
Real-Time Object Detection using Segmented and
Grayscale Images

Juan Fasola and Manuela Veloso
Carnegie Mellon University

Computer Science Department
5000 Forbes Avenue, Pittsburgh, PA, USA, 15213

Email: jfasola@andrew.cmu.edu, veloso@cs.cmu.edu

 Abstract - This paper describes an approach that performs
visual object detection in real-time by combining the strength of
processing the color segmented image along with that of the
grayscale image of the same scene. This approach was developed
with the annual RoboCup[1] Competition in mind, specifically
the 4-Legged League where teams of Sony AIBO robots compete
in the game of soccer [2]. The images used for processing were
taken from the camera located in the head of the robots, and the
objects of interest to be detected were the actual AIBO robots.
We use color segmented images for producing initial hypotheses
for the location of robots in the image, and grayscale images for
final classification purposes. Using both representations to
process a scene allows each to make up for the deficiencies of the
other, and provides a good balance between fast processing time
and high detection accuracy. We present our algorithms and
show illustrative examples of their performance.

 Index Terms – Real-Time, Object Detection, Vision.

I. INTRODUCTION

 In RoboCup, the detection of teammate and opponent
robots is an interesting research problem, as the information
gathered is useful in a variety of different areas, such as
obstacle avoidance, teammate coordination, active strategy,
and world modeling. For example, a robot may decide to play
a more defensive role if it detects that an opponent robot has
control of the ball. Furthermore, the detection of other robots
introduces new characteristics to the world state, such as the
concept of occlusion.
 In AIBO robot soccer, the robots have a very limited field
of view with the camera on their highly movable head. The
soccer playing robots are not able to constantly see the ball for
a variety of reasons, including (i) they need to track multiple
objects in the field, namely the lines, the markers, and the
goals; (ii) the other robots are tall enough to hide the small
ball; and (iii) the position of the camera on one robot’s head
also disables seeing the ball when the ball is too close to the
robot’s own body – such a ball position is needed in order for
the robot to actuate (e.g., kick) over the ball. Therefore our
world state modeling algorithm [3] needs to robustly reason
about the multiple times that the robot does not see the ball
and predict, as accurately as possible, where the ball should
be. If the robot does not see the ball in the image, the world
modeling algorithm could assume that the ball is just not there.
However that may not be the case, as we explained above.
Our detection of other robots, as presented in this paper,

allows the world modeling algorithm to correctly predict that
the ball is being occluded by a robot, if indeed a robot is
detected in a conflicting position with the expected ball
position. This feature has the potential to greatly improve the
navigation of the robot and its search for the ball.

II. ROBOT OBJECT DEFINITION AND APPROACH OVERVIEW

 The AIBO robots are white, in the shape of a small dog
with four legs and a moving head. In a robot soccer game, the
robots wear special "uniforms," which are colored patches of
different (strange) shapes that cover parts but not all of their
white body. The patches are either red or blue to denote the
team but all the robots in a team are indistinguishable.
 One way to address the problem of robot detection is to
search for red or blue blobs in the image, and if the blobs
conform to some constraints, a robot is detected. In theory,
this seems to be a reasonable solution, however the color of
the blue uniforms is so dark that in the color segmented
images they appear to be black. Since the background color is
usually black, and there are a lot of shadows and segmentation
noise that is also black, finding blue robots in the image with
this technique is not as easy as it seems. If one were to try and
correct the segmentation to emphasize the recognition of the
color blue of the uniforms, then a lot of black pixels would
become blue, and the problem would still remain. Also, there
is more than one uniform patch on any given robot, and so
determining whether or not blobs are part of the same robot or
multiple robots correctly is non-trivial. Furthermore, the
uniforms are only one aspect of the robots, and intuitively it
seems that by using only the uniform color information, much
information is ignored that would otherwise help to greatly
improve the detection of robots. For these reasons we have
decided not to use uniform colored blobs for robot detection,
but focus rather on finding objects located on the playing field
and afterwards determine whether or not the objects found are
robots by comparing them to pre-determined models of what
robots look like from various views.
 Our approach involves processing both the color
segmented image and grayscale image taken by the robot of a
given scene on the playing field. The segmented image is
used for rapidly finding objects that are lying on the field,
which become the initial hypotheses of robot locations. The
grayscale image is then used to analyse the area of the
hypotheses more closely to classify whether or not the objects
detected are robots. The details on how this classification is

