
  

Abstract—Improved planning, management, and the 

control of future transportation systems requires passenger 

related research, such as the analysis of passenger behaviors in 

a city. However, the passenger data available to researchers 

and city planners are usually insufficient for this research, 

either because the data is incomplete with important features 

missing, or because the data is indirectly related to the task we 

attempt to achieve. This limits the development of passenger 

related research. The goal of our work is to generate synthetic 

passenger data using a novel methodology that leverages joint 

traffic-passenger modeling and simulation at city scale. A 

demonstration of such idea in generating synthetic bus 

passenger data is implemented. Specifically, the method 

involves 1) a bus passenger demand model, learned from 

indirect people mobility data, to generate bus passenger 

demand samples, and 2) a bus passenger behavior model, 

which jointly runs with a traffic simulator (SUMO), to generate 

synthetic bus passenger data. We implement the methodology 

for the case study of Porto city, Portugal. The synthetic bus 

passenger data presents significant similarity in terms of 

spatial-temporal distributions to the real-world bus passenger 

data collected by the bus Automated Fare Collection AFC) 

system in the same city. The proposed method may serve as a 

potential driving force of intelligent transportation system 

success. 

Keywords—transportation, simulation, synthetic data, 

behavioral modeling, Poisson process, kernel density estimation 

I. INTRODUCTION 

To efficiently move city dwellers, given the surge in city 
population and their mobility needs, is challenging. To 
address this challenge, intelligent transportation system is 
proposed to use urban informatics and technology to 
improve transportation efficiency. Public transportation 
systems, especially bus transportation systems, play an 
important role in moving passengers in a fast and convenient 
way. To build an efficient public transportation system, a 
profound understanding of city-wide passenger behavior is 
necessary. It has long been thought that the research into 
estimating passenger behavior and corresponding mobility 
patterns requires access to large-scale and multi-source 
human mobility data.  

The availability of human mobility data is increasing. On 

 

      This work was supported by the FCT under the Carnegie Mellon – 

Portugal ERI S2MovingCities project. The authors would like to thank 

Teresa G. Dias, António A. Nunes, and João F. Cunha for providing the 

AFC data. 

 

one hand, with the advance of sensing technologies and the 
widespread use of automated data collection (ADC) in 
public transportation, it is possible to collect large quantities 
of diverse data about urban spaces and city population, e.g., 
cellphone location data, vehicle GPS data, automated fare 
collection (AFC) data. With heterogeneous and ubiquitous 
datasets, researchers have significantly expanded their 
knowledge about human mobility [1], and plenty of machine 
learning approaches have been successfully applied to the 
transportation field (e.g. bus arrival time prediction [2] and 
vehicle trajectory prediction [3], [4]). 

On the other hand, however, when it comes to passenger 
related research, the data available to researchers are usually 
insufficient for this research, either because the data is 
incomplete with important features missing, or because the 
data is indirectly related to the topic of focus. Details and 
examples about terminologies are presented in Table I. 
Complete data is usually lacking, due to the challenges for 
urban infrastructures to collect and integrate large-scale 
multi-source data in a timely and low-cost fashion, and the 
concern of privacy infringement. This limits passenger 
related research. For example, to understand passenger 
demand is key for effective planning of public transportation 
service. In bus transportation system, the bus passenger data 
available nowadays are generally provided by automated 
passenger counts (APC) and AFC system. Unfortunately, the 
data collected by those systems are often incomplete (no 
alighting feature is recorded), limiting the estimation of the 
overall demand profile. More seriously, the origin-
destination (O-D) survey is infrequent, expensive in terms of 
human effort and financial cost, and prone to response bias. 
As a result, the development of many state-of-the-art 
methods for bus passenger estimation and prediction (e.g. 
[5], [6], [7]) commonly faced an issue while evaluating their 
validity, due of the lack or missing of necessary features. 

To cope with the issue, indirectly related data could be a 
way out. In general, indirectly related data is from a different 
source, with some features correlate positively with those in 
the unknown complete data. Then here comes the 
opportunity – grounded on those correlated features, we 
attempt to develop a method to generate synthetic complete 
data that is most likely to be observed in reality. Inspired by 
this idea and to move forward in the absence of complete 
data, as a main contribution of this paper, we propose a 
methodology to generate synthetic passenger data through 
joint traffic-passenger modeling and simulation based on 
indirectly related people mobility data. To be specific, we 
demonstrate and verified the proposed method in the setting 
of bus transportation systems: 
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 We learn a bus passenger demand model, from 
indirectly related people mobility data (taxi data), to 
generate bus passenger demand samples. This is 
motivated by the insight that people mobility trend 
reflected by the data of different sources can correlate 
positively, to some extent, to the mobility trend of 
real bus passengers.  

 We develop a passenger behavior model to jointly 
run with a mature traffic simulator (SUMO) for city-
wide bus passenger synthetic data generation. 

 We implement the methodology using the case study 
of Porto city, Portugal. The simulation outcomes are 
validated by measuring the distribution difference 
between the synthetic passenger data (also called as 
simulation data) and the real bus Automated Fare 
Collection (AFC) data of the same city. 

 Our work is the first successful attempt to transfer 
indirect people mobility data to complete bus 
passenger data through joint traffic-passenger 
modeling and simulation. 

II. BACKGROUND AND RELATED WORK 

In this section, we discuss the importance of simulation 
from the point of view of transportation systems, and review 
related work on traffic/passenger modeling and simulation. 

