curraative playery i.e., the robot whose role specifies a tactic
related to the ball (see Table 2). When the tactic succeeds, the play is transitioned to the next tactic in the
sequence of tactics, faachrole. Finally, opportunistic behavior accounts for changes in the environment
where a very basic action would have a valuable outcome. For example, the play executor evaluates the
duration of time and potential success of each robot shooting immediately. If an opportunistic behavior can
be executed quickly enough and with a high likelihood of success, then the robot immediately switches its
behavior to take advantage of the situation. If the opportunity is then lost, the robot returns to executing its
role in the play.

The play executor algorithm provides basic behavior beyond what the play specifies. The play executor,
therefore, simplifies the creation of plays, since this basic behavior does not need to be considered in the
design of plays. The executor also gives the team robustness to a changing environment, which can cause
a play's complex behavior to be no longer necessary or require some adjustment to the role assignment. It
also allows for fairly complex and chained behavior to be specified in a play, without fear that short-lived
opportunities will be missed.

The final consideration of play execution is termination. We have already described how plays specify
their own termination criteria, either through predicates or a timeout. The executor checks these conditions,
and also checks whether the play has completed its sequence of behaviors, as well as checking incoming
information from the referee. If the final active tactic in the play’s sequence of tactics completes, then the
play is considered to have completed and is terminated. Alternatively, the game may be stopped by the
referee to declare a penalty, award a free kick, award a penalty kick, declare a score, and so on. Each of
these conditions terminates the play, but also may effect the determined outcome of the play. Goals are
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always considered successes or failures, as appropriate. Penalty kicks are also considered play successes
and failures. A free kick for our team deems the play as completed, while a free kick for the opponent sets
the play outcome to aborted. Play outcomes are the critical input to the play selection and adaptation system.

5.4 Playbook and Play Selection

Plays define a team plan. A playbook is a collection of plays, and, therefore, provides a whole range of
possible team behavior. Playbooks can be composed in a number of different fashions. For example, one
could insure that for all possible game states there exists a single applicable play. This makes play selection
simple since it merely requires executing the one applicable play from the playbook. A more interesting
approach is to provide multiple applicable plays for various game states. This adds a play selection problem,
but also adds alternative modes of play that may be more appropriate for different opponents. Multiple plays
also give options from among which adaptation can select. In order to support multiple applicable plays, a
playbook also associates a weight with each play. This weight corresponds to how often the play should be
selected when applicable.

Play selection, the final component of the strategy layer, then amounts to finding the set of applicable
plays and selecting one based on the weights. Specifically, if are the set of plays whose applicability
condition are satisfied, and; is their associated weight, then is selected with probability,

wy
T .
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Although these weights can simply be specified in the playbook and left alone, they also are the parameters
that can be adapted for a particular opponent. We use a weighted experts algorithm (e.g., Randomized
Weighted Majority [26] and Exp3 [4]) tailored to our specific domain to adapt the play weights during the
course of the game. The weight changes were based on the outcomes from the play execution. These
outcomes include obvious results such as goals and penalty shots, as well as the plays’ own termination
conditions and timeout factors. These outcomes are used to modify the play weights so as to minimize the
play selection regret, i.e., the success that could have been achieved if the optimal play had been known in
advance less the actual success achieved. This adaptation is described elsewhere in more detail [7].

Pr(pjlw) =

5.5 Achieving Our Goals

Our play-based strategy system, achieves all six goals that we set out in Section 5.1. Sequences of syn
chronized actions provide a mechanism for coordinated team behavior, as well as deliberative actions. Ap-
plicability conditions allow for the definition of special purpose team behavior. The play execution system
handles moments of opportunity to allow for the team to have a reactive element. Incorporating all of this
into a human readable text format makes adding and modifying plays quite easy. Finally, the ability to assign
outcomes to the execution of plays is also the key capability used to adapt the weights used in play selection,
achieving the final goal of a strategy system.

6 Results and Discussion
RoboCup competitions provide a natural method for testing and evaluating techniques for single robot and

team control against a range of unknown opponents of varying capabilities and strategies. Indeed, this is
major focus the competitions. The STP architecture has been evolved through feedback from competitions.
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Figure 5: Example of a deflection goal against ToinAlbatross from Japan. The dark lines show debugging
output from the tactics and the light line shows the tracked ball velocity. Image (a) shows the the shooting
robot unable to take a shot, robot 5 begins moving to a good deflection point. Image (b) shows the kicker
lined up and its target zone on robot 5. Image (c) and (d) show the kick and resulting deflection to score a
goal. The entire sequence takes less than one second.

