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ABSTRACT play soccer against one another. The goal behind this annual
competition is to encourage research in the areas of aatifici
We introduce an algorithm for navigating to a goal while jntelligence and robotics. In the RoboCup legged leaguagee
avoiding obstacles for an autonomous robot, in particit@r t et al., 2001), the only robots that are allowed are Sony AlBOs
Sony AIBO robot. The algorithm makes use of the robot's €ngl These robots are equipped with a single monocular camechwhi
monocular camera for both localization and obstacle detect serves as their only exteroceptive sensor. This paperitescr
The algorithm builds upon a novel method for representingy technique by which an AIBO robot can visually navigate to
freespace around the robot that was previously developed f@jobally-defined goal points on the Soccer field while aweidi
use on the AIBO robot. The algorithm alternates between tw@pstacles. In the 2003 RoboCup competition, one of the@hgé
different navigation modes. When the area in front of theotob competitions was to have an AIBO navigate from one side of the

is unobstructed, the robot navigates straight towards . g field to the other while not hitting any obstacles. Our algori
When the path is obstructed, the robot follows the contourgyas developed in response to this challenge.

of the obstacles until the way is clear. We show how the

algorithm operates in several different experimentalemments  Our approach to the problem of navigating to goal points isa t

and provide an analysis of its performance. step process. When the robot’s path is unobstructed, ipatas
straight towards the goal, using its global position estana

KEYWORDS: Mobile Robotics, Navigation and Self- guide it. When the robot encounters obstacles, it followes th

Localization. contours of the obstacles to avoid making contact with thétitew
still attempting to make forward progress towards the gdais
1 INTRODUCTION algorithm evaluates the robot’s position in relation todbhstacles

and goal and determines whether it should continue follgwin
Navigating to goals while avoiding obstacles is a challaggi the obstacle or whether it is safe to walk directly towards th
problem for a mobile robot. This problem is even more difficul goal. Because of the uncertainty in the robot’s position ted
when the robot is unable to generate accurate global motigle o  difficulty of determining whether an obstacle is static ondgnic,
obstacles in its environment. Determining an optimal natioam  this algorithm does not involve any form of global memorytuod t
policy without this information can be difficult or impos#b If ~ robot’s position. This means that in some pathologicaksituns,
placed in such a situation, a robot will have to rely on loesisor ~ the robot may return to the same location in its pursuit of the
information and navigation heuristics to direct it from dneation ~ desired goal. The algorithm includes a degree of randontoess
to another. The quality of this sensor information is exteym help perturb the robot out of these kinds of situations.
important as well. Poor sensor and odometry estimates will ) i ) )
greatly compound the errors in the robot’s freespace estramd The_ algorithm is very careful noF to h_ave the robot collldeth
will make navigation decisions very difficult. We are intsted static obstacles. While the algorithm is not guaranteechtb din

in developing global navigation algorithms for robots wittese ~ OPtimal path to the goal, because the robot's perceptual isel
perceptual limitations. very limited, the random aspects of the algorithm provideugyh

disturbances to jostle the robot out of potential obstaeles To
In the RoboCup (Veloso et al., 2000) domain, teams of robotsompute a globally consistent map of its environment thalt wi
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allow the robot to compute a globally optimal path to its goal.” ™ a
would likely require a great deal more computational (Simsio h . '
e Koenig, 1995) power than is reasonable to expect with a -
v - : =

AIBO. Striking a balance between computing highly accurat
maps and maintaining a rapid response time is a challengd fac
by all competitors in the RoboCup domain. Finally, while our
research focuses on algorithms that can be used for RoboCu
the techniques described in this paper can be used outsttie of |
soccer arena in any environment where robots need to navigat |
a goal but cannot compute a globally optimal plan due to éohit
or noisy sensor information.