A. Simulation and Intelligent Transportation Systems 

Simulation has proven itself as a prerequisite to building 
intelligent transportation systems. In traffic control research, 
instead of directly applying an approach to control the real 
traffic flow, testing it through simulation and transferring the 
knowledge to real urban road networks can save a lot of cost 
and avoid safety problems. For many intelligent 
transportation system applications that involve interactions 
between complex spatial traffic networks, vehicles, and 
humans, to build an effective model requires large-scale 

real-world data which can be difficult, time-consuming, and 
even risky to collect. In many cases, simulations are applied 
as a workaround approach to generate synthetic data for city 
planners and transportation management practitioners to 
learn from [8]. In this sense, simulation is a key driving 
force in the field of intelligent transportation systems. 

B. Traffic, Bus and Passenger Simulators 

Passenger behavior modeling and simulations have been 
involved in a lot of transportation system research. To 
evaluate the performance of vehicle scheduling and platform 
deploying (such as selecting bus stop sites), the behaviors of 
passengers must be simulated and analyzed in detail. 
Though sophisticated enough to take into consideration 
individual preference [9], seat allocation process [10], [11], 
and even pressure from passengers behind [12], most studies 
are highly microscopic, confining their domains in limited 
amounts of buses, and not scaling well to provide insights 
into macroscopic passenger flow in the whole city. 

Compared to passenger modeling, traffic simulation 
(including bus simulation) has gained rapid and significant 
developments. A lot of road traffic simulators (e.g. VISSIM, 
AIMSUN, Matsim, SUMO, etc.) are developed with delicate 
functions and performances. One commonly used open 
source traffic simulator is SUMO (Simulation of Urban 
MObility), which provides a platform to explicitly simulate 
vehicles including cars, buses, and urban trains at city scale. 
However, most traffic simulators are currently unable to 
provide information about passenger-vehicle interactions 
which is of great interest in bus passenger behavior and 
prediction studies. 

To fill the gap between passenger and traffic simulation, 
we propose a methodology to simulate bus passenger 
behavior in conjunction with the mature traffic simulator 
(SUMO) at city scale. To the best of our knowledge, this is 
the first attempt to generate synthetic passenger data through 
city-wide traffic-passenger joint simulation.  

TABLE I 

TERMINOLOGIES 

Term Definition Explanation and example 

Data Domain The features each data point presents (feature space of the 

data) and the distribution of the data on those features 

(distribution on the feature space). 

The cat image data set has 100 pixels for each image and the 

feature space is a 100-dimensional space. The feature space 

and the distribution of the cat images in this feature space 

determine the domain of the cat image data. 

Complete Data The data that is in the domain sufficient for solving a task. The set of cat images can solve the task to train a classifier to 

distinguish cat images from non-cat images. 

Indirect Data The data that is in the domain which is too different from 

the domain of complete data to solve the task. 

The dog image set is indirect data: it has 100 pixels for each 

image, but the distribution in the space is different, and it is 

insufficient to fully train a cat/non-cat classifier. 

Indirectly Related 

Data 

The data which is indirect data, and whose domain 

overlaps with or is similar to the domain of complete data, 

w.r.t. that some of the features are the same and the 

distributions on those features are similar. 

The dog image set is indirectly related to the cat: its 

distribution on the features space is more similar to the cat 

distribution than other images like vehicle, house, etc. Thus 

the dog image data can help partially solve the cat classifier 

task by distinguishing a cat image from a vehicle image. 

Trip Demand A tuple (origin, destination, trip starting time) A trip demand is(O, D, t) 

Travel Plan A set of midway O-D pairs without time information A travel plan is {(O, D1), (O2, D2),…,(On, D)} 

Travel Demand A tuple (origin, destination, trip starting time, travel plan) A travel demand is (O, D, t, {(O, D1), (O2, D2),…,(On, D)}) 

Passenger Trip 

Demand Model 

The description of the distribution from which a passenger 

trip demand is generated 

The distribution model specifies the probability of the 

occurrence of each trip demand in the demand space. 

Experience The sequence of circumstances and events the passenger 

encounters during a trip and their occurrence in time. 

During the trip from stop O to stop D starting at time t, the 

passenger may take several transit to get to stop D. Then, 

experience can be a set of tuples {(O, D1, t), (O2, D2, 

t2),…,(On, D, tn)}. Here, tn is the time of arriving at On. 

 

 

 



  

III. METHODOLOGY 

The problem of focus in this paper is that: how can we 
make use of the knowledge learned from the indirectly 
related people mobility data to generate complete passenger 
data that are most likely to be observed in reality? 

A. Importance of Combining Passenger Modeling and 

Traffic Simulation 

Neither modeling the passenger behavior nor simulating 
the traffic can solve the abovementioned problem 
independently, and this is why the idea of combining the 
passenger modeling and the traffic simulation comes in. 
First of all, modeling the passenger behavior specifies how 
people’s travels are demanded and planned (e.g., the 𝑂𝑖 and 
𝐷𝑖  in TABLE I), but it does not provide what passengers 
actually experience during the travel in the urban traffic 
environment (e.g., the 𝑡𝑖  in TABLE I). This missing 
experience can be supplemented by the traffic simulation. 
Second, most traffic simulation provides representation of 
transportation systems and vehicle behaviors, especially how 
the public transits operate in the urban road networks. 
However, passenger-level travel demands/behaviors and the 
corresponding impact on the public transportation systems 
(e.g., bus dwell time affected by passengers) are unavailable. 
This can be supplemented by passenger modeling. 

