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 Abstract - This paper describes an approach that performs 
visual object detection in real-time by combining the strength of 
processing the color segmented image along with that of the 
grayscale image of the same scene.  This approach was developed 
with the annual RoboCup[1] Competition in mind, specifically 
the 4-Legged League where teams of Sony AIBO robots compete 
in the game of soccer [2].  The images used for processing were 
taken from the camera located in the head of the robots, and the 
objects of interest to be detected were the actual AIBO robots.  
We use color segmented images for producing initial hypotheses 
for the location of robots in the image, and grayscale images for 
final classification purposes. Using both representations to 
process a scene allows each to make up for the deficiencies of the 
other, and provides a good balance between fast processing time 
and high detection accuracy.  We present our algorithms and 
show illustrative examples of their performance. 
 
 Index Terms – Real-Time, Object Detection, Vision. 
 

I.  INTRODUCTION 

 In RoboCup, the detection of teammate and opponent 
robots is an interesting research problem, as the information 
gathered is useful in a variety of different areas, such as 
obstacle avoidance, teammate coordination, active strategy, 
and world modeling.  For example, a robot may decide to play 
a more defensive role if it detects that an opponent robot has 
control of the ball.  Furthermore, the detection of other robots 
introduces new characteristics to the world state, such as the 
concept of occlusion.   
 In AIBO robot soccer, the robots have a very limited field 
of view with the camera on their highly movable head.  The 
soccer playing robots are not able to constantly see the ball for 
a variety of reasons, including (i) they need to track multiple 
objects in the field, namely the lines, the markers, and the 
goals; (ii) the other robots are tall enough to hide the small 
ball; and (iii) the position of the camera on one robot’s head 
also disables seeing the ball when the ball is too close to the 
robot’s own body – such a ball position is needed in order for 
the robot to actuate (e.g., kick) over the ball.  Therefore our 
world state modeling algorithm [3] needs to robustly reason 
about the multiple times that the robot does not see the ball 
and predict, as accurately as possible, where the ball should 
be.  If the robot does not see the ball in the image, the world 
modeling algorithm could assume that the ball is just not there.  
However that may not be the case, as we explained above.  
Our detection of other robots, as presented in this paper, 

allows the world modeling algorithm to correctly predict that 
the ball is being occluded by a robot, if indeed a robot is 
detected in a conflicting position with the expected ball 
position.  This feature has the potential to greatly improve the 
navigation of the robot and its search for the ball. 

II.  ROBOT OBJECT DEFINITION AND APPROACH OVERVIEW 

 The AIBO robots are white, in the shape of a small dog 
with four legs and a moving head.  In a robot soccer game, the 
robots wear special "uniforms," which are colored patches of 
different (strange) shapes that cover parts but not all of their 
white body.  The patches are either red or blue to denote the 
team but all the robots in a team are indistinguishable.   
 One way to address the problem of robot detection is to 
search for red or blue blobs in the image, and if the blobs 
conform to some constraints, a robot is detected.  In theory, 
this seems to be a reasonable solution, however the color of 
the blue uniforms is so dark that in the color segmented 
images they appear to be black.  Since the background color is 
usually black, and there are a lot of shadows and segmentation 
noise that is also black, finding blue robots in the image with 
this technique is not as easy as it seems.  If one were to try and 
correct the segmentation to emphasize the recognition of the 
color blue of the uniforms, then a lot of black pixels would 
become blue, and the problem would still remain.  Also, there 
is more than one uniform patch on any given robot, and so 
determining whether or not blobs are part of the same robot or 
multiple robots correctly is non-trivial.  Furthermore, the 
uniforms are only one aspect of the robots, and intuitively it 
seems that by using only the uniform color information, much 
information is ignored that would otherwise help to greatly 
improve the detection of robots.  For these reasons we have 
decided not to use uniform colored blobs for robot detection, 
but focus rather on finding objects located on the playing field 
and afterwards determine whether or not the objects found are 
robots by comparing them to pre-determined models of what 
robots look like from various views. 
 Our approach involves processing both the color 
segmented image and grayscale image taken by the robot of a 
given scene on the playing field.  The segmented image is 
used for rapidly finding objects that are lying on the field, 
which become the initial hypotheses of robot locations.  The 
grayscale image is then used to analyse the area of the 
hypotheses more closely to classify whether or not the objects 
detected are robots.  The details on how this classification is 



