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Abstract
In this paper we consider the problem of motion planning for perception of a target position. A robot has to move to
a position from where it can sense the target, while minimizing both motion and perception costs. The problem of finding
paths for robots executing perception tasks can be solved optimally using informed search. In perception path planning, the
solution when considering a straight line without obstacles is used as heuristic. In this work, we propose a heuristic that
can improve the search efficiency. In order to reduce the node expansion using a more informed search, we use the robot
Approximate Visibility Map (A-VM), which is used as a representation of the observability capability of a robot in a given
environment. We show how the critical points used in A-VM provide information on the geometry of the environment,
which can be used to improve the heuristic, increasing the search efficiency. The critical points allow a better estimation
of the minimum motion and perception cost for targets in non-traversable regions that can only be sensed from further
away. Finally, we show the contributed heuristic with improvements dominates the base PA* heuristic built on the euclidean
distance, and then present the results of the performance increase in terms of node expansion and computation time.

Keywords Perception planning · Heuristic search · Visibility maps

1 Introduction

In this work we deal with motion planning for perception
tasks, where both the motion and sensing costs have to be
considered in order to find an optimal path.

As we show in Fig. 1, a path has motion cost costm,
proportional to the distance traveled, and a perception
cost costp, which is a function of the perceiving distance
between the final path position and the target. Here we
assume the sensing cost is a function of the minimum
distance between the path and the target. As a result, the
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final position of the path has the minimum distance to
the target. We consider any perception cost function, as
long as it is monotonically increasing with the perception
distance. We use λ as the parameter that trades-off motion
and perception cost. The path selection changes depending
on the relative costs of motion and perception minimizing
the overall cost.

Using an informed search algorithm, such as PA* [15],
it is possible to explore the space and find the optimal path
while reducing the number of expanded nodes compared to
breadth-first search. However, the basic algorithm searches
the environment without considering any information from
the world. As in the common motion planning problem
with A*, the heuristic in a certain node is determined using
the solution for the straight line perception task between
the node and the target, without considering obstacles.
Assuming that no obstacle information is given, PA*
searches the state space optimally, finding the optimal path
given a perception function and parameter λ.

We contribute a new heuristic that can reduce the number
of expanded nodes when the perception target location
lies in non-traversable regions, where there is a minimum
perception distance. For that purpose, we use the Visibility
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Fig. 1 The cost of a path is given by the sum of the motion cost and the
perception cost; an informed heuristic search can find the optimal path;
in this example, the target is inside an unreachable region, so there is
always a lower bound to the minimum perception distance independent
of the optimal path

Map [16], a transformation on the original map that can be
used to solve the observability problem, i.e., determining
which regions are visible by a circular robot from any point
reachable from the initial robot position. The parameters of
this transformation are the robot size and maximum sensing
range.

The Visibility Map shows what regions are visible by the
robot. So, if a perception target lies in a region that is not vis-
ible from the initial robot position, our proposed algorithm
can return a failed plan immediately without spending any
time in search. This is an important feature, because when
there is no feasible path the base PA* algorithm always
explores the entire search space looking for a solution.

There can be other gains in the number of node expansion
if more information is used for the heuristic. In the
Approximate Visibility Map, critical points are used in order
to estimate the visibility inside non-traversable regions,
while reducing the computation time compared to the brute-
force algorithm. In this work we prove that critical points, by
definition the points in the configuration space that generate
the frontiers of motion reachability, are the closest to any
target position inside unreachable regions. Therefore, we
use the distance from the target to each critical point as an
estimate of the minimum perception distance. The distance
to the critical point can be used to create an admissible
heuristic that outperforms the heuristic in PA*, which is only
a function of the distance between the current node and the
target. The critical point can also be used to have an estimate
of the minimum motion distance.

We prove that our contributed heuristic that considers
the Visibility Map is a dominant and consistent heuristic
compared to the one from the original PA*, yielding a faster
convergence to the optimal path.

We present related work, and then review the methods
of PA* and Approximate Visibility Maps. Then we describe

the new heuristic used in the search algorithm of motion
planning for perception tasks, proving it is admissible and
dominant over the base heuristic. We show results yielding
a faster convergence to the optimal path. We show results
on the increased efficiency in terms of node expansion, and
then present our conclusions and future work directions

2 RelatedWork

Many robotic applications consider perception separately
from planning, with both being computed interleaved [19].
It has been used for tasks as varied as SLAM [2], robot
localization [1], in exploration to guide robots to unexplored
regions [8], and for object recognition [4].