Here we mainly report on results derived from the RoboCup 2003 competition, but include anecdotal results
from:

e RoboCup 2003, held in July in Padua, Italy. International competition with 21 competitive teams.
CMDragons finished". Seehttp:/www.robocup2003.0rg

e RoboCup American Open 2003, held in May in Pittsburgh, USA. Regional competition open to Amer-
ican continent teams. Included 10 teams from US, Canada, Chile, and Mexico. CMDragoi& won
place. Sedttp://www.americanopen03.org

e RoboCup 2002, held in June in Fukuoka, Japan. International competition with 20 competitive teams.
CMDragons were quarter finalists. Segp://www.robocup2002.org

6.1 Team Results

Overall, the STP architecture achieves the goals outlined in section 3.1. Using it, our team is able to respond
quickly to unexpected situations while carrying out coordinated actions that increase the likelihood of fu-
ture opportunities. The system is able to execute complex plays involving multiple passes and dribbling,
however, due to the risk of loosing the ball, real game plays do not exceed dribbling with one pass for a
deflection on goal or a one-shot pass on goal. A one-shot is where one robot passes to another, which then
takes a shot on goal. Indeed, such one-shots were responsible for a number of goals. Figure 5 shows an
example from the game against ToinAlbatross from Japan.
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Figure 6: Example of opportunism leading to a goal. Shown is a log sequence from RoboCup 2003 against
RoboDragons. The robot gets the ball in image (a). Unexpectedly, a gap opens on goal. The robot moves
and shoots ((b) and (c)) to score. The entire sequence takes 15 frames, or 0.5 seconds.

Figure 7: Example of role switching. Here the first robot is the active player, but the ball rolls too fast
away from it. The second player smoothly takes over this task, while the first player moves out to receive a
deflection. Taken from the game against RoboDragons.

The STP architecture is responsive to opportunistic events, both fortuitous ones and negative ones. Fig-
ures 6 shows an example of an opportunistic event occurring during an attacking maneuver against Robo-
Dragons from Japan. The result was a goal, which would not have occurred had the architecture persisted
with its team plan. It is interesting to note that the whole episode occurs in less than one second. Figure 7
shows the effectiveness of dynamic role switching during a play, which results in smoother execution of the
play.

The architecture is modular and reconfigurable. As an example of this aspect, at the RoboCup 2003
competition we completely rewrote the playbook used by the team during the round robin phase. Modu-
larity helps in making changes while minimizing the impact on the rest of the system. Reconfigurability
is achieved through the play language, and use of configuration files to specify parameters for tactics and
skills.

To demonstrate the need for different plays, and implicitly the need for different tactics to enable the
implementation of a range of different plays. We compared the results of the play weights after the first half
for two different games. Figures 9 and 10 show the weights at the end of the first half for the game against
ToinAlbatross from Japan and Field Rangers from Singapore, respectively. The weights and selection rates
indicate the successfulness of each play. Different strategies are required to play effectively against the
different styles of each opponent. The different in play weights clearly shows this. We therefore draw the
conclusion that a diversity of tactics, and correspondingly a diversity of plays, is a useful tool for adversarial
environments.
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Play weight Sel Sel %

ol deepstagger 0.021 6 10.3%
ol pointsdeep 2.631 11 19.0%
02 deflectiondeep 0.280 40 69.0%

0l pointsdeepdeflections  0.015 1 1.7%

Table 9: Offensive weights at the end of the first half for game against ToinAlbatross

Play weight Sel  Sel%

ol deepstagger 1.080 23 50.00%
ol pointsdeep 0.098 2  4.35%
02 deflectiondeep 1.123 17 36.96%

ol pointsdeepdeflections  0.657 4  8.70%
Table 10: Offensive weights at the end of the first half for game against Field Rangers

6.2 Single Robot Results

Figure 8 shows a sequence of frames captured from the log of the game against RoboDragons from Japan.
The robot shown is executing the shoot tactic, and progresses through a series of skills determined by the
progression of world state. Given different circumstances, say if the ball were against the wall or in the

open, the sequence of executed skills would be different. As with the play opportunism, the entire sequence

occurs in only a few seconds.
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Figure 8: An example shoot sequence taken from the RoboCup 2003 round robin game of CMDragons’03 vs
RoboDragons. The robot first executessteml _ball  skill (image (a) and (b)), followed bgoto _ball

(image (c)). Once the ball is safely on the robot’s dribbler, it bedimge _to _goal , image (d), to aim at

the selected open shot on goal or to drive to a point where it can take the shot. Upon being in position to
take a good shot (image (e)), it kicks leading to a scored goal.