determined are explained in the next section. The segmented
image can be thought of as providing the areas of interest to
the grayscale image classifier, which greatly simplifies its task
of robot detection by minimizing the search space. The
segmented image, by virtue of its color information, has the
advantage over the grayscale image of being able to find
objects located on the playing field very rapidly, whereas the
grayscale image, by virtue of its level of detail, can provide a
much more accurate classifier than the segmented image.
Thus, both image representations are used for their strengths
and to make up for the deficiencies of the other. The result is
an object detector that yields higher performance, when taking
into account speed and accuracy, than when only one or the
other image representation is used.

III. ROBOT DETECTION ALGORITHM

A. Segmented Image Hypothesis
 The first stage of the approach is to find the initial
hypotheses of robots located in the image. These location
hypotheses are computed very rapidly by using the color
segmented image available to us for the current vision frame.
The color segmented image is created by applying the
CMVision[4,5] color segmentation algorithm to the YUV
image provided by the hardware of the Sony AIBO for each
frame. The initial hypotheses that are computed essentially
give the locations of any type of object or obstacle on the
playing field. All the images that need to be processed come
from the head of an AIBO that is standing on the field,
therefore certain assumptions about the image are made to aid
and speed up the detection of objects that are considered to be
on the field. There are three main assumptions:
 1) Field horizon: There exists a horizontal line that best
separates the playing field from everything above it, called the
field horizon. Every pixel below this horizon line belongs to
either part of the field or something on the field.
 2) Objects not green: Objects on the field, such as robots,
people’s legs and other things, are not green in color since the
field is green and a distinction must be made between objects
on the field and the field itself. Therefore, every pixel below
the field horizon that is not green is part of an object that is
located on the field.
 3) Objects intersect field horizon: Objects standing on the
field will always intersect the field horizon. This assumption
is made because the robots to be detected will most likely
always be standing, and from the point of view of another
standing robot the playing field cannot be seen over the robot
being viewed.

By using these assumptions the initial hypotheses of
robots on the field can be found much more rapidly than if
these assumptions were excluded.

Our color segmented image object detection algorithm
generates hypotheses on the position of robots in two main
steps, namely the detection of the field horizon, and the
detection of non-field, i.e., non-green, present objects. Fig. 1
shows pseudo-code for this object detection algorithm.

Algorithm I: GETHYPOTHESISWINDOWS(image)

min ← ∞
RESCALEIMAGE(image)
for each column col in image
 row ← FINDSTARTOFGREEN(image, col)
 if row < min
 min ← row
fieldHorizon ← min
for each column col in image
 objscol ← FINDOBJECTEND(image, fieldHorizon, col)
return FORMROBOTWINDOWS(fieldHorizon, objs)

Fig. 1 Algorithm for creating initial hypothesis windows for robot locations

within image frame.