In our work, perception is the task that drives planning,
and we develop a framework for motion planning to be able
to perceive a target, while considering both the motion and
perception costs. There is also a work where planning and
perception are integrated and unified in a manipulation task,
using a belief space of probability distribution over states as
a planning framework [9]. Others plan for perception, but
not to sense a target location. Instead they plan in unknown
environments, so the perception is performed as a task to
increase accuracy, being a part of the set of possible actions
[7].

Perception got recently a more active role in planning.
An example is object detection, where the next moves of
the robot should be planned to maximize the likelihood of
both correct object detection and classification [18, 20]. In
[3], probabilistic active perception is planned for realistic
environments, with arbitrary object positions. The planning
problem is designed as a partially observable Markov
decision process. An active planning tackles the problem
of occlusions by reasoning about model and state transition
uncertainties.

Another class of problems for perception planning is
the inspection problem. In order to determine a path that
can sense multiple targets, a neural network approach was
used to solve the NP-hard Watchman Routing Problem. In
order to do so efficiently, a fast method was proposed to
answer visibility queries [6]. In that work, the solution is not
optimal due to the existence of multiple targets.

PA*, a heuristic search, was proposed to solve the motion
planning problem for perception of a target position in 2D,
given motion and perception costs [15].

It was also proposed in the past that robots maintain
reachabilities and visibilities information, both of a robot
and a human partner in a shared workspace. However, it
uses non-mobile robotic platforms [12]. Visibility graphs
are considered in [10], but the focus is on generating points
for a patrolling motion plan. It assumes vectorial obstacles,
so visibility can easily be calculated using ray casting at
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the extremes of lines. However, most maps are obtained
as detailed 2D gridmaps, and we do not want to limit the
problem with a vectorial representation, allowing obstacles
to take any shape.

Morphological operations have also been used in robotics
to determine the actuation space of a robot [13], which is
later used to coordinate multi-robot teams. In our work we
use a similar technique, but we can determine visibility for
a sensing range bigger than robot size. We use the idea
of critical points to increase the efficiency of computation,
and also as a tool to improve the heuristic of PA*. It is
also possible to use a similar approach to find visibility for
any-shape robots [16], by discretizing orientation as well.

We already used visibility maps as a pre-processing step
for planning, improving search efficiency for perception
tasks by introducing dominant heuristics [14].

Techniques borrowed from image processing have
already been used for map transformation, e.g. automati-
cally extracting topology from an occupancy grid [5]. They
robustly find the big spaces in the environment like humans
would, separating it into regions.

3 Optimal Path Planning for Perception
Tasks

PA* is a heuristic search for motion planning that returns the
optimal path to perceive a target, considering both motion
and perception cost [15].

In our perception scenario, we have to find a path ρ that
not only minimizes distance traveled, but also minimizes
the perception cost. The path ρ is a sequence of adjacent
positions in a grid, {s0, s1, ..., sn}. The robot starts from the
initial position s0 = S and moves through connected cells of
the discretized configuration space to a final robot position,
sn = F , such as the sensing target T is perceived from some
position in the path ρ. The total cost of path ρ is given by

cost(ρ) = costm(ρ) + λcostp(ρ, T ) (1)

where λ is a weight parameter that trades-off the motion cost
costm(ρ) , and the perception cost costp(ρ, T ) in the overall
cost function.

Usually the motion cost costm is proportional to the
distance traveled from S to F .

costm(ρ) =
n∑

i=1

||si − si−1|| (2)

Here we assume that costp(ρ, T ) is a function of the
minimum distance between the path ρ and target T ,

making the perception cost a function of the minimum
sensing distance from the path to the target.

costp(ρ, T ) = cp

(
min
si∈ρ,

si with line-of-sight to T

||si − T ||
)

(3)

with cp being a continuous function that depends on
the sensor model. In the perception tasks, one of the
goals is to increase the accuracy of perception. In our
work, we represent the accuracy of perception as a cost
function, where a low sensing accuracy corresponds to a
high perception cost, and vice-versa. Therefore, the cost
of perception is a function of the sensing distance. We
assume that the further away the robot is from the target,
the lower the sensing accuracy, because the probability of
inaccurate measurements increases. Thus the cost function
for perception, cp, increases with distance.