2 RELATED WORK

Many different methods for obstacle avoidance have bee
proposed, ranging from completely reactive behavior-thase
schemes (Brooks, 1986) to more deliberative systems that
construct maps and plan over freespace (Thrun et al., 1999). Figure 1: Sony AIBO ERS-210 with a soccer balll.
method falls somewhere in between those two extremes. One
method that is similar to ours is motor schemas (Arkin, 1989)
which uses a method similar to the attracting and repelling
forces found in potential fields approaches to direct a rebot
motion. In this approach, several different navigationtoec

are computed and the sum of their velocities at any giventpoin
in the environment describes the robot’s current motionoun
approach, the algorithm either heads towards the goal llonf®

the contours of obstacles. In either case, there is no bigrafi

multiple control policies at any point. Another class of haats Yellow goal and ball AIBO in red uniform
that is similar in flavor to ours is the TangentBug/WedgeBug ) )
algorithms (Laubach e Burdick, 1999) algorithm. This aitjon Figure 2: Sample color segmented images.

also uses the notion of alternating between goal pursuing an
obstacle avoidance. In these algorithms, the robots ateress
to have accurate information about the distances to olwacl4 LOCAL ENVIRONMENTAL MODEL

from sensors such as stereo cameras or laser range findefs. . . ; ,
. ; wo different environmental modeling systems are usedHisr t
Additionally, the range of the sensors is assumed to be muc

) Igorithm. The first is a local lem | which ireesd
larger than what we have available on the AIBOs. algorit e' stis aloca obsta(_: c ode_ chuses
from the robot’s sensors to determine the distances of tagese

obstacles in any given direction. The second method is aafjlob
3 THE ROBOT PLATFORM localization scheme which uses markers on the field to déterm

o . _ the location of the robot.
The robots used in this research are the commerciallysail

AIBOs, shown in Figure 1, created by the Sony Digital Creadur
Laboratory. The robots are fully autonomous, with a 384MHz
MIPS processor, visual perception, and sophisticated,Hegd

4.1 Obstacle Modeling

! ) ) . All decisions as to whether the area in front of the robotes fare
and tail motions. Information returned from the sensoruithes . . . .
made by analyzing the segmented images with an algorithedcal

temperature, infrared distance, 3-axis acceleration, tangh the visual sonar (Lenser e Veloso, 2003). As its name suggest
(buttons on the head, the back, chin, and legs). The robot has : : U89

twenty degrees of freedom including the mouth (1 DOF), héad (vr:sua_l sonar detects obstacles in the environment andlgtésu
) e distances from the robot to those obstacles based oeitiet h

DOF), legs (3 DOF x 4 legs), ears (1 DOF x 2 ears), and tail dand anale of the robot's camera

DOF). The program storage medium is a 32M memory stick. 9 '

The locations of the open areas and the obstacles are atistor
3.1 Vision an ego-centric local model. The data stored in this local ehod

depends a great deal on the accuracy of the vision informatio
The AIBO's primary exteroceptive sensor is a color CCD camer The AIBO's vision system semantically labels each colorieélp
mounted in its nose. The pixels in the images are classifieds belonging to a class of freespace of obstacles. Each fshme
into semantically meaningful groups using CMVision 2 (Beuc video is scanned at small degree increments and any frez=spac
e Veloso, 2003), a fast color segmentation algorithm. Saoh@ ¢ or obstacle colors found along those scanlines (which radiat
classes that the robot is aware of includes the floor, thessdadl,  from the robot’s center) are added to the local model as point

other robots, and walls on the field. Any color pixel that is imo

the list is classified as unknown. Figure 2 shows sample ismagePS this is a model of the robot's local perceptual space, thet
segmented by the robot. is always considered to be at the center of the model. Thegoin

shift around the robot based on its own odometric mode)the.
points translate past the robot when it is walking forward arbit
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Obstacles and freespace are Occupancy grid generated

represented as samples from the samples from samples
black = freespace black = freespace
white = obstacles white = obstacles

Figure 3: The ego-centric local obstacle model where thetrizhin the center of the grid. Scanlines from the visual pptaal system
are parsed for colors that are freespace and obstaclesdaugto the color segmentation algorithm). The scanliressampled and
a collection of points is added to the local model's datapaseshown in the figure on the left. These points have a firfgetitne
(approximately 2 seconds) before being forgotten. Thegstpoan be turned into a more traditional grid-based oceoparid by
summing the contribution of each of the freespace and diegtaints in that grid.