Given the wide range of world states that occur during a game, and the need to execute different skill
sequences for different world states, it becomes difficult to analyze the performance of the skill state ma-
chine. Consequently, it becomes difficult to determine how to improve its performance for future games.
We have developed a number of logging techniques to aid in this analysis. Our logging techniques take three
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forms. During development and game play, we record statistics for the transitions between skills as shown
in table 11 for the game against RoboDragons. During development, we also monitor for the presence of
one node, and two node loops, on-line. Thus, we can quickly determine when skills transitions oscillate, or
a skill fails to transition to another skill as appropriate.

Skill Cause Transition Count  Percent
GotoBall Command Position 209 62.39%
GotAShot Kick 3 0.90%
WithinDriveRange  DriveToGoal 67  20.00%
CanSteal StealBall 33 9.85%
SpinOffwall SpinAtBall 3 0.90%
CanBump BumpToGoal 20 5.97%
StealBall Command Position 1 3.03%
BallAwayFromMe  GotoBall 14 42.42%
BallAwayFromOpp GotoBall 18 54.55%
DriveToGoal CanKick Kick 15 22.39%
BallTooFarToSide  GotoBall 52  77.61%
BumpToGoal Command Position 1 5.00%
TargetTooFar GotoBall 19 95.00%
Kick Command Position 1 5.56%
BallNotOnFront GotoBall 17 94.44%
SpinAtBall Command Position 1 33.33%
BallMoved GotoBall 2 66.67%
Position Command GotoBall 212 100.00%

Table 11: Robot log from RoboDragons game

6.3 Remaining Issues

Based upon its performance in RoboCup competitions, the STP architecture provides many useful mech-
anisms for autonomously controlling a robot team in an adversarial environments. There are issues that
require further investigation in order to improve its overall capabilities however.

The greatest weakness of our current approach resides in the need to develop the skills and its corre-
sponding state machine. The techniques and algorithms described here provide very useful tools for devel-
oping robot behavior, however, development is still not a trivial process and much improvement can still
be made. Each skill requires the development of a complex control algorithm, that is necessarily depen-
dent upon the environment conditions and the capabilities of the robot hardware. Developing high perfor-
mance skills is a challenging process that requires creativity, knowledge of the robots capabilities, and large
amounts of testing. Combining these skills into state machines is equally challenging. To do so, one must
accurately create the decision tree to determine under what conditions a skill transitions to its counterpart.
One must avoid loops caused by oscillations, and ensure that each transition occurs only in states for which
the target skill can operate from. Finally, each skills typically requires a large number of parameters to
define its behavior and transition properties. Determining correct values for these parameters is a difficult
and tedious process. Thus, our future work will focus on easing the difficulties skill development.

Another issue that needs further investigation is the dependence of skill execution on good sensor mod-
eling. The unavoidable occurrence of occlusion, particularly during ball manipulation, has a severe impact
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on skill execution. Modeling the motion of the ball while it is occluded helps reduce this impact, but raises
complications for when the ball modeling is incorrect. In particular, occasional observations of the ball
may show inconsistencies with the modeled behavior, causing the skills to change their mode of execution.
Consequently, oscillations in output decisions occur which detract from the performance of the skill. There
is no easy solution to this problem, and it is an area of ongoing investigation.

7 Related Work

There have been a number of investigations into control architectures for robot teams. Prime examples
include Alliance [30], three-layered based approaches [33] which build upon the single robot versions
(e.g. [19]), or the more recent market based approaches [17]. None of these architectures, however, have
been applied tadversarialenvironments. As discussed throughout this article, adversarial environments
create many novel challenges for team control that do not occur in non-adversarial domains. Within the
domain of robot soccer, there have, naturally, been many varied approaches into single robot and team
control. We now review the most relevant of these approaches. We begin by focusing on teams that have
demonstrated high-levels of team cooperation and performance.