The optimal path is given by

ρ∗ = argmin
ρ∈P

cost(ρ)

= argmin
ρ∈P

costm(ρ) + λcostp(ρ, T ) (4)

where P is the space of all possible paths.

Theorem 1 For the optimal path ρ∗, the position that
minimizes the distance from the path to sensing target T is
the final position of the path, F .

Proof If there were another position si in the middle of the
path that had the smallest distance to the target, then there
would be a different path ending in si with minimal cost,
contradicting the hypotheses that the path ρ∗ from S to F is
the one that minimizes the overall cost.

The space of all possible paths P is a general notation for
representing the minimization problem to find the optimal
path, but our proposed algorithm does not implement any
search in the path space. We are going to show in the
following sections how to use the A* architecture to do
an informed search that builds the optimal path by moving
between neighbor cells from the initial position S to the
final goal position F . We can use heuristic search for this
problem because the first theorem states that the perception
cost is a function only of the distance of the last point of
the path to the target, and as such it can be included in the
heuristic estimate of each node.

3.1 Informed Search for Perception Planning

A* is a graph search algorithm that finds the lowest cost
path from a given initial node to a goal node. It also works
with discretized representations of the environments such
as gridmaps, where each grid position represents a node,
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and the graph connectivity can be either based on 4 or 8-
neighborhood. A* explores the environment by computing
a heuristic cost function for each visited node that estimates
the cost to reach the target. It moves through the search
space by selecting the nodes with lower overall cost.

In traditional motion planning, a node is tested as goal
position just by checking if the coordinates of the current
node are the same as the coordinates of the target. Moreover,
the total cost estimate is given by the path cost from S, the
starting position, to the current node n, plus a heuristic of
the cost from n to the target position T .

f (n) = g(S, n) + h(n, T ) (5)

If the heuristic used is admissible, i.e., always less
or equal than the true value, then the path returned is
guaranteed to be optimal. Therefore, the usual choice for
the heuristic in motion planning (MP) is just the euclidian
distance between the current node and the target, without
considering any obstacles

hmp(n, T ) = ||n − T || (6)

As in the A* algorithm, in PA* the total cost estimate is
also given by the sum of g(S, n), the path distance from the
starting position S to the current node n, and h(n, T ), which
here is a heuristic of both the motion and perception costs
from n to T . In order for the heuristic to be admissible, it
is based on the euclidean distance between the current node
and the target, without considering any obstacles.

The heuristic in PA* still uses the straight line between
current node and sensing target, without considering
obstacles, as A* does. Nevertheless, it now considers the
expected cost of both approaching the target and sensing
from a smaller distance.

hpp(n, T ) = min
q

(
||n − q|| + λcp(||q − T ||)

)
(7)

We assume that from position n the robot can still
approach the target by moving to other location q, from
where it senses the target. There is a trade-off between
the possible increase of motion cost, and the decrease of
perception cost. We take the distance between points n and
q as the approaching cost.

3.2 Optimal Heuristics for PA*

With the previously presented problem formulation, it is
possible to solve the perception planning problem with
A*, introducing a new heuristic that takes into account
the perception cost. For that purpose, we will consider
the problem of finding the optimal sensing position in
a continuous straight line scenario without obstacles, as
presented in Fig. 2. The idea is to use the solution for the
straight line problem without obstacles as an admissible
heuristic for the perception problem.

Fig. 2 Given a robot at position n and a perception target T at distance
d in a scenario without obstacles, the optimal sensing goal position
lies in the straight line connecting those two points. The image shows
a solution with motion of αd and sensing distance equal to (1 − α)d

With ||n − T || = ||n − q|| + ||q − T || = d , the cost of
motion and perception from node n to the target T is:

cost(α, d) = |αd| + λcp

(|(1 − α)d|) (8)

where cost(α, d) is a continuous function of the overall cost
when the robot is at a distance d to the target. The variable
α represents the percentage of the distance the robot can
approach the target, and 1−α the percentage of the distance
d that is sensed. In order to have the optimal solution, we
need to find α that minimizes cost.