To combine the passenger modeling and the traffic 
simulation is an effective way to make the best of both 
approaches and overcome the shortage of either. The method 
starts from generating the O-D demand of the whole trip, 
which is based on the knowledge that can be learned 
efficiently from the people mobility data, and then leverages 
the joint modeling and simulation to fill in the midway travel 
details in terms of what plan and route to choose, when and 
where passengers get on and get off, what experience they 
actually encounter during the trip, and etc. By designing the 
passenger models, configuring the urban traffic simulation, 
and combining both appropriately, it is reasonable to expect 
that the passengers’ synthetic experience can be used as the 
synthetic data that are likely to be observed in real world and 

upon which some passenger related research can be 
conducted. On the other hand, the availability of mature 
traffic simulators and the common sense of passengers’ 
general behaviors in public transits significantly slack the 
difficulty of implementing the proposed method in practice, 
making it a potential generic approach to overcome the lack-
of-complete-data challenge.  

B. Overview of the Method 

We provide a high-level overview of the proposed 
methodology in the setting of bus transportations systems. 
Note that technical details may vary according to different 
cities and available data sources. The joint traffic-passenger 
modeling and simulation methodology is designed to 
thoroughly capture the interactions between passengers, 
buses, and traffic. Specifically, it simulates the behavior of 
bus passengers moving through the urban bus network while 
having the buses to interact with the urban traffic 
environment. To avoid misunderstanding, we define that a 
passenger “trip demand” consists of trip starting time and an 
O-D pair (origin-destination pair); while a passenger “travel 
demand” consists of trip starting time, an O-D pair, and a 
specific travel plan. See TABLE I for details.  

The methodology is presented in Figure 1, which is 
composed of two layers: a pre-processing layer, and a joint 
simulation layer. The pre-processing layer is a collection of 
three algorithms (denoted as a, b, and c), and they conduct 
city information importing, data learning, and passenger 
demand generating, respectively, to prepare for the joint 
traffic-passenger simulation in the next layer. Specifically, 
Algorithm a is to extract and convert city road infrastructure 
information from public resources into SUMO formats to 
establish a virtual city traffic network and define traffic 
demands. Algorithm b is to learn a passenger trip generative 
model from people mobility data and generate passenger trip 
demand samples. This model should be designed and 
established according to the type of people mobility data. 
Algorithm c is to model the way a bus passenger thinks of a 
travel plan from the very origin to the final destination 
through the bus network, and finally this algorithm generates 
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Fig. 1.  Joint traffic-passenger modeling and simulation block diagram in the setting of bus transportation systems. 

 

 



  

a passenger travel demand that includes trip starting time, an 
O-D pair, and a travel plan.  

The traffic settings and bus passenger travel demands are 
fed forward to the joint simulation layer. In this layer, we 
have SUMO simulate the road traffic, including buses and 
other vehicles moving through the established urban road 
network. To be specific, a monitor-control algorithm (the 
passenger behavior simulation block in the dashed box in 
Figure 1) runs jointly with SUMO to monitor the bus states 
in real time and simulate passenger behaviors accordingly. 
At the end of the simulation, this layer outputs detailed 
passenger traveling information and bus state information.  

With the rich and informative synthetic passenger data 
from the simulation, researchers and city planners can make 
use of them according to needs.  

IV. IMPLEMENTATION 

We applied the methodology for a case study of Porto 
city, the second largest city in Portugal. This section details 
the implementation of the bus passenger modeling and 
simulation. 

A. Bus Transportation System Establishment 

The first step is to establish the urban bus transportation 
system in SUMO which reflects the exact real world. The 
main bus service operator STCP offers a company website, 
where detailed routes, station geographical location, and 
timetable information are provided. As shown in Figure 2, 
using the STCP bus service information and other public 
resource (OpenStreetMap, etc.), we established the bus 
transportation system as well as the urban road network 
within the selected central city area of Porto (E: -8.559543°, 
W: -8.661915 ° , S: 41.136044 ° , N: 41.185110 ° ). The 
imported bus network contains 136 routes, 855 bus stops, 
and 5723 bus trips in a normal workday. It is confirmed 
from the simulation tests that the bus performance matches 
well to the real Porto bus transportation system: each bus 
departs at scheduled time, runs along its designated route, 
and pulls at designated stops correctly. 

After establishing the virtual traffic network in SUMO, 
we turned to learning the passenger trip demand generative 
model for generating passenger trip samples.  

B. Bus Passenger Trip Demand Generative Model 

The goal of this model is to generate the trip demand 
tuple ( 𝑂 , 𝐷 ,  𝑡 ) of a passenger. The approaches used to 
establish the passenger trip demand generative model highly 
depend on the sources of data available. In many cases, 
direct and complete data in target domain is not available 
and a workaround is to proceed with indirectly related data. 

In this implementation, we used Porto taxi trajectory data to 
learn Porto passenger mobility distributions, based on which 
the bus passenger trip demand model is established to 
generate passenger trip samples.  

