
FAST GOAL NAVIGATION WITH OBSTACLE AVOIDANCE USING A DYNAMI C
LOCAL VISUAL MODEL

Juan Fasola∗
jfasola@andrew.cmu.edu

Paul E. Rybski∗
prybski@cs.cmu.edu

Manuela M. Veloso∗
veloso@cs.cmu.edu

∗School of Computer Science
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA, 15213

ABSTRACT

We introduce an algorithm for navigating to a goal while
avoiding obstacles for an autonomous robot, in particular the
Sony AIBO robot. The algorithm makes use of the robot’s single
monocular camera for both localization and obstacle detection.
The algorithm builds upon a novel method for representing
freespace around the robot that was previously developed for
use on the AIBO robot. The algorithm alternates between two
different navigation modes. When the area in front of the robot
is unobstructed, the robot navigates straight towards the goal.
When the path is obstructed, the robot follows the contours
of the obstacles until the way is clear. We show how the
algorithm operates in several different experimental environments
and provide an analysis of its performance.

KEYWORDS: Mobile Robotics, Navigation and Self-
Localization.

1 INTRODUCTION

Navigating to goals while avoiding obstacles is a challenging
problem for a mobile robot. This problem is even more difficult
when the robot is unable to generate accurate global models of the
obstacles in its environment. Determining an optimal navigation
policy without this information can be difficult or impossible. If
placed in such a situation, a robot will have to rely on local sensor
information and navigation heuristics to direct it from onelocation
to another. The quality of this sensor information is extremely
important as well. Poor sensor and odometry estimates will
greatly compound the errors in the robot’s freespace estimates and
will make navigation decisions very difficult. We are interested
in developing global navigation algorithms for robots withthese
perceptual limitations.

In the RoboCup (Veloso et al., 2000) domain, teams of robots

play soccer against one another. The goal behind this annual
competition is to encourage research in the areas of artificial
intelligence and robotics. In the RoboCup legged league (Lenser
et al., 2001), the only robots that are allowed are Sony AIBOs.
These robots are equipped with a single monocular camera which
serves as their only exteroceptive sensor. This paper describes
a technique by which an AIBO robot can visually navigate to
globally-defined goal points on the Soccer field while avoiding
obstacles. In the 2003 RoboCup competition, one of the challenge
competitions was to have an AIBO navigate from one side of the
field to the other while not hitting any obstacles. Our algorithm
was developed in response to this challenge.

Our approach to the problem of navigating to goal points is a two
step process. When the robot’s path is unobstructed, it navigates
straight towards the goal, using its global position estimate to
guide it. When the robot encounters obstacles, it follows the
contours of the obstacles to avoid making contact with them while
still attempting to make forward progress towards the goal.This
algorithm evaluates the robot’s position in relation to theobstacles
and goal and determines whether it should continue following
the obstacle or whether it is safe to walk directly towards the
goal. Because of the uncertainty in the robot’s position andthe
difficulty of determining whether an obstacle is static or dynamic,
this algorithm does not involve any form of global memory of the
robot’s position. This means that in some pathological situations,
the robot may return to the same location in its pursuit of the
desired goal. The algorithm includes a degree of randomnessto
help perturb the robot out of these kinds of situations.

The algorithm is very careful not to have the robot collide with
static obstacles. While the algorithm is not guaranteed to find an
optimal path to the goal, because the robot’s perceptual field is
very limited, the random aspects of the algorithm provide enough
disturbances to jostle the robot out of potential obstacle traps. To
compute a globally consistent map of its environment that will

VII SBAI / II IEEE LARS. São Luís, setembro de 2005 1



allow the robot to compute a globally optimal path to its goal
would likely require a great deal more computational (Simmons
e Koenig, 1995) power than is reasonable to expect with an
AIBO. Striking a balance between computing highly accurate
maps and maintaining a rapid response time is a challenge faced
by all competitors in the RoboCup domain. Finally, while our
research focuses on algorithms that can be used for RoboCup,
the techniques described in this paper can be used outside ofthe
soccer arena in any environment where robots need to navigate to
a goal but cannot compute a globally optimal plan due to limited
or noisy sensor information.