 The field horizon is the first feature that needs to be
detected, as subsequent processing, namely the detection of
object regions, relies on it. The detection algorithm as of now
handles only the case when the camera is minimally rotated,
therefore the field horizon is assumed to be a horizontal line.
The field horizon is calculated by first rescaling the initial
208x160 image to a resolution a factor of four smaller along
each dimension, which is 52x40, by using a nearest-neighbor
approach. At this resolution, we can scan along the image
columns sequentially in order to find the highest point in the
image where the number of consecutive green pixels detected
exceeds some threshold, in our case four pixels. The four
green pixels are assumed to be part of the green colored field,
and the highest point in the image where this sequence occurs
defines the field horizon line.
 Objects located on the field are assumed to be below the
field horizon and have some color other than green that
differentiates them from the field. The method for finding
these objects is to scan along each column of the smaller
resolution image, starting from below the field horizon, to
search for non-green pixels. If enough green is detected in
sequence along a column the field is considered reached,
which signals the end of the object being scanned. There is no
need to continue searching down the column for object
colored pixels after this as objects are assumed to intersect the
field horizon. “Enough green” is dependent upon how much
green is encountered and at what height in the image, in order
to accommodate cases where parts of the field are seen
through a robot’s legs. For example, one green pixel
immediately below the field horizon is enough to stop a
column scan, however further away from the field horizon
sequences of two or three green pixels may not be enough to
stop a column scan. This procedure essentially finds the length
along each column of an obstacle that intersects the field
horizon line. Neighboring columns with lengths a reasonable
amount apart are grouped together. The lengths of all the
columns within a group are averaged to find the length for that
group. Using this length, along with the starting and ending
column positions, a bounding box is created for each group;
these bounding boxes represent the initial hypothesis windows

for robots located on the field. Fig. 2 shows illustrative results
of our color segmented image object detection algorithm.

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Illustrative procedures and example results of the color segmented

image object detection method. (a) Initial color segmented image. (b)
Reduced image with detected field horizon. (c) Initial column scan results for
object colors. (d) Final detected objects after grouping columns. (e) Detection

result for a person’s legs. (f) Detection result for an AIBO on the field.

B. Object Classification using Grayscale Image
 The initial hypotheses calculated using the color
segmented images essentially represent the location of all
objects on the field. Therefore, we use a classifier to
determine whether or not the detected objects are actually
robots. The classification makes use of the grayscale image of
the current vision frame, which is easily inferred from the
YUV image returned by the robot hardware. One key
component of the classification method is the “integral” image
which was originally introduced by Viola and Jones in order
to perform real-time face detection [6]. The integral image
can be computed in one pass over the grayscale image, and
allows the sum of pixel intensities for any rectangular region
in the image to be computed in constant time. This, in turn,
allows the mean pixel intensity of any rectangular region in
the image to be calculated in constant time. Our algorithm
makes use of this feature of the integral image to speed up
detection time.
 The idea behind our classification method is to store some
image that represents a model of what robots look like, and
later compare the image windows of the robot hypotheses to
this model for classification purposes. The model is compared

to the hypothesis windows through features. Fig. 3 shows the
pseudo-code of our grayscale image based classification
algorithm.

Algorithm II: ROBOTINSIDEWINDOW(window)

for each model view image modeli
 robotFound ← true
 for each mask maskj
 fm ← CALCMASKFEATURE(modeli, maskj)
 fw ← CALCMASKFEATURE(window, maskj)
 d ← EUCLIDEANDISTANCE(fm, fw)
 if d > THRESHOLD
 robotFound ← false
 break
 if robotFound
 return true
return false

Fig. 3 Algorithm for classifying whether or not robots are contained within

the given grayscale image window.

 A feature is a collection of mean pixel intensities of
rectangular regions in the image defined by a mask. The mean
pixel intensities of the features are rapidly computed by using
the integral image representation described above. The model
is represented by a collection of six different features, each
with its own mask (Fig. 4b). Each robot hypothesis window is
compared to the model by having its own six features
computed and subsequently calculating the Euclidean distance
between each of its features with the model features and
applying a threshold to the result. The comparison is
performed in a cascade, that is, if one of the model features is
not sufficiently close to the corresponding feature of the
hypothesis window, the window is classified as a non-robot
and no further processing is done on that hypothesis window.
Therefore, in order for a hypothesis window to be classified as
a robot, all the model features must be sufficiently close to the
corresponding features of the window, defined by a hand-
tuned threshold. Now, instead of having only one model of
the robot, we have a total of five models (Fig. 4c). When
analysing a hypothesis window all models are considered
separately, however if one model classifies the window as a
robot then no further processing is done on that hypothesis
window. Each of the model images used represent one
possible view of the robot. The five views that we chose for
the robot model images are: side, angled right, angled left,
front, and back. Having multiple models of the robot from
different viewpoints increases the overall robustness of the
detector by improving its accuracy and decreasing the number
of false negatives it produces. For each of the five different
views, around thirty images were taken (Fig. 4a) and their
mean image was used as the model image for robots at that
view.