The taxi dataset [ 13 ] used in the paper describes a 
complete year (from 1/7/2013 to 30/6/2014) of the 
trajectories for all 422 taxis running in Porto city. All the 
taxis are equipped with mobile data terminals, providing 
information on GPS localization and taximeter state. Each 
ride is categorized into three categories: A) Taxi central 
based – if the taxi received a telephone call for demand, and 
was dispatched from the operation central; B) Stand based – 
if the taxi picked up the passenger at one of the 63 taxi 
stands in the city; C) random street based – if the trip was 
demanded on a random street. Each data point contains 
several features, of which we are interested in: 1) Trip 
starting time; 2) Date type (identifying whether the trip 
occurred in a holiday or any other special day); 3) Call type 
(telling whether the trip started from the operation central, 
one of the taxi stands, or a random street); and 4) Poly line 
(storing the list of GPS coordinates for the trip trajectory). In 
data pre-processing, according to the need of our study, we 
selected out the data in category C and remove special-day 
samples. The dataset contains detailed trip starting time and 
O-D pairs of random street passengers, making it a nice 
resource of city dwellers’ travel trend. On the other hand, the 
area being modeled and simulated is the central city area of 
Porto, which has a quite dense bus network, and this setting 
mitigates the negative correlation between taxi and bus 
demand models by reducing area that is poorly served by 
buses.  

The proposed passenger trip demand model consists of 
two components, a temporal model and a spatial model. The 
temporal model is an inhomogeneous Poisson process model 
which is widely used to model the occurrence of event in 
time. We use this model to describe how frequent passenger 
demands will occur across the city in a day. We should be 
careful about the fact that the Poisson process could be 
inhomogeneous and the rate parameter 𝜆 may vary in time. 
However, instead of complete randomness, human 
trajectories show a high degree of temporal and spatial 
regularity [1]. In that sense, we fit the rate parameter on 
hourly basis for a certain weekday. We divided a day equally 
into 24 periods, and focused on studying all Wednesdays of 
the year. The averaged taxi demand in each period on 
Wednesday is shown in Figure 3, according to which we fit 

the estimated Wednesday rate vector �̂� = (�̂�1, … , �̂�24). The 
temporal model is then described as: In period 𝑖, the interval 
𝜏 between two consecutive passenger demands follows an 
exponential distribution: 

𝜏~𝑓(𝑡; 𝑎(�̂�𝑖 + 𝜎)) = 𝑎(�̂�𝑖 + 𝜎)𝑒−𝑎(�̂�𝑖+𝜎)𝑡. (1) 

Here, 𝑎 is a coefficient to scale �̂�, since the number of bus 
demands is usually greater than taxi demands (𝑎 is used to 
scale daily passenger demands up to 150k, which is 
suggested by the STCP 2016 annual service report [14]). In 
practice, we also introduced uncertainty into the model by 

adding small noise 𝜎~𝑁(0,1) to �̂�. 

The spatial model is also learned on an hourly basis. The 
spatial model is a four dimensional distribution model from 

 

Fig. 3.  Expected taxi demand 

on Wednesday 

 

Fig. 2.Virtual Porto traffic network 
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which we can generate 4-D samples with the first two 
components as origin ( 𝑂𝑥, 𝑂𝑦 ) and the last two as 
destination (𝐷𝑥, 𝐷𝑦). We applied kernel density estimation 
to fit the spatial model, using multivariate 4-D normal 
distribution as a kernel. This method is non-parametric and 
effective when prior knowledge about the distribution is 
unavailable, thus parametric methods do not apply well. The 
bandwidth is determined based on the normal distribution 
approximation [15]. Finally, we have the spatial model as: 

�̂�H(X) =
1

𝑛
∑

1

(2𝜋)4/2|H|1/2
exp (−

1

2
(X − D𝑘)𝑇H−1(X − D𝑘)),𝑛

𝑘=1 (2) 

where H = diag(ℎ1, ℎ2, ℎ3, ℎ4)  defines the bandwidth of 

each dimension, and D𝑘 = (𝑂𝑘
𝑥, 𝑂𝑘

𝑦
, 𝐷𝑘

𝑥, 𝐷𝑘
𝑦

)  is the O-D 

demand of taxi demand data point 𝑘. The model generates 
two geographical points, and we searched for the closest bus 
stop near each point and use it as the origin/destination stop. 
We set a cut-off distance of 640 meters with the stop 
matching outside this region nulled. This distance is from 
the Public Transport Accessibility Levels (PTAL) 
methodology, which proposes an insight that the longest 
distance a passenger would normally walk to access a bus 
service is within the range of an 8-minute walk at the speed 
of 4.8 km/h [16]. 

A temporal sample and a spatial sample constitute a 
passenger trip demand sample. This is the core design of the 
passenger trip demand generative model.  

C. Passenger Travel Planning Model 

The passenger travel planning model is to provide a 
solution to the question: Given an origin bus stop and a 
destination bus stop (the O-D pair of a trip demand), how 
does a passenger think of a travel plan in the given bus 
transportation network? Specifically, the model proposes the 
set {(𝑂, 𝐷1), (𝑂2 , 𝐷2),…,(𝑂𝑛 , 𝐷)} of midway trips which 
lead the passenger to destination. Passengers always choose 
a plan that minimizes cost, distance, and unnecessary route 
switching. Usually, many web mapping projects (e.g. 
Google Map) have a route planning service. However, there 
are many cases where the city bus transport information is 
monopolized by local institutes. As a result, a universal 
planning service does not apply to a lot cities in different 
countries. As to the route planning service developed by 
local institutes, it could be less developed due to lack of 
investment. To generalize our methodology to different 
cities, we designed a built-in bus passenger travel planning 
model.  