2 RELATED WORK

Many different methods for obstacle avoidance have been
proposed, ranging from completely reactive behavior-based
schemes (Brooks, 1986) to more deliberative systems that
construct maps and plan over freespace (Thrun et al., 1999).Our
method falls somewhere in between those two extremes. One
method that is similar to ours is motor schemas (Arkin, 1989),
which uses a method similar to the attracting and repelling
forces found in potential fields approaches to direct a robot’s
motion. In this approach, several different navigation vectors
are computed and the sum of their velocities at any given point
in the environment describes the robot’s current motion. Inour
approach, the algorithm either heads towards the goal, or follows
the contours of obstacles. In either case, there is no blending of
multiple control policies at any point. Another class of methods
that is similar in flavor to ours is the TangentBug/WedgeBug
algorithms (Laubach e Burdick, 1999) algorithm. This algorithm
also uses the notion of alternating between goal pursuing and
obstacle avoidance. In these algorithms, the robots are assumed
to have accurate information about the distances to obstacles
from sensors such as stereo cameras or laser range finders.
Additionally, the range of the sensors is assumed to be much
larger than what we have available on the AIBOs.

3 THE ROBOT PLATFORM

The robots used in this research are the commercially-available
AIBOs, shown in Figure 1, created by the Sony Digital Creatures
Laboratory. The robots are fully autonomous, with a 384MHz
MIPS processor, visual perception, and sophisticated head, leg,
and tail motions. Information returned from the sensors includes
temperature, infrared distance, 3-axis acceleration, andtouch
(buttons on the head, the back, chin, and legs). The robot has
twenty degrees of freedom including the mouth (1 DOF), head (3
DOF), legs (3 DOF x 4 legs), ears (1 DOF x 2 ears), and tail (2
DOF). The program storage medium is a 32M memory stick.

3.1 Vision

The AIBO’s primary exteroceptive sensor is a color CCD camera
mounted in its nose. The pixels in the images are classified
into semantically meaningful groups using CMVision 2 (Bruce
e Veloso, 2003), a fast color segmentation algorithm. Some color
classes that the robot is aware of includes the floor, the soccer ball,
other robots, and walls on the field. Any color pixel that is not in
the list is classified as unknown. Figure 2 shows sample images
segmented by the robot.

Figure 1: Sony AIBO ERS-210 with a soccer ball.

Yellow goal and ball AIBO in red uniform

Figure 2: Sample color segmented images.

4 LOCAL ENVIRONMENTAL MODEL

Two different environmental modeling systems are used for this
algorithm. The first is a local obstacle model which uses readings
from the robot’s sensors to determine the distances of the nearest
obstacles in any given direction. The second method is a global
localization scheme which uses markers on the field to determine
the location of the robot.

4.1 Obstacle Modeling

All decisions as to whether the area in front of the robot is free are
made by analyzing the segmented images with an algorithm called
the visual sonar (Lenser e Veloso, 2003). As its name suggests,
visual sonar detects obstacles in the environment and calculates
the distances from the robot to those obstacles based on the height
and angle of the robot’s camera.

The locations of the open areas and the obstacles are all stored in
an ego-centric local model. The data stored in this local model
depends a great deal on the accuracy of the vision information.
The AIBO’s vision system semantically labels each colored pixel
as belonging to a class of freespace of obstacles. Each frameof
video is scanned at small degree increments and any freespace
or obstacle colors found along those scanlines (which radiate out
from the robot’s center) are added to the local model as points.

As this is a model of the robot’s local perceptual space, the robot
is always considered to be at the center of the model. The points
shift around the robot based on its own odometric model, i.e., the
points translate past the robot when it is walking forward and orbit

VII SBAI / II IEEE LARS. São Luís, setembro de 2005 2



Obstacles and freespace are Occupancy grid generated
represented as samples from the samples from samples

black = freespace black = freespace
white = obstacles white = obstacles

Figure 3: The ego-centric local obstacle model where the robot is in the center of the grid. Scanlines from the visual perceptual system
are parsed for colors that are freespace and obstacles (according to the color segmentation algorithm). The scanlines are sampled and
a collection of points is added to the local model’s database, as shown in the figure on the left. These points have a finite life time
(approximately 2 seconds) before being forgotten. These points can be turned into a more traditional grid-based occupancy grid by
summing the contribution of each of the freespace and obstacle points in that grid.

the robot when the robot turns in place. Because of the uncertainty
in the robot’s position, the points are forgotten after a fewseconds
to avoid using data badly corrupted by odometric error. Figure 3
illustrates how obstacles and freespace appear to the robot.

The stored points can be used to generate an occupancy
grid (Elfes, 1989) (a probabilistic representation of freespace).
However updating the cells of a complete occupancy grid
around the robot is typically too computationally expensive to
be practical. Instead of generating a complete occupancy grid
with fixed grid positions, the local obstacle model can be queried
with a generalized rectangle of any size and orientation around
the robot. This focuses the computation exclusively on the areas
of interest. We make use of this feature in the robot’s obstacle
avoidance behavior.