determined are explained in the next section.  The segmented 
image can be thought of as providing the areas of interest to 
the grayscale image classifier, which greatly simplifies its task 
of robot detection by minimizing the search space.  The 
segmented image, by virtue of its color information, has the 
advantage over the grayscale image of being able to find 
objects located on the playing field very rapidly, whereas the 
grayscale image, by virtue of its level of detail, can provide a 
much more accurate classifier than the segmented image.  
Thus, both image representations are used for their strengths 
and to make up for the deficiencies of the other.  The result is 
an object detector that yields higher performance, when taking 
into account speed and accuracy, than when only one or the 
other image representation is used. 

III.  ROBOT DETECTION ALGORITHM 

A. Segmented Image Hypothesis 
 The first stage of the approach is to find the initial 
hypotheses of robots located in the image.  These location 
hypotheses are computed very rapidly by using the color 
segmented image available to us for the current vision frame.  
The color segmented image is created by applying the 
CMVision[4,5] color segmentation algorithm to the YUV 
image provided by the hardware of the Sony AIBO for each 
frame.  The initial hypotheses that are computed essentially 
give the locations of any type of object or obstacle on the 
playing field.  All the images that need to be processed come 
from the head of an AIBO that is standing on the field, 
therefore certain assumptions about the image are made to aid 
and speed up the detection of objects that are considered to be 
on the field.  There are three main assumptions: 
 1) Field horizon: There exists a horizontal line that best 
separates the playing field from everything above it, called the 
field horizon.  Every pixel below this horizon line belongs to 
either part of the field or something on the field. 
 2) Objects not green: Objects on the field, such as robots, 
people’s legs and other things, are not green in color since the 
field is green and a distinction must be made between objects 
on the field and the field itself.  Therefore, every pixel below 
the field horizon that is not green is part of an object that is 
located on the field. 
 3) Objects intersect field horizon: Objects standing on the 
field will always intersect the field horizon.  This assumption 
is made because the robots to be detected will most likely 
always be standing, and from the point of view of another 
standing robot the playing field cannot be seen over the robot 
being viewed. 

By using these assumptions the initial hypotheses of 
robots on the field can be found much more rapidly than if 
these assumptions were excluded. 

Our color segmented image object detection algorithm 
generates hypotheses on the position of robots in two main 
steps, namely the detection of the field horizon, and the 
detection of non-field, i.e., non-green, present objects.  Fig. 1 
shows pseudo-code for this object detection algorithm. 

 
 

Algorithm I: GETHYPOTHESISWINDOWS(image) 
 
min ← ∞ 
RESCALEIMAGE(image) 
for each column col in image 
    row ← FINDSTARTOFGREEN(image, col) 
    if  row < min 
        min ← row 
fieldHorizon ← min 
for each column col in image 
    objscol ← FINDOBJECTEND(image, fieldHorizon, col) 
return FORMROBOTWINDOWS(fieldHorizon, objs)  
 

 
Fig. 1  Algorithm for creating initial hypothesis windows for robot locations 

within image frame. 
 