(a) (b)

(c)

Fig. 4 (a) An example side view image used when creating the mean image
for the side view model. (b) The six feature masks defining the rectangular

regions whose mean pixel intensities were used to create features that enabled
comparison between the model images and hypothesis windows. (c) The five
robot models used in the approach, each representing a possible view of the

robot, which are: side, angled right, angled left, front, and back.

C. Combining Both Methods
 Integrating both detection methods described to form one
final robot detection method is the last stage in our approach.
The first step in combining both methods is to just run the first
method as-is. The color segmented image processing provides
us with initial hypotheses of where robots are located in the
image. Given these hypothesis windows, which are generally
very tightly fit to the objects, we expand them by a few pixels
to allow the grayscale image classifier more room to search
for robots, thus improving the detection rate. Each enlarged
hypothesis window is then considered to be an image in itself,
and many sub-windows within the hypothesis window are
classified.
 Classification is greedy in the sense that if one sub-
window is classified as a robot, then the whole hypothesis
window is classified as a robot and no further processing is
done on that hypothesis window. A hypothesis window is
classified as a non-robot if every sub-window considered is
classified as a non-robot. The first sub-window classified for
a given hypothesis window is exactly the hypothesis window,
since it is assumed to be the most descriptive sub-window, and
hence the most reliable to classify the window as containing a
robot immediately, which would minimize the amount of
processing done on the hypothesis window. If the first sub-
window fails to find a robot, more sub-windows are checked
for robots.
 The remaining sub-windows that are considered for
classification are windows of different scales, starting with the
base scale defined by the programmer, and increased by a
scaling factor until the maximum scale window is reached that

fits within the hypothesis window in question. At each scale,
the sub-window being considered is moved across the entire
hypothesis window, starting from the top-left corner on down.
The sub-window is slid across the hypothesis window a
distance of DX*[current scale] pixels per movement along the
x direction, and a distance of DY*[current scale] pixels per
movement along the y direction. This way, larger scale sub-
windows move along the hypothesis window at bigger steps
then smaller sub-windows. Fig. 5 presents pseudo-code for
the algorithm that combines both detection methods.

Algorithm III: FINDROBOTS(colorimage, grayimage)

HypW ← GETHYPOTHESISWINDOWS(colorimage)
for each window HypWi
 W ← GETGRAYSCALEWINDOW(grayimage, HypWi)
 if ROBOTINSIDEWINDOW(W)
 Ri ← true
 continue
 Ri ← false
 for scale s within W and not Ri ; s ← s * SCALEFACTOR
 for y within W and not Ri ; y ← y + DY * s
 for x within W and not Ri ; x ← x + DX * s
 subwindow ← GETSUBWINDOW(W ,x,y,s)
 if ROBOTINSIDEWINDOW(subwindow)
 Ri ← true
return R

Fig. 5 Algorithm for finding robots within image frame, which combines the

color segmented image object detection method with the grayscale image
robot classifier.

 In summary, for every initial hypothesis window returned
by the first method, a search is performed to detect robots
within the window by first classifying the whole window, then
classifying sub-windows moved across the window which
increase in scale until reaching the maximum scale allowable
within the hypothesis window. Sub-windows are classified
until one has been classified as a robot, or until all possible
sub-windows have been classified. The number of possible
sub-windows depends on the size of the initial hypothesis
window, the scaling factor, and the movement parameters DX
and DY. Most of the time, sub-windows that do not contain
robots are classified as such very rapidly due to the cascade of
comparisons described in section B, therefore classifying all
possible sub-windows is not as time consuming as it may
seem.