4.2 Robot Localization

In order for the robot to determine the locations of goal positions,
a global localization scheme using a particle filter (Thrun et al.,
2000) is employed. The particle filter is not used to track the
positions of obstacles because the visual sonar does not return an
accurate enough estimate of the shape of the obstacle. In addition,
the drift associated with the odometry and localization uncertainty
makes it difficult to correlate the local readings on a globalscale.

The robot’s goal points are stored in a global coordinate frame.
A set of six unique markers are placed around the perimeter of
the field and are used as landmarks for localization. The robot
must occasionally look around to determine the positions ofthese
landmarks so that it can localize itself.

5 OBSTACLE AVOIDANCE ALGORITHM

Because of the AIBO’s proximity to the ground, the error of the
visual sonar increases significantly with distance. Anything past
2 m cannot reasonably be measured in this fashion. As a result,
all of the navigation decisions must be made from very local

information. Our navigation algorithm only considers obstacles
that are at most0.6 m away from it.

At a high-level, the algorithm switches between a goal-navigation
mode and an contour-following mode. In the goal-navigation
mode, the robot has not encountered an obstacle directly in front
of it and moves toward the global coordinate that is the goal.In
obstacle-following mode, the robot follows the contours ofan
obstacle that it has encountered in an attempt to move aroundit.

AIBO

400mm

600mm

0 deg

−45 deg

−22.5 deg

Figure 4: Generalized cells searched for obstacles when theAIBO
is contour following. The size of each cell is 600mm x 400mm.

When the robot is in the contour-following state, it knows on
which side the obstacle is located and therefore concentrates
its head camera to that side only. In order for the robot to
follow the contours of the obstacle, it evaluates three different
walking angles every 300ms. The different angles are evaluated
by querying the local model with a rectangle that emerges from
the center of the robot in the direction of the angle being
evaluated. Each rectangle is 400mm wide (across) and 600mm
long (forward). The angles being evaluated are [0◦,22.5◦,45◦],
where 0◦ is considered the angle directly in front of the robot, and
45◦ is half-way towards the obstacle being followed. Figure 4
illustrates how the space in front of the AIBO is searched. Each
of the three angles are first checked for the existence of obstacles,

VII SBAI / II IEEE LARS. São Luís, setembro de 2005 3



Walk to Goal

Localize

Old 
Localization
Information

Obstacle
Detected

Obstacle in FrontTurn in Place

Left and Right
Blocked

Blocked
Only One Side

Turn in Place Contour Follow

Scan Head

Check Path to Goal

Localize

Localize

Old 
Localization
Information

Robot Oriented 
Within 90oof goal

Path to Goal
is Not Clear

Walk

All Blocked

Blocked
Path Path

Free

Follow
Contour

Path to Goal
is Clear

Timeout

Figure 6: Finite state machine description of the navigation algorithm. The robot starts out in theWalk to Goal state. States such as
Localize andTurn in Place may transition to multiple different states depending on the situation and so these states are duplicated in
the figure for the sake of clarity.

(a) Contour following (b) End of contour reached

(c) Goal pursuing

Figure 5: A high-level description of the algorithm. The robot
follows the contours of an obstacle (a) until it has reached the end
of it (b) and can move towards the goal (c).

those angles that are found to contain obstacles are eliminated
from consideration for the walking direction. Out of the angles
that are free of obstacles, the one that most closely leads the robot
towards the obstacle is chosen, making 45◦ the angle with the
highest priority, 0◦ with the least. Figure 5 illustrates the robot in
motion.

Figure 6 shows the algorithm’s finite state machine. The
individual states of the algorithm are described below:

• Localize: Halt forward motion for4 s, look at the various
goal markers, and compute a localization estimate. Pausing

for this duration allows multiple landmark readings to be
taken which greatly improves the localization accuracy
from a single reading. Additionally, standing still avoids
unnecessary head motions that may introduce further error
into the localization estimate.

• Walk to Goal: Check to see if a localization estimate has
been taken in the last8 s. If not, switch to theLocalize state
to obtain a localization estimate, and then transition back
to theWalk to Goal state. Once localized, move directly
towards the goal location. If an obstacle is encountered,
transition to theObstacle in Front state.

• Obstacle in Front: Gather local model information on both
the right and left sides for1.5 s each. Choose the direction
that is the most open (choosing randomly if both are equally
open) and transition to theTurn in Place state, followed by
the Contour Follow state. If both sides contain obstacles,
transition toTurn in Place and then back toObstacle in
Front to get a new perspective on the surroundings.