Beginning at single robot control, there are a number of related approaches to our work. In particular,
our skills based behavior architecture was loosely inspired by the techniques used by Rojas et. al. FU-
Fighters team [31, 6]. Their team is controlled by successive layers of reactive behaviors that operate at
different characteristic time constants. There is a clear difference between a FU-Fighters’ style approach
and STP. Plays, although selected reactively, enable a team to easily execute sequences of actions that
extend over a period of time. Moreover, with dynamic role switching, the team members may change their
role assignments but still carry out the directives of the play as a whole. The state-machine component of
skills also contrasts against the purely reactive approach of FU-Fighters, whereby an extended sequence of
actions can occur even in the presence of ball occlusion and noise.

The use of finite state machines for single robot control is not a unique approach. Indeed, many re-
searchers have investigated state-machine approaches in a variety of contexts (e.g. [9, 5], or see [2] for more
examples). Our approach is unique, however, in that each skill is a state in the state machine sequence. The
state sequence is a function of both the world and the delegating tactic. Finally, the activedatitiaally
updates the parameters used by the active skill as it modifies its decisions based on the world. For example,
theTShoot tactic may switch its decision from shooting at one side of the goal to shooting at the other. The
active skill, whatever it may be, will make a corresponding switch, and perhaps transition to another skill
depending upon the current situation. This combination of features makes the skill layer a unique approach.

At the team level, a number of teams use potential field based techniques for team control in the SSL
(e.0.,[22, 39, 28]). Potential field based team control is also popular outside of the SSL, in the mid-size [34],
simulation [27] and Sony AIBO legged leagues [20]. Potential fields are used to determine target field
positions for moving, or kicking. Essentially, the potential field value is determined for each cell in a grid
covering the field. The shape of the potential field is formed by combining the usual attraction/repulsion
operations common to potential field techniques [21, 1]. Some teams also add to the potential field functions
based on clear paths to the ball. This approach is similar to the use of evaluations described in Section 4.
The major difference occurs in the use of a sample-based approach to find a near-optimal point. We have
found that a sample-based approach allows greater flexibility in defining the underlying objective function,
additionally it avoids the issues of grid resolution and the computational effects of increasing the complexity
of the evaluation function. Both techniques must use hysteresis or some similar mechanism.

Potential field techniques are also commonly used for navigation (e.g. [15, 18, 40]), although other re-
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active techniques are popular as well (e.g. [16, 8]). Reactive navigation is quite successful in a a dynamic
and open environment, but they have been found by us and others to be less effective in cluttered environ-
ments like robot soccer (e.g. [38]). Here fast planning based approaches have been found to be much more
powerful. Please see [13] for further discussion on this topic.

D’Andrea et. al’s Cornell Big Red team [16] utilize a playbook approach that is similar to the use of
plays described here. Their approach differs to ours, in that the playbook itself is a finite-state-machine
where the plays are the states, rather than each play consisting of a set of states. As a result, the whole state
machine is needed to have deliberative sequences of actions. The STP play-based approach, by encoding
state transitions within plays, allows for multiple plays to be encoded to be operable for the same situations.
As these multiple plays will utilize different sequences, it is reasonable to expect that the plays will have
different effectiveness against different opponents. The STP approach, when combined with adaptation,
allows for greater robustness of behavior against a range of opponents because the best play to use in a given
situation can be found from amongst a range of applicable plays.

8 Conclusions

In this article, we have presented the STP architecture for autonomous robot team control in adversarial
environments. The architecture consists of plays for team control, tactics for encapsulating single robot be-
havior, and a skill state machine for implementing robot behavior. The contributions of the STP architecture
are to provide robust team coordination towards longer-term goals while remaining reactive to short-term
opportunistic events. Secondly, the STP architecture is intended to provide team coordination that is respon-
sive to the actions of the opponent team. Finally, the architecture is designed to be modular and to allow
easy reconfiguration of team strategy and control parameters.

We have fully implemented the STP architecture in the small-size robot soccer domain, and have eval-
uated it against a range of opponents of differing capabilities and strategies. Moreover, we have evaluated
our techniques and algorithms across a number of international and regional competitions. In this article,
we have presented results based on these competitions that we believe validate the STP approach.

Much work remains, however, to further improve the capabilities of play-based team control and skill-
based single robot behavior. In particular, considerable future work is required to overcome the need to
specify large numbers of parameters in order to gain high-performance skill execution. Our future goals are
in incorporate learning and adaptation at all levels in order to address this issue.
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