IV. RESULTS

 To test the final combined robot detector a set of 327 test
images were classified. Using a scaling factor of 1.25, and
step size parameters DX and DY of 1, the final detector was
able to achieve a 97% classification accuracy on the test set,
yielding only one false positive, with the remaining false
classifications being false negatives. The false negatives were
from the harder to classify views of the front and the back. It
is possible to reduce the number of the false negatives by fine-

tuning the thresholds for model/hypothesis comparison,
however at the expense of increasing the number of false
positives. False positive robot classifications are considered
worse than false negatives, therefore a balance was achieved
between the two by fine-tuning the thresholds by hand. Fig. 6
provides examples of these two failure cases.

(a)

(b)

Fig. 6 Failure cases with combined detector. (a) False positive on the left. (b)

False negative on robot, with initial hypothesis shown.

 The speed of the detector for any given frame depends on
the number of initial robot hypotheses and the number of sub-
windows analyzed per hypothesis. The detector was tested on
a 3 GHz Pentium 4 processor and was able to achieve speeds
higher than 60 fps for many images in the test set, however it
sometimes fell below 10 fps, with the lowest recorded speed
of 5 fps. On average, the detector evaluated the test set at 30
fps, which achieves our goal of real-time visual image
processing. Fig. 7 shows some example results of our robot
detection algorithm.
 One limitation of the algorithm, as it is comparison based,
is that robots that are occluded or lie on the edge of the image
are not classified as robots because their full image is not in
view. While this is unfortunate, it is trade-off between having
to account for occlusions and most likely causing more false
positives and slower processing time.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 7 Results of the combined robot detector which combines the color
segmented image object detection method with the grayscale image robot

classifier

 Our detection algorithm performs very well even when
presented with robots in the image that do not fall exactly into
one of the five view categories that we’ve described. For
example, in Fig. 7f the robot in the image seems to be oriented
in a manner between a frontal view and an angled view to the
right, yet our detector is able to handle this case. Fig. 7i
shows a similar situation, except that the robot in the image is
oriented away from the viewpoint. Our detector is also able
to detect robots even when they are not completely standing
upright or are in an unusual configuration. Fig. 7e shows
exactly one of these interesting situations, one in which the
robot is in the middle of head kicking the ball and has lowered
its body closer to the ground so as to hit the ball more
effectively. This demonstrates the capability of our detector to
use a limited set of robot model images and generalize over a
larger domain of robot configuration images.

V. CONCLUSIONS

 We have presented an algorithm that performs visual
object detection by using both the color segmented image and
grayscale image of the same scene to achieve real-time
processing rates. The approach was used to detect robots in
images, in the context of RoboCup, however the approach can
be easily be extended to detect a variety of different objects,
given models that can effectively discriminate between the
desired object and other objects in the image.

REFERENCES
[1] H. Kitano, Y. Kuyinoshi, I. Noda, M. Asada, H. Matsubara, and E.

Osawa. RoboCup: A challenge problem for AI. AI Magazine, 18(1), pages
73-85, 1997.

[2] M. Fujita, M. Veloso, W. Uther, M. Asada, H. Kitano, V. Hugel, P.
Bonnin, J.-C. Bouramoue, and P. Blazevic. Vision, strategy, and
localization using the Sony legged robots at RoboCup-98. AI Magazine,
1999.

[3] Maayan Roth, Douglas Vail, and Manuela Veloso. A real-time world
model for multi-robot teams with high-latency communication. In In
Proceedings of the 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2494–2499, Las Vegas, NV,
October 2004.

[4] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpensive color image
segmentation for interactive robots,” in Proc. of IROS-2000, Japan,
October 2000.

[5] CMVision web page http://www.cs.cmu.edu/~jbruce/cmvision
[6] P.Viola and M. Jones, “Rapid object detection using a boosted cascade of

simple features,” in Proc. CVPR, Kauai, HI, 2001.