the robot when the robot turnsin place. Because of the usingrt  information. Our navigation algorithm only considers @lo$¢s
in the robot’s position, the points are forgotten after as@monds that are at mo1.6 m away from it.

to avoid using data badly corrupted by odometric error. Fédi ) ) ) N
illustrates how obstacles and freespace appear to the.robot At @ high-level, the algorithm switches between a goal-gaiion
mode and an contour-following mode. In the goal-navigation

The stored points can be used to generate an occupanoyode, the robot has not encountered an obstacle directipin f
grid (Elfes, 1989) (a probabilistic representation of fegmce). of it and moves toward the global coordinate that is the gbal.
However updating the cells of a complete occupancy gricdbbstacle-following mode, the robot follows the contoursaof
around the robot is typically too computationally expeasie  obstacle that it has encountered in an attempt to move aitund
be practical. Instead of generating a complete occuparidy gr

with fixed grid positions, the local obstacle model can berigade AIBO
with a generalized rectangle of any size and orientationrsto

the robot. This focuses the computation exclusively on teas 400mm 0 deg
of interest. We make use of this feature in the robot’s ollstac

avoidance behavior.

600mm

4.2 Robot Localization —22.5 deg

In order for the robot to determine the locations of goal fioss,

a global localization scheme using a patrticle filter (Thrtialg —45 deg
2000) is employed. The particle filter is not used to track the

positions of obstacles because the visual sonar does nom rat

accurate enough estimate of the shape of the obstacle. ittoald Figure 4: Generalized cells searched for obstacles whehlB@

the drift associated with the odometry and localizationastainty g contoyr following. The size of each cell is 600mm x 400mm.
makes it difficult to correlate the local readings on a glciuzlle.

, . . . When the robot is in the contour-following state, it knows on
The robot_s goz_il points are stored in a global coordmat_m&a hich side the obstacle is located and therefore concestrat
A seF of six unique markers are placed aroun_d the perimeter cf\%/s head camera to that side only. In order for the robot to
the field and are used as landmarks for localization. Thetrob

must ionallv 0ok around to determine th itiorib e (}ollow the contours of the obstacle, it evaluates threeedé#ifit
ust occasionally ook around fo dete € the positio € walking angles every 300ms. The different angles are etedua
landmarks so that it can localize itself.

by querying the local model with a rectangle that emerges fro
the center of the robot in the direction of the angle being
5 OBSTACLE AVOIDANCE ALGORITHM evaluated. Each rectangle is 400mm wide (across) and 600mm
long (forward). The angles being evaluated arg20.5,45°],
Because of the AIBO’s proximity to the ground, the error &f th where 0 is considered the angle directly in front of the robot, and
visual sonar increases significantly with distance. Amytpast 45 is half-way towards the obstacle being followed. Figure 4
2m cannot reasonably be measured in this fashion. As a resulfjystrates how the space in front of the AIBO is searchedctEa
all of the navigation decisions must be made from very locabf the three angles are first checked for the existence ofolest,
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Figure 5. A high-level description of the algorithm. The obb
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those angles that are found to contain obstacles are eliatina

from consideration for the walking direction. Out of the &y
that are free of obstacles, the one that most closely lead®tiot
towards the obstacle is chosen, making 48 angle with the
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Figure 6: Finite state machine description of the navigeéityorithm. The robot starts out in thgalk to Goal state. States such as
Localize andTurn in Place may transition to multiple different states depending anghuation and so these states are duplicated in

highest priority, O with the least. Figure 5 illustrates the robot in

motion.

Figure 6 shows the algorithm’s finite state machine.
individual states of the algorithm are described below:

e Localize: Halt forward motion ford s, look at the various

The

goal markers, and compute a localization estimate. Pausing
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for this duration allows multiple landmark readings to be
taken which greatly improves the localization accuracy
from a single reading. Additionally, standing still avoids
unnecessary head motions that may introduce further error
into the localization estimate.