α∗ = argmin
α

|αd| + λcp(|(1 − α)d|) (9)

Therefore, the first step is to find the percentage that
minimizes the cost of approaching and sensing the target in
a straight line. This can be done analytically or numerically,
depending on the function cp. Later we will show optimal
solutions for specific polynomial functions.

Lemma 1 If cp is a positive and monotonically increasing
function, then 0 ≤ α∗ ≤ 1, i.e., the optimal solution for the
sensing goal position in the straight line perception task lies
between the current node n and T .

Proof The cost of motion is always positive and increases
with traveled distance. Using the previous definition for
perception cost, it is a function of sensing distance,
thus it is positive and increases monotonically. Thus,
the assumption for the perception cost function holds.
Assuming a straight line distance with size d , the optimal
decision of approaching the target by α∗d and sensing from
distance (1−α∗)d has a cost that is minimal. By definition,

∀α, d ∈ R cost(α, d) = |αd| + λcp(|(1 − α)d|) ≤
|α∗d| + λcp(|(1 − α∗)d|) = cost(α∗, d) (10)

If we take α > 1, with a positive and monotonically
increasing function cp

∀α > 1 cost(α, d) = αd + λcp(dα − d) >

d + λcp(0) = cost(1, d) (11)

Using Eqs. 10 and 11, we prove that approaching the
target by more than d has always a greater cost than
approaching just by a distance d , showing that α∗ ≤ 1. On
other words, it is always preferable to approach the target
by d and sense from that position than approach by a bigger
distance while increasing the perception distance as well, by
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sensing the target from further away. The same analysis can
be done for α < 0,

∀α < 0 cost(α, d) = −αd + λcp(d − αd) >

0 + λcp(d) = cost(0, d) (12)

proving that 0 ≤ α∗ ≤ 1.

There is an intuitive explanation for the previous lemma.
If α∗ > 1, then the robot would move pass the target and
sense it from behind, increasing both motion and perception
costs, which contradicts the initial assumptions. If that was
the case, there would be other solutions where the robot
could sense from the same distance, but with smaller cost
of approaching the target, thus having an overall smaller
cost. That solution would also contradict the first theorem,
as there would be a point in the middle of the path with
smaller distance to the target. The same reasoning can be
applied when α∗ < 0, which also represents a counter-
intuitive situation, because the robot would be moving away
from the target, increasing both the motion and perception
cost, and again contradicting the first theorem.

The previous results are expected if we use positive and
increasing cost functions, showing that to sense a target in
a straight line, the optimal solution is to approach the target
while moving to a position in between the current node and
the target. Moving beyond the target or moving back always
yields solutions with a higher cost.

In order to find the solution for the straight line problem,
we have to solve the minimization problem

α∗ = argmin
α

cost(α, d) (13)

for 0 ≤ α∗ ≤ 1. This can be done by setting the gradient
to zero to find extrema for the interior region, and if any
point exists, comparing it to the cost values on the boundary
to find the point with minimum cost (for α = 0 the cost
is λcp(d) and for α = 1 the cost is λcp(0) + d). If
the function cp has a gradient which is strictly increasing,
then the overall cost is a convex function with only one
minimum, and in that case the optimal solution is either
α∗ = 0 ∨ α∗ = 1 ∨ α∗ = αc, where αc is given by

d
(|αcd| + λcp(|(1 − αc)d|))

αc

= 0 (14)

After finding α∗ as the optimal solution for the straight
line problem, the heuristic in PA* is

hpp(n, T ) = α∗||n − T || + λcp

(
(1 − α∗)||n − T ||) (15)

and if we find the optimal approach point q∗ such as ||q∗ −
T || = α∗||n − T || (where q∗ has to be in the straight line
distance between n and T ), then the heuristic can also be
defined as

hpp(n, T ) = ||n − q∗|| + λcp(||q∗ − T ||) (16)

In order to use the straight line solution as the best
heuristic for PA* when not considering obstacles, as in the
common A* formulation, we need to prove that the straight
line solution yields the smallest cost.