• Turn in Place: Rotate in place in the specified direction for
1.5 s (roughly corresponding to a 90 turn).

• Contour Follow: If a localization estimate hasn’t been taken
in the last20 s, transition to theLocalize state and then go
to theScan Head state. Otherwise, use the local model to
choose a direction vector to travel. If the robot is oriented
roughly within 90o of the goal, query the local model to see
if the way is clear, and then transition toLocalize and then
to Check Path to Goal if the path is open. If none of these
are true, transition toWalk with the direction vector that will
have the robot follow the contour.

• Scan Head: Stand still and scan the obstacle with the camera
for 2 s to fill the local model with current data and then
transition toContour Follow.

VII SBAI / II IEEE LARS. São Luís, setembro de 2005 4



• Walk: Walk along the obstacle contour for300 ms and then
transition back toContour Follow. If all visible directions
are blocked, and have been blocked for longer than1.5 s,
transition to theAll Blocked state.

• Check Path to Goal: Look towards the goal direction. If the
path is open, transition toWalk to Goal. If the path is not
open, transition back toContour Follow.

• All Blocked: Turn the robot’s head to 60o on the opposite
side of the obstacle to see if the path is open. If so, set the
walk vector and transition toWalk. Otherwise, continue to
rotate in place.

6 EXPERIMENTAL RESULTS

Experiment 1: line Experiment 2: slant

Experiment 3: spread Experiment 4: concave

Figure 7: Top-down view of the four experimental environments
used in the paper. The robot started from the right side of thefield
(as seen from this overhead view) and had to walk to the left.

To evaluate how well this algorithm can navigate around obstacles
of various types, several experiments were run in different
environmental setups. For each of the experiments, the robot
started out at one end of the field and worked its way to the other
end.

The four different environments are shown in Figure 7. The first
experimental environment was a straight line of obstacles that
stretched across the middle of the field. The second environment
was similar to the first environment, but instead of having the
line stretch straight across the field, the line slanted towards
the robot’s starting point and created a concave trap with only
one way around. The third experiment consisted of a series of
obstacles that were spread uniformly around the field. The fourth
experiment had a concave obstacle directly in the center of the
field with open paths to the left and right of it.

Ten different trials were run for each experimental setup. The
robot’s position in the field was recorded from an overhead
camera. This was also used to record the time it took to reach
the goal from the starting location. The means and standard
deviations across each of the experiments is shown in Table 1.

In order to provide a better description of how the algorithm
operates, two individual trials from each of the four experimental
environments are shown in Figure 8. These figures were chosen

Experimental Mean Std Dev Max Min
setup (seconds) (seconds)

Line 91.32 31.46 124.83 43.92
Slant 117.57 59.51 91.31 53.68

Spread 76.65 32.31 242.01 44.65
Concave 65.38 12.09 141.76 46.00

Table 1: Means and standard deviations from each of the 10
different experimental environments.

to try to illustrate some of the different ways that the algorithm
operated in those environments.

In Figure 8(a), the robot starts off by walking towards the goal and
then stops once it reaches the line obstacle. After determining that
the left and right sides are unblocked, the robot randomly chooses
to turn to the left and starts to follow the contour of the obstacle
until the end of the obstacle is reached. The left direction was
chosen without knowing that there was an opening there. The
sensors could not see the open area. Once the robot moves around
the obstacle, it localizes itself and determines that the goal is to its
left. Seeing that it no longer needs to follow the contour, itwalks
towards the goal. In Figure 8(b), the robot decided to explore
the right side of the obstacle instead. This decision point was
chosen randomly because the robot’s sensors could not see the
opening to the left. The robot reaches the end of the obstacle
and starts following the contour of the wall. Eventually, the robot
turns towards the goal, which causes it to follow the contourof
the obstacle again until it is able to move past it and continue on
to the goal.

The slant environment differs from the line environment in the
sense that when the robot encounters obstacle, it is more likely to
find that the left side contains obstacles and and the right isfree.
This typically causes the robot to turn right and spend more time
following the contour of the obstacle and the wall until it isable to
turn around and reach the opening, as shown in Figure 8(d). The
increased likelihood of turning the wrong direction resulted in this
experiment to have the highest mean completion time (it alsohad
the highest variance since once the robot became trapped, itwould
tend to stay trapped).