 The field horizon is the first feature that needs to be 
detected, as subsequent processing, namely the detection of 
object regions, relies on it.  The detection algorithm as of now 
handles only the case when the camera is minimally rotated, 
therefore the field horizon is assumed to be a horizontal line.  
The field horizon is calculated by first rescaling the initial 
208x160 image to a resolution a factor of four smaller along 
each dimension, which is 52x40, by using a nearest-neighbor 
approach.  At this resolution, we can scan along the image 
columns sequentially in order to find the highest point in the 
image where the number of consecutive green pixels detected 
exceeds some threshold, in our case four pixels.  The four 
green pixels are assumed to be part of the green colored field, 
and the highest point in the image where this sequence occurs 
defines the field horizon line. 
 Objects located on the field are assumed to be below the 
field horizon and have some color other than green that 
differentiates them from the field.  The method for finding 
these objects is to scan along each column of the smaller 
resolution image, starting from below the field horizon, to 
search for non-green pixels.  If enough green is detected in 
sequence along a column the field is considered reached, 
which signals the end of the object being scanned.  There is no 
need to continue searching down the column for object 
colored pixels after this as objects are assumed to intersect the 
field horizon.  “Enough green” is dependent upon how much 
green is encountered and at what height in the image, in order 
to accommodate cases where parts of the field are seen 
through a robot’s legs.  For example, one green pixel 
immediately below the field horizon is enough to stop a 
column scan, however further away from the field horizon 
sequences of two or three green pixels may not be enough to 
stop a column scan. This procedure essentially finds the length 
along each column of an obstacle that intersects the field 
horizon line.  Neighboring columns with lengths a reasonable 
amount apart are grouped together.  The lengths of all the 
columns within a group are averaged to find the length for that 
group.  Using this length, along with the starting and ending 
column positions, a bounding box is created for each group; 
these bounding boxes represent the initial hypothesis windows 



for robots located on the field.  Fig. 2 shows illustrative results 
of our color segmented image object detection algorithm. 
 

 
(a) (b) 

 

(c) (d) 
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Fig. 2  Illustrative procedures and example results of the color segmented 

image object detection method. (a) Initial color segmented image.  (b) 
Reduced image with detected field horizon. (c) Initial column scan results for 
object colors. (d) Final detected objects after grouping columns. (e) Detection 

result for a person’s legs. (f) Detection result for an AIBO on the field. 
 
B. Object Classification using Grayscale Image 
 The initial hypotheses calculated using the color 
segmented images essentially represent the location of all 
objects on the field.  Therefore, we use a classifier to 
determine whether or not the detected objects are actually 
robots.  The classification makes use of the grayscale image of 
the current vision frame, which is easily inferred from the 
YUV image returned by the robot hardware.  One key 
component of the classification method is the “integral” image 
which was originally introduced by Viola and Jones in order 
to perform real-time face detection [6].  The integral image 
can be computed in one pass over the grayscale image, and 
allows the sum of pixel intensities for any rectangular region 
in the image to be computed in constant time.  This, in turn, 
allows the mean pixel intensity of any rectangular region in 
the image to be calculated in constant time.  Our algorithm 
makes use of this feature of the integral image to speed up 
detection time. 
 The idea behind our classification method is to store some 
image that represents a model of what robots look like, and 
later compare the image windows of the robot hypotheses to 
this model for classification purposes.  The model is compared 

to the hypothesis windows through features.  Fig. 3 shows the 
pseudo-code of our grayscale image based classification 
algorithm. 
 

Algorithm II: ROBOTINSIDEWINDOW(window) 
 
for each model view image modeli 
    robotFound ← true 
    for each mask maskj 
        fm ← CALCMASKFEATURE(modeli, maskj) 
        fw ← CALCMASKFEATURE(window, maskj) 
        d ← EUCLIDEANDISTANCE(fm, fw) 
        if  d > THRESHOLD 
                robotFound ← false 
            break 
    if  robotFound 
        return true 
return false  
 

 
Fig. 3  Algorithm for classifying whether or not robots are contained within 

the given grayscale image window. 
 