As illustrated in Figure 4, we considered the bus 
transportation network as a directed graph 𝐺 with vertices 
𝑉 = {𝑣𝑖}  denoting bus stops and edges 𝐸 = {𝑒𝑖}  denoting 
bus route segments that connect the stops. For example, the 
blue edge from 𝑣1 to 𝑣2 indicates that bus route A will pass 
from stop 𝑣1  to stop 𝑣2 . In the graph, route A (with blue 
edges) and route B (with red edges) share the hub stop 𝑣3 
and passengers can choose to switch routes there. Besides 
bus route edges, walking edges are introduced into the graph 
(see the yellow dashed edges in Figure 4). Stops within a 
certain geographical distance (e.g., 640 meters) are 
considered as walking reachable stops, and passengers 
would be willing to walk a few more meters to transit at 
those stops. In each bus route, vertices are designed to be 
fully connected, and later we will see that this structure will 

avoid redundant output for the travel plan. After establishing 
the bus transportation network in SUMO, we can measure 
the exact length of each edge (the weight of each edge 
denoted as 𝑑). Table II lists the attributes of vertex and edge. 
Note that the out-edges of a vertex indicates the outward 
edges that originate from the vertex, and the out-neighbors 
indicates the terminal vertices of corresponding outward 
edges. The vertex route is a set of routes the vertex involved 
in, and the edge route is the specific route the edge belongs 
to. All the vertices and edges uniquely define the whole bus 
transportation network (graph).  

Given the graph structure, a travel plan for an O-D pair 
consists of a set of edges, and we call each edge a sub-trip. 
We want to find an optimal plan that minimizes a certain 
cost object, and this is a combinatorial optimization problem. 
In addition to the cost object in traditional shortest path 
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Fig. 4. Graph of bus transportation network. 

 

TABLE II 

VERTEX AND EDGE ATTRIBUTES 

 Attribute Description 

Vertex 

ID Vertex identity 

Geo-location  Longitude and altitude of the 

corresponding bus stop on map 

Out-edges List of edge IDs originated from the vertex 

Out-neighbors List of vertex IDs that terminate out-edges 

Route  List of routes passing through the vertex 

Edge 

ID Edge identity 

Source-vertex  The vertex ID the edge originates from 

End-vertex The vertex ID the edge terminates at 

Weight  Length of the edge (meter) 

Route  The route the edge belongs to 

 

 

 

 

Algorithm 1    Optimal travel plan searching algorithm 
Input:     s: source vertex; d: destination vertex;  
              {V, E}: graph; iniRoute: initial route of s;  
              ∆: route-switching penalty; ε :adding sub-trip penalty 
Output:  cost, trace 
1. cost[s] 0 %zero the cost of source vertex 
2. s.preRoute iniRoute  %preRoute used to judge route switching 
3. for all v in V – {s} do 
4.     cost[v] ∞  %the cost of non-source vertex is set to infinity 
5.     trace.update({v:(s, infEdge)})  %initialize trace-back record 
6. S ∅  %S: visited vertex set 
7. Q V  %Q: queue set (vertex set to be visited) 
8. while Q ≠ ∅ and d not in S do 
9.     u minCost(Q,cost)  %select vertex in Q with minimal cost 
10.     S S + {u} 
11.     Q Q - {u}  %move vertex u from Q to visited set S 
12.     for vtemp in u.outNeighbors do   
13.         Eout getEdges(u, vtemp)  %examine outward edges/vertices 
14.         for e in Eout do 
15.             update_cost cost[u]+e.weight+ ε  % basic cost 
16.             if u.preRoute ≠ e.route then  %route switched or not 
17.                 update_cost update_cost+∆ 
18.             if cost[vtemp]>update_cost then   
19.                 cost[vtemp] update_cost  %store new cost value 
20.                 vtemp.preRoute e.route  %update route information  
21.                 trace.update({vtemp:(u,e)})  %store the trace-back record 
22. return cost, trace to d 

 



  

searching problems, which based on accumulative distance 
only, we introduced 1) a route-switching penalty Δ  to 
penalize the route switching of a travel plan, and 2) a  
penalty 𝜀 to penalize the object when a sub-trip is added into 
the travel plan. Introducing 𝜀 is beneficial: when considering 
the travel demand from 𝑣5 to 𝑣6 through route B in the graph 
(with 𝑑3=𝑑1 + 𝑑2), we prefer the optimal travel plan to be 
represented as {edge( 𝑣5, 𝑣6 )} rather than 
{edge( 𝑣5, 𝑣3 ),edge( 𝑣3, 𝑣6 )}; By introducing 𝜀 , the plan 
{edge( 𝑣5, 𝑣6 )} with cost ( 𝑑3 + 𝜀 ) will win over the 
plan{edge(𝑣5, 𝑣3), edge(𝑣3, 𝑣6)} with cost (𝑑1 + 𝑑2 + 2𝜀). 
Based on the structure of the graph and the definition of the 
cost object, we designed the optimal travel plan searching 
algorithm in Algorithm 1, which is an advanced version of 
the Dijkstra algorithm [17] with a more sophisticated cost 
object. The output of the algorithm is the passenger’s plan to 
move from the origin stop to the destination stop through the 
bus transportation network.  

We applied the passenger travel planning model to 
generate a travel plan for each passenger trip demand. The 
optimal plan searching algorithm turns out to be very 
effective in practice. Applying the trip demand generative 
model and the travel planning model, we can generate 
passenger travel demand samples on Wednesdays at any size 
according to need.   