Walk to Goal: Check to see if a localization estimate has
been taken in the lasts. If not, switch to thel ocalize state

to obtain a localization estimate, and then transition back
to theWalk to Goal state. Once localized, move directly
towards the goal location. If an obstacle is encountered,
transition to theDbstaclein Front state.

Obstaclein Front: Gather local model information on both
the right and left sides fot.5s each. Choose the direction
that is the most open (choosing randomly if both are equally
open) and transition to theurn in Place state, followed by
the Contour Follow state. If both sides contain obstacles,
transition toTurn in Place and then back t@®bstacle in
Front to get a new perspective on the surroundings.

Turn in Place: Rotate in place in the specified direction for
1.5s (roughly corresponding to a 90 turn).

Contour Follow: If alocalization estimate hasn’t been taken
in the last20 s, transition to thel ocalize state and then go
to theScan Head state. Otherwise, use the local model to
choose a direction vector to travel. If the robot is oriented
roughly within 90 of the goal, query the local model to see
if the way is clear, and then transition tacalize and then

to Check Path to Goal if the path is open. If none of these
are true, transition t@valk with the direction vector that will
have the robot follow the contour.

Scan Head: Stand still and scan the obstacle with the camera
for 2s to fill the local model with current data and then
transition toContour Follow.



e Walk: Walk along the obstacle contour f800 ms and then Experimental| Mean StdDev | Max | Min
transition back taContour Follow. If all visible directions setup (seconds)| (seconds)
are blocked, and have been blocked for longer thars, Line 91.32 31.46 | 124.83| 43.92
transition to theAll Blocked state. Slant 117.57 59.51 91.31 | 53.68
o Spread 76.65 32.31 | 242.01| 44.65
e Check Path to Goal: Look towards the goal direction. If the Concave 65.38 12.09 | 141.76| 46.00
path is open, transition t&/alk to Goal. If the path is not
open, transition back tGontour Follow. Table 1: Means and standard deviations from each of the 10

. different experimental environments.
e All Blocked: Turn the robot’'s head to 80on the opposite P

side of the obstacle to see if the path is open. If so, set the
walk vector and transition t@Valk. Otherwise, continue to

rotate in place. to try to illustrate some of the different ways that the aitjon
operated in those environments.
6 EXPERIMENTAL RESULTS In Figure 8(a), the robot starts off by walking towards thalgmd

|

then stops once it reaches the line obstacle. After deténgiihat

the left and right sides are unblocked, the robot randombypsks

to turn to the left and starts to follow the contour of the alott

until the end of the obstacle is reached. The left directi@s w
chosen without knowing that there was an opening there. The
sensors could not see the open area. Once the robot movesiarou
the obstacle, it localizes itself and determines that tha igdo its

left. Seeing that it no longer needs to follow the contounatks
towards the goal. In Figure 8(b), the robot decided to explor
the right side of the obstacle instead. This decision poias w
chosen randomly because the robot’s sensors could not see th
opening to the left. The robot reaches the end of the obstacle
and starts following the contour of the wall. Eventually tiobot

o

Experiment 1: line
—— ——

L i

Experiment 2: slant

| \

turns towards the goal, which causes it to follow the contafur
l the obstacle again until it is able to move past it and costiomi
; o -] to the goal.
Experiment 3: spread Experiment 4: concave

The slant environment differs from the line environmenthe t
Figure 7: Top-down view of the four experimental environtsen sense that when the robot encounters obstacle, it is meg fik
used in the paper. The robot started from the right side dfigie:  find that the left side contains obstacles and and the rigineés
(as seen from this overhead view) and had to walk to the left. ~ This typically causes the robot to turn right and spend mione t
following the contour of the obstacle and the wall until iaisle to
To evaluate how well this algorithm can navigate aroundaies ~ {urn around and reach the opening, as shown in Figure 8(d. Th
of various types, several experiments were run in differenthcreased likelihood of turning the wrong direction resdlin this
environmental setups. For each of the experiments, thet rob§XPerimentto have the highest mean completion time (it fadgb

started out at one end of the field and worked its way to therothdh€ highest variance since once the robot became trapjveal,ld
end. tend to stay trapped).