In the spread environment, the obstacles were arranged more
uniformly across the field. This created more than one path for
the robot to explore. Though there are more obstacles that the
robot is forced to avoid its decisions on which side to turn todo
not affect it as much as in the previous environments. Therefore,
the mean completion time of the trials is less than in the two line
obstacle environments. However, as can be seen in Figure 8(f),
the robot would still decide to take the long way around obstacles.
The angle towards which the robot approached the center obstacle
still determined which direction it took, regardless of which way
around was shorter.

The mean completion time for trial runs in the concave
environment, along with the standard deviation time, is thelowest
of all the environments tested. The reason for this is that no
matter at what angle the robot detects the concave obstacle,and no
matter what side it chooses to explore, there is a minimal amount
of contour following that it must do before finding an open path
directly towards the goal. The robot can also see far enough to
notice that the obstacle is concave and that there is no reason for

VII SBAI / II IEEE LARS. São Luís, setembro de 2005 5



(a) Line environment (b) Line environment (c) Slant environment (d) Slant environment

(e) Spread environment (f) Spread environment (g) Concave environment (h) Concave environment

Figure 8: Example robot paths in each of the different experiments. The robot started on the right side of the field (as seenfrom
overhead) and moved to the left, following the black lines superimposed on the images. The robots were automatically tracked by the
overhead camera which captured their paths across the field.The AIBOs did all of their own local vision processing and didnot have
access to the overhead video information.

it to go off and explore the inner contours of the obstacle.

7 CONCLUSION

We have presented an algorithm that allows a mobile robot with
a monocular camera system and noisy odometric estimates to
navigate to a goal while avoiding obstacles.

The robot navigates towards the goal in open space and directly
towards the obstacle switching into contour-following mode to
carefully get around it. The robot uses a local vision model to
detect the obstacles close to it. The efficiency of the contour-
following can be adapted to different timing requirements of
the task by increasing the lookahead for obstacles. If facing a
pathological environment, the algorithm can be easily extended to
include detection of possible state loops.

We have shown results from our fully implemented and well used
algorithm in a variety of different environments with challenging
patterns of obstacles, which the robot successfully and effectively
handles.

ACKNOWLEDGEMENTS

Thanks to Sony for providing the robust and autonomous AIBO
robots. Thanks also to all the CMPack robot soccer team, in
particular to Scott Lenser for the visual sonar local obstacle model
and the particle-filter sensor-resetting localization algorithm.

REFERENCES

Arkin, R. C. (1989). Motor schema-based robot navigation,
International Journal of Robotics Research8(4): 92–112.

Brooks, R. A. (1986). A robust layered control system for a
mobile robot, IEEE Journal of Robotics and Automation
RA-2(1): 14–23.

Bruce, J. e Veloso, M. (2003). Fast and accurate vision-
based pattern detection and identification,Proceedings of

ICRA’03, the 2003 IEEE International Conference on
Robotics and Automation, Taiwan.

Elfes, A. (1989). Occupancy Grids: A Probabilistic
Framework for Robot Perception and Navigation, PhD
thesis, Department of Electrical and Computer Engineering,
Carnegie Mellon University.

Laubach, S. L. e Burdick, J. W. (1999). An autonomous sensor-
based path-planner for planetary microrovers,Proceedings
of the IEEE International Conference on Robotics and
Automation, pp. 347 – 354.

Lenser, S., Bruce, J. e Veloso, M. (2001). CMPack: A
complete software system for autonomous legged soccer
robots,Proceedings of the Fifth International Conference
on Autonomous Agents. Best Paper Award in the Software
Prototypes Track, Honorary Mention.

Lenser, S. e Veloso, M. (2003). Visual sonar: Fast obstacle
avoidance using monocular vision,Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, Las Vegas, Nevada, pp. 886–891.

Simmons, R. e Koenig, S. (1995). Probabilistic robot navigation
in partially observable environments,Proceedings of the
Fourteenth International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, San mateo, CA, pp. 1080–
1087.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F.,
Fox, D., Haehnel, D., Rosenberg, C., Roy, N., Schulte, J. e
Schulz, D. (1999). MINERVA: A second generation mobile
tour-guide robot,Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1999–2005.

Thrun, S., Fox, D., Burgard, W. e Dellaert, F. (2000).
Robust monte carlo localization for mobile robots,Artificial
Intelligence101: 99–141.

Veloso, M., Pagello, E. e Kitano, H. (eds) (2000).RoboCup-99:
Robot Soccer World Cup III, Springer-Verlag Press, Berlin.

VII SBAI / II IEEE LARS. São Luís, setembro de 2005 6