D. Bus Passenger Behavior Modeling + SUMO Simulation 

Given a bus passenger travel demand (containing trip 
starting time, an O-D pair, and a travel plan), we need to 
simulate how the passenger moves through the bus 
transportation network and interacts with buses and traffic to 
ultimately reach the destination. For example, one of the 
core functions of the joint simulation layer is to fill the 
boarding time 𝑡𝑖 for each subtrip tuple (𝑂𝑖, 𝐷𝑖). In this layer, 
a bus passenger behavior model is designed and 
implemented to run jointly with SUMO via a monitor-
control algorithm based on TraCI, a traffic control interface 
of SUMO. Specifically, the algorithm is to 1) modify the 
conditions and states of buses, 2) simulate passenger 
behaviors, and 3) record important moments (bus arrival 
time, etc.) in real time. When conducting simulations, we 
always make a trade-off between simulation speed and 
granularity depending on research topics. In most cases, to 
gain macroscopic insights into city-scale passenger behavior 
patterns, a reasonable strategy is to begin with basic models, 
and gradually increase the subtlety according to computing 
capacity and needs.  

In our work, a bus passenger behavior model is 
developed which is illustrated in Figure 5: According to the 

travel plan, the passenger starts at the origin stop 𝑂1  and 
takes a bus of the blue route to 𝐷1 to complete sub-trip 1. 
Then, it gets to 𝑂2 by walking (if 𝐷1 ≠ 𝑂2 ) or route 
switching (if 𝐷1 = 𝑂2 ) to start sub-trip 2. Finally, the 
passenger gets to the final destination 𝐷2  through the red 
route, and the travel demand is fulfilled. The interactions 
between buses and passengers take place at each stop, where 
the bus dwell time is affected by the number of boarding and 
alighting passengers. According to STCP vehicle 
descriptions, most buses in Porto city have independent 
channels for boarding and alighting, respectively, and thus, 
the dwell time 𝑡𝑑𝑤𝑒𝑙𝑙  is formulated as 
𝑡𝑑𝑤𝑒𝑙𝑙 = 𝑚𝑎𝑥 (𝑡_𝑜𝑛, 𝑡_𝑜𝑓𝑓). The interactions between buses 
and traffic are simulated by SUMO, where the travel time 
𝑡_𝑏𝑢𝑠  varies according to traffic conditions on the roads. 
The time the passenger spends from stop 𝑖 to stop (𝑖 + 1) is  

𝑡𝑖 = 𝐿 + 𝑚𝑎𝑥 (𝑡_𝑜𝑛𝑖 , 𝑡_𝑜𝑓𝑓𝑖) + 𝑡_𝑏𝑢𝑠𝑖, (3) 

where the travel 𝐿 is a constant of lost time including pulling, 
door-open-close time, etc. With this model, the simulation 
captures primary interactions between passengers, buses and 
traffic. All bus passengers in the city are treated as agents 
that follow both the travel planning model and the behavior 
model defined in previous sections.  

Loading the passenger travel demands to the joint 
simulation layer, we simulated city-wide bus passenger 
behaviors in Porto city of 90 Wednesdays. For each day, the 
simulation log stores detailed passenger behavior 
information and bus state information. For example, the 
passenger log records the time of waiting at the stop, 
boarding, and alighting at the destination stop. The bus log 
includes bus arrival time at each stop, on/off passengers ID 
at each stop, stop dwell time, and passenger volume after 
accommodating passengers to get on/off. The passenger log 
and bus log constitute the traffic-passenger joint simulation 
dataset of the bus transportation system in Porto. 

V. EVALUATION 

We evaluated our bus passenger simulation data using 
real bus Automated Fare Collection (AFC) data collected 
from Porto city. The basic idea is to compare the simulation 
data with the real data in terms of spatial-temporal 
distribution. The difference in distribution is measured by 
means of Kullback–Leibler divergence.  

A. Real AFC Bus Passenger Data 

The AFC dataset is the set of bus passenger transaction 
records that occurred in the January, April and May of 2010. 
They are collected by the AFC system installed in buses 
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 Fig.5.  Passenger behavior model. 



  

operated by STCP in Porto city. The AFC system called 
Andante is an entry-only system - a transaction record will 
be generated once a passenger taps the travel card on the 
AFC reader. But no additional action is needed when the 
passenger alights, so the information of destinations is 
unavailable. Each transaction record contains several 
attributes among which we are interested in: 1) ID; 2) 
transaction timestamp; 3) bus stop where the transaction 
occurred; 4) route; and 5) route direction. 

We fused the Andate AFC data with additional data 
sources to obtain the route structure (sequence of stops in a 
route) and the geographical location of each stop. There are 
2,374 bus stops and 66 bidirectional bus routes in the area of 
interest. The raw data have about 3% fault samples that have 
illogical or missing attributes. After data recovery, a 
proportion of 1% remains unsolved, and we removed those 
records. We selected out transaction records on Wednesdays 
of the three months, totaling 12 Wednesdays with 2,422,079 
transactions. Those Wednesdays are normal weekdays, and 
local special holidays are avoided.  

B. Evaluation with Respect to Spatiotemporal Distribution 

The goal of the simulation is to capture the underlying 
distributions from which the real observations are generated 
so that the simulation outcomes can be used as a reasonable 
approximation of real passenger data (in this paper, we use 
AFC data). To check the fulfillment of this goal, we 
quantified the difference between our synthetic passenger 
data and the real AFC data, and investigated the 
improvement in distribution similarity achieved by our 
method by comparing to baseline methods that do not use 
simulations. 