The four different environments are shown in Figure 7. Tret fir In the spread environment, the obstacles were arranged more
experimental environment was a straight line of obstadies t uniformly across the field. This created more than one path fo
stretched across the middle of the field. The second envieabm the robot to explore. Though there are more obstacles teat th
was similar to the first environment, but instead of having th FoPot is forced to avoid its decisions on which side to turi®o

line stretch straight across the field, the line slanted tdwa Ot affectitas much as in the previous environments. Thoeegf

the robot’s starting point and created a concave trap willy on the mean completion time of the trials is less than in the ine |
one way around. The third experiment consisted of a series &bstacle environments. However, as can be seen in Figure 8(f
obstacles that were spread uniformly around the field. Thetio the robotwould still decide to take the long way around otleta
experiment had a concave obstacle directly in the centeheof t The angle towards which the robot approached the centeadbst
field with open paths to the left and right of it. still determined which direction it took, regardless of onivay
around was shorter.
Ten different trials were run for each experimental setufpne T ) . ] )
robot’s position in the field was recorded from an overhead'h€ mean completion time for trial runs in the concave
camera. This was also used to record the time it took to reac@nvironment, along with the standard deviation time, iddfest
the goal from the starting location. The means and standar@f @l the environments tested. The reason for this is that no
deviations across each of the experiments is shown in Table 1 Matter atwhatangle the robot detects the concave obstmtieio
matter what side it chooses to explore, there is a minimalsro
In order to provide a better description of how the algorithmof contour following that it must do before finding an opentpat
operates, two individual trials from each of the four expmmtal directly towards the goal. The robot can also see far enoogh t
environments are shown in Figure 8. These figures were chosertice that the obstacle is concave and that there is nomdaso
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(e) Spread environment (f) Spread environment (g) Concavieament (h) Concave environment

Figure 8: Example robot paths in each of the different expenits. The robot started on the right side of the field (as f®en
overhead) and moved to the left, following the black linegesimposed on the images. The robots were automaticattiachby the
overhead camera which captured their paths across the Tiel AIBOs did all of their own local vision processing and diat have
access to the overhead video information.

it to go off and explore the inner contours of the obstacle. ICRA'03, the 2003 IEEE International Conference on
Robotics and Automatioifaiwan.
7 CONCLUSION Elfes, A. (1989). Occupancy Grids: A Probabilistic
] ) ] Framework for Robot Perception and NavigatjioRhD
We have presented an algorithm that allows a mobile robdt wit thesis, Department of Electrical and Computer Engineering

a monocular camera system and noisy odometric estimates to Carnegie Mellon University

navigate to a goal while avoiding obstacles.
Laubach, S. L. e Burdick, J. W. (1999). An autonomous sensor-

The robot navigates towards the goal in open space and Igtirect based path-planner for planetary microrovétsceedings
towards the obstacle switching into contour-following recd of the IEEE International Conference on Robotics and
carefully get around it. The robot uses a local vision model t Automationpp. 347 — 354.

detect the obstacles close to it. The efficiency of the cantou

following can be adapted to different timing requirements o Lenser, S., Bruce, J. e Veloso, M. (2001). CMPack: A
the task by increasing the lookahead for obstacles. If ¢pein complete software system for autonomous legged soccer

pathological environment, the algorithm can be easilyredeel to robots, Proceedings of the Fifth International Conference
include detection of possible state loops. on Autonomous Agentd8est Paper Award in the Software

Prototypes Track, Honorary Mention.
We have shown results from our fully implemented and welbuse
algorithm in a variety of different environments with cleadging
patterns of obstacles, which the robot successfully arettiely
handles.

Lenser, S. e Veloso, M. (2003). Visual sonar: Fast obstacle
avoidance using monocular visiorRroceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systemd as Vegas, Nevada, pp. 886—891.
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