 A feature is a collection of mean pixel intensities of 
rectangular regions in the image defined by a mask.  The mean 
pixel intensities of the features are rapidly computed by using 
the integral image representation described above.  The model 
is represented by a collection of six different features, each 
with its own mask (Fig. 4b).  Each robot hypothesis window is 
compared to the model by having its own six features 
computed and subsequently calculating the Euclidean distance 
between each of its features with the model features and 
applying a threshold to the result.  The comparison is 
performed in a cascade, that is, if one of the model features is 
not sufficiently close to the corresponding feature of the 
hypothesis window, the window is classified as a non-robot 
and no further processing is done on that hypothesis window.  
Therefore, in order for a hypothesis window to be classified as 
a robot, all the model features must be sufficiently close to the 
corresponding features of the window, defined by a hand-
tuned threshold.  Now, instead of having only one model of 
the robot, we have a total of five models (Fig. 4c).  When 
analysing a hypothesis window all models are considered 
separately, however if one model classifies the window as a 
robot then no further processing is done on that hypothesis 
window.  Each of the model images used represent one 
possible view of the robot.  The five views that we chose for 
the robot model images are: side, angled right, angled left, 
front, and back.  Having multiple models of the robot from 
different viewpoints increases the overall robustness of the 
detector by improving its accuracy and decreasing the number 
of false negatives it produces.  For each of the five different 
views, around thirty images were taken (Fig. 4a) and their 
mean image was used as the model image for robots at that 
view. 
 



 
(a)                                                        (b) 
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Fig. 4  (a) An example side view image used when creating the mean image 
for the side view model. (b) The six feature masks defining the rectangular 

regions whose mean pixel intensities were used to create features that enabled 
comparison between the model images and hypothesis windows. (c) The five 
robot models used in the approach, each representing a possible view of the 

robot, which are: side, angled right, angled left, front, and back. 
 

C. Combining Both Methods 
 Integrating both detection methods described to form one 
final robot detection method is the last stage in our approach.  
The first step in combining both methods is to just run the first 
method as-is.  The color segmented image processing provides 
us with initial hypotheses of where robots are located in the 
image.  Given these hypothesis windows, which are generally 
very tightly fit to the objects, we expand them by a few pixels 
to allow the grayscale image classifier more room to search 
for robots, thus improving the detection rate.  Each enlarged 
hypothesis window is then considered to be an image in itself, 
and many sub-windows within the hypothesis window are 
classified.   
 Classification is greedy in the sense that if one sub-
window is classified as a robot, then the whole hypothesis 
window is classified as a robot and no further processing is 
done on that hypothesis window.  A hypothesis window is 
classified as a non-robot if every sub-window considered is 
classified as a non-robot.  The first sub-window classified for 
a given hypothesis window is exactly the hypothesis window, 
since it is assumed to be the most descriptive sub-window, and 
hence the most reliable to classify the window as containing a 
robot immediately, which would minimize the amount of 
processing done on the hypothesis window.  If the first sub-
window fails to find a robot, more sub-windows are checked 
for robots.   
 The remaining sub-windows that are considered for 
classification are windows of different scales, starting with the 
base scale defined by the programmer, and increased by a 
scaling factor until the maximum scale window is reached that 

fits within the hypothesis window in question.  At each scale, 
the sub-window being considered is moved across the entire 
hypothesis window, starting from the top-left corner on down.  
The sub-window is slid across the hypothesis window a 
distance of DX*[current scale] pixels per movement along the 
x direction, and a distance of DY*[current scale] pixels per 
movement along the y direction.  This way, larger scale sub-
windows move along the hypothesis window at bigger steps 
then smaller sub-windows.  Fig. 5 presents pseudo-code for 
the algorithm that combines both detection methods.     
 

Algorithm III: FINDROBOTS(colorimage, grayimage) 
 
HypW ← GETHYPOTHESISWINDOWS(colorimage) 
for each window HypWi 
    W ← GETGRAYSCALEWINDOW(grayimage, HypWi) 
    if  ROBOTINSIDEWINDOW(W) 
        Ri ← true 
        continue 
    Ri ← false 
    for scale s within W and not Ri ;  s ← s * SCALEFACTOR 
        for y within W and not Ri ;  y ← y + DY * s 
            for x within W and not Ri ;  x ← x + DX * s 
               subwindow ← GETSUBWINDOW(W ,x,y,s) 
               if  ROBOTINSIDEWINDOW(subwindow) 
                   Ri ← true 
return R 
 

 
Fig. 5  Algorithm for finding robots within image frame, which combines the 

color segmented image object detection method with the grayscale image 
robot classifier. 