The measure applied in this paper to quantify the 
difference between two distributions is called Kullback–
Leibler (KL) divergence [18]. For discrete distributions, the 
KL divergence from distribution 𝑄(𝑖) to 𝑃(𝑖) is defined as: 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖)𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

. (4) 

The use of KL divergence in measuring the difference 
between probability distributions is popular, because of the 
following reasons: 1) 𝐷𝐾𝐿(𝑃||𝑄) is always non-negative; 2) 
𝐷𝐾𝐿(𝑃||𝑄) = 0   holds if and only if 𝑃 = 𝑄 ; and 3) 
𝐷𝐾𝐿(𝑃||𝑄) is a convex function with respect to 𝑃 and 𝑄. The 
convexity implies the fact that the larger the 𝐷𝐾𝐿(𝑃||𝑄) is, 
the more difference there will be between 𝑃 and 𝑄.  

1) KL Divergence in Temporal Distributions: We first 
investigated the difference in temporal passenger demand 
distributions between simulation data and the real data. Here, 
𝑃  and  𝑄  are the expected temporal passenger demand 
distributions for simulation data and real data, respectively. 
In this paper, we focus on Wednesday data.  

Specifically, the distribution 𝑃  is defined as 𝑃(𝑖) =
𝔼(𝑛𝑖)/ ∑ 𝔼(𝑛𝑗)24

𝑗=1 , where 𝑛𝑖  is the number of passengers 

that get on a bus in period 𝑖  (e.g., 10 am–11am) on a 
Wednesday, and  𝔼(𝑛𝑖)  is the average number (over 
Wednesdays) of passengers that get on a bus in period 𝑖. In 
the same way, we can obtain the distribution 𝑄 for the real 
data. The shapes of both distributions are illustrated in 

Figure 6, where we can see a nice similarity between them 
(in this case, the blue one is 𝑃 and the red one is 𝑄).  

For comparison purpose, we also considered two 
baseline distributions. The first one is simply shuffled from 
𝑃, and we call it shuffled distribution. The shuffle means a 
random permutation of 𝑃(𝑖) w.r.t. the period 𝑖. The second 
one is the temporal distribution estimated directly from the 
taxi passenger data which is the green distribution in Figure 
6. We call such distribution the pre-simulation distribution, 
because the dataset the distribution is based on has not been 
processed by the simulation. Note, only the first trip demand 
starting time 𝑡 of each passenger (see TABLE I) contributes 
to the pre-simulation distribution. In contrast to the two 
baseline distributions, 𝑃  is called post-simulation 
distribution (the blue distribution in Figure 6). Note, not 
only the first trip starting time 𝑡 , but also the synthetic 
midway trip starting time {  𝑡𝑖  } contributes to the post-
simulation distribution. Calculating the KL divergence from 
the real distribution 𝑄 to each of the three distributions, we 
obtained 1.418, 0.553 and 0.045 for shuffled, pre-, and post-
simulation distributions, respectively.  

Compared to the shuffled distribution, pre-simulation 
distribution has an improvement in the similarity to the real 
data. This supports our assumption that the temporal 
mobility trend of passengers reflected by the taxi data 
correlates positively to the real temporal mobility trend of 
bus passengers. On the other hand, the post-simulation 
distribution achieves more information gain, reducing the 
distribution difference down to 0.045. The information gain 
comes from the fact that the simulation can capitalize on the 
passenger behavior model to effectively fill the midway 
details (especially the timing { 𝑡𝑖 } of each midway boarding) 
between the origin and destination.  This contributes to a 
smaller KL divergence. 

2) KL Divergence in Spatial Distributions: We further 
investigated the difference in spatial distributions of bus 
passenger demands between simulation data and the real 
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data. Since the real data only contains boarding information, 
we should conceptualize the spatial distribution accordingly: 
because a bus route 𝑅 consists of a sequence of bus stops {𝑠}, 
and each stop corresponds to a spatial location, the spatial 
probability distribution of passenger boarding demands 
associated with the route 𝑅  is essentially the boarding 
probability distribution over bus stops {𝑠}. Considering that 
in different periods, the spatial distribution can vary, we 
focused on the periods of {𝑇} ={4-8, 8-12, 12-16, 16-20, 20-
24} and omitted the period 0-4 because buses are mostly off-
service during that time. Since the constraint of period 𝑇 is 
involved, the spatial distribution is actually evaluated from a 
spatial-temporal point of view.  

Then, for simulation data, given period 𝑇 and route 𝑅 , 
the spatial distribution over {𝑠}  is defined as 𝑃𝑅,𝑇(𝑠) =
𝔼(𝑛𝑅,𝑇,𝑠)/ ∑ 𝔼(𝑛𝑅,𝑇,𝑘)𝑘 ,  where 𝑛𝑅,𝑇,𝑠  is the number of 

passengers (on a Wednesday) that get on a bus in period 𝑇 at 
stop 𝑠 of route 𝑅, and 𝔼(𝑛𝑅,𝑇,𝑠) is the average number (over 

all Wednesdays) of passengers that get on a bus in period 𝑇 
at stop 𝑠 of route 𝑅. In the same way, we can obtain 𝑄𝑅,𝑇(𝑠) 

for the real data. The spatial KL divergence for the period 𝑇 
is defined as followed: 

𝐷𝐾𝐿_𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑇) = 𝔼𝑅[𝐷𝐾𝐿(𝑃𝑅,𝑇||𝑄𝑅,𝑇)]

=
1

𝑁𝑅
∑ 𝐷𝐾𝐿(𝑃𝑅,𝑇||𝑄𝑅,𝑇)

𝑅
, (5) 

where 𝑁𝑅  is the number of routes in the area being 
investigated. This is the expected KL divergence in spatial 
distributions over all bus routes during certain period 𝑇.  