 
 In summary, for every initial hypothesis window returned 
by the first method, a search is performed to detect robots 
within the window by first classifying the whole window, then 
classifying sub-windows moved across the window which 
increase in scale until reaching the maximum scale allowable 
within the hypothesis window.  Sub-windows are classified 
until one has been classified as a robot, or until all possible 
sub-windows have been classified.  The number of possible 
sub-windows depends on the size of the initial hypothesis 
window, the scaling factor, and the movement parameters DX 
and DY.  Most of the time, sub-windows that do not contain 
robots are classified as such very rapidly due to the cascade of 
comparisons described in section B, therefore classifying all 
possible sub-windows is not as time consuming as it may 
seem. 

IV.  RESULTS 

 To test the final combined robot detector a set of 327 test 
images were classified.  Using a scaling factor of 1.25, and 
step size parameters DX and DY of 1, the final detector was 
able to achieve a 97% classification accuracy on the test set, 
yielding only one false positive, with the remaining false 
classifications being false negatives.  The false negatives were 
from the harder to classify views of the front and the back.  It 
is possible to reduce the number of the false negatives by fine-



tuning the thresholds for model/hypothesis comparison, 
however at the expense of increasing the number of false 
positives.  False positive robot classifications are considered 
worse than false negatives, therefore a balance was achieved 
between the two by fine-tuning the thresholds by hand.  Fig. 6 
provides examples of these two failure cases. 
 
 

 
(a) 

 
(b) 

 
Fig. 6  Failure cases with combined detector. (a) False positive on the left.  (b) 

False negative on robot, with initial hypothesis shown. 
 
 The speed of the detector for any given frame depends on 
the number of initial robot hypotheses and the number of sub-
windows analyzed per hypothesis.  The detector was tested on 
a 3 GHz Pentium 4 processor and was able to achieve speeds 
higher than 60 fps for many images in the test set, however it 
sometimes fell below 10 fps, with the lowest recorded speed 
of 5 fps.  On average, the detector evaluated the test set at 30 
fps, which achieves our goal of real-time visual image 
processing.  Fig. 7 shows some example results of our robot 
detection algorithm. 
 One limitation of the algorithm, as it is comparison based, 
is that robots that are occluded or lie on the edge of the image 
are not classified as robots because their full image is not in 
view.  While this is unfortunate, it is trade-off between having 
to account for occlusions and most likely causing more false 
positives and slower processing time. 
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Fig. 7  Results of the combined robot detector which combines the color 
segmented image object detection method with the grayscale image robot 

classifier 
 

 Our detection algorithm performs very well even when 
presented with robots in the image that do not fall exactly into 
one of the five view categories that we’ve described.  For 
example, in Fig. 7f the robot in the image seems to be oriented 
in a manner between a frontal view and an angled view to the 
right, yet our detector is able to handle this case.  Fig. 7i 
shows a similar situation, except that the robot in the image is 
oriented away from the viewpoint.   Our detector is also able 
to detect robots even when they are not completely standing 
upright or are in an unusual configuration.  Fig. 7e shows 
exactly one of these interesting situations, one in which the 
robot is in the middle of head kicking the ball and has lowered 
its body closer to the ground so as to hit the ball more 
effectively.  This demonstrates the capability of our detector to 
use a limited set of robot model images and generalize over a 
larger domain of robot configuration images. 

V.  CONCLUSIONS 

 We have presented an algorithm that performs visual 
object detection by using both the color segmented image and 
grayscale image of the same scene to achieve real-time 
processing rates.  The approach was used to detect robots in 
images, in the context of RoboCup, however the approach can 
be easily be extended to detect a variety of different objects, 
given models that can effectively discriminate between the 
desired object and other objects in the image.   
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