Based on (5), the spatial KL divergences from the real 
spatial distribution to the three pre-mentioned spatial 
distributions (shuffled, pre-, and post-simulation spatial 
distributions) are calculated and illustrated in Figure 7. Note, 
the spatial pre-simulation distribution counts only on the trip 
demand (𝑂 , 𝐷 , 𝑡) of each passenger, and in contrast, the 
spatial post-simulation distribution counts on the whole 
synthetic experience {(𝑶, 𝐷1, 𝒕), (𝑂2, 𝐷2, 𝑡2),…,(𝑂𝑛, 𝑫, 𝑡𝑛)} 
of each passenger. From Figure 7, we can observe that: from 
shuffled, to pre-, and then to post-simulation distributions, 
there shows a decreasing trend in the divergence. The 
experimental results support that the post-simulation data 
exhibits a higher degree of similarity to the real bus 
passenger data in terms of spatial activity. This experimental 
outcome also supports our claim - the joint traffic-passenger 
modeling and simulation is a meaningful method to transfer 
indirect people mobility data to direct and complete bus 
passenger data. 

VI. CONCLUSION 

In this paper, we proposed a methodology to generate 
synthetic bus passenger data through joint traffic-passenger 
modeling and simulation at city scale. It is the first use of a 
modeling and simulation approach to transfer the indirectly 
related people mobility data to direct and complete 
passenger data. This method is validated by quantifying the 
similarity of distribution between the synthetic passenger 
data and real passenger data. As an echo of our main 
contribution, our work is a proof-of-concept of how 
academia and a city planning community can move forward 
in the absence of direct and complete data in the field of 

passenger related research by using the joint traffic-
passenger modeling and simulation method at city scale. The 
proposed methodology is expected to serve as a potential 
driving force of intelligent transportation system success. 

REFERENCES 

[1] M. C. Gonzalez, et al., “Understanding individual human mobility 

patterns,” Nature, 453(7196), 779-782, 2008. 

[2] M. Chen, X. Liu, J. Xia, and S. I. Chien, “A Dynamic Bus-Arrival 

Time Prediction Model Based on APC Data,” Computer-Aided Civil 

and Infrastructure Engineering, 19(5), 364-376, 2004. 

[3] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. 

Damas, “Predicting taxi–passenger demand using streaming data,” 

IEEE Trans. on Intelligent Transp. Syst., 14(3), 1393-1402, 2013. 

[4] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. 

Damas, “Time-evolving OD matrix estimation using high-speed GPS 

data streams,” Expert Systems With Applications, 44, 275-288, 2016. 

[5] L. Moreira-Matias, and O. Cats, “Toward a Demand Estimation 

Model Based on Automated Vehicle Location,” Transp. Research 

Record: J. of Transp. Research Board, 2016(2544), 141-149, 2016. 

[6] A. A. Nunes, T. G. Dias, and J. F. Cunha, “Passenger Journey 

Destination Estimation from Automated Fare Collection System Data 

Using Spatial Validation,” IEEE Trans. on Intelligent Transp. Syst., 

17(1), 133-142, 2016. 

[7] Y. Wang, S. Ram, F. Currim, E. Dantas, and L. Alberto Sabóia, “A 

Big Data Approach for Smart Transportation Management on Bus 

Network,” in Proc. of IEEE Intl. Smart Cities Conf.(ISC2), 2016. 

[8] R. Shi, P. Steenkiste, and M. Veloso, “Second-order destination 

inference using semi-supervised self-training for entry-only passenger 

data,” In Proc. of the 4th IEEE/ACM International Conference on Big 

Data Computing, Applications and Technologies (BDCAT), pp. 255-

264, 2017 

[9] T. Schelenz, A. Suescun, M. Karlsson, and L. Wikstrom, “Decision 

making algorithm for bus passenger simulation during the vehicle 

design process,” Transport Policy, 25, 178-185, 2013. 

[10] A. Sumalee, Z. Tan, and W. H. Lam, “Dynamic stochastic transit 

assignment with explicit seat allocation model,” Transp. Research 

Part B: Methodological, 43(8), 895-912, 2009. 

[11] J. D. Schmocker, A. Fonzone, H. Shimamoto, F. Kurauchi, and M. G. 

Bell, “Frequency-based transit assignment considering seat 

capacities,” Transp. Research Part B: Methodological, 45(2), 392-

408, 2011. 

[12] Q. Zhang, B. Han, and D. Li, “Modeling and simulation of passenger 

alighting and boarding movement in Beijing metro stations,” Transp. 

Research Part C: Emerging Technologies, 16(5), 635-649, 2008. 

[13] Trajectory - Prediction Challenge Dataset, ECML/PKDD 2015: 

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html 

[14] “STCP Annual Report and Accounts”, STCP, Porto, Portugal, 2016. 

[15] B. W. Silverman, “Density estimation for statistics and data analysis,” 

Vol. 26, CRC press, 1986. 

[16] “Transport Assessment Best Practice: Guidance Document,” 

Transport for London, London, U.K., April 2010. 

[17] M. Van, "Dijkstra's algorithm," Massachusetts Institute of 

Technology. Regexstr, 2014 

[18] T. M. Cover, and J. A. Thomas, “Elements of information theory,” 

Wiley press, 1991 

 

  