Considering the scenario in Fig. 3, the direct distance
between robot position and target is d , as in the example
before. However, because the approaching is not in a
straight line with the target, d ′ = ||n−q||+||q−T || > d =
||n−T ||. Given the non-straight line assumption, d ′ = d+ε,
with ε ≥ 0. The robot moves a percentage of this path αd ′,
and senses the rest (1 − α)d ′, where α = ||n−q||

||n−q||+||q−T || .

Theorem 2 If the heuristic in PA* uses the straight line
solution, the heuristic is admissible and consistent iff the
perception cost function cp(d) is zero for d = 0.

Proof The cost of the solution with 0 ≤ α ≤ 1 and d ′ > 0 is

cost(α, d ′) = αd ′ + λcp((1 − α)d ′)
= α(d + ε) + λcp((1 − α)(d + ε)) (17)

Again, if the perception cost function is monotonically
increasing

cost(α, d ′) = α(d + ε) + λcp((1 − α)(d + ε)) ≥
αd + λcp(d − αd) ≥ cost(α∗, d) (18)

proving that a motion out of the straight line always has an
higher cost than the optimal solution for the straight line,
and as such the straight line solution can be used as an
heuristic for the informed search in perception planning.

As we assumed that cp(0) = 0, then it is trivial to show
that h(T , T ) = 0.

Furthermore, if we consider a successor node n′ with an
optimal approach point q ′∗ and a cost to move from n to n′
as c(n, n′) = ||n − n′||, then
c(n, n′)+h(n′, T ) = ||n−n′||+||n′−q ′∗||+λcp(||q ′∗−T ||)

(19)

Using first the geometric triangle inequality and then the
definition of the heuristic,

c(n, n′) + h(n′, T ) ≥ ||n − q ′∗|| + λcp(||q ′∗ − T ||)
≥ ||n − q∗|| + λcp(||q∗ − T ||) = h(n, T ) (20)

and because h(T , T ) = 0, this heuristic is consistent.

Fig. 3 Robot approaches target in a non-straight line to position q,
with approach distance of αd ′, and the sensing distance of (1 − α)d ′,
with d ′ > d, where d is the straight line distance without obstacles
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We use ||.|| as the euclidean distance. As we have showed
here, the heuristic for PA*, hpp, depends only on the
distance to the target d = ||n − T || and the parameter α∗,
which depends on the perception cost function cp and the
distance d as well. Regarding the cost function g(S, n), it is
the same as standard A* is used, with g being the minimum
cost for a robot to move from the initial position S to node n.

We consider the perception quality depends only on
the distance to the target, because we assume robots can
rotate in place and sense the target from the most favorable
direction. Furthermore, the perception cost function cp

can be any monotonically increasing function, allowing
flexibility to represent the cost of multiple perception
models.

3.3 Perception Functions

For any specific perception cost, it is possible to find the
optimal sensing position q∗ and the parameter α∗ as a
function of the distance ||n − T || and the function cp. And
with α∗ known before-hand, the heuristic hpp becomes only
a function of n and T , and easy to compute during search.

We give in this section two examples for the function
cp, where the perception cost is either a linear or quadratic
function of the distance to the target. In our model we
assume circular omnidirectional sensing, with a limited
range rp. We then formulate the heuristic hpp(n, T ) in a way
that it can be used for multiple perception cost functions,
while being easily computed for each specific perception
function.

First, we define the optimal sensing distance as d∗
s =

||q∗ − T || = (1 − α∗)||n − T ||, when ||n − T || → ∞.
This is useful when the overall cost functions are convex,
with a perception cost whose gradient is strictly increasing,
which is true for the functions we exemplify in this section.
In that case, the optimal sensing distance is a constant, and
a unique solution that only depends on the function cp, not
depending on the distance ||n−T ||. In this scenario, the real
sensing distance used in the heuristic hpp is either d∗

s or the
boundary solution ||n − T || if ||n − T || < d∗

s .
In the linear case,

cp(d) =
{ |d| |d| ≤ rp

∞ |d| > rp
(21)

there are two cases for the optimal sensing distance d∗
s :

– λ < 1: Cost of motion is greater than cost of sensing,
so robot minimizes motion by sensing form as far apart
as possible (limited by maximum sensing range rp);

– λ ≥ 1: Cost of sensing is greater than cost of motion, so
robot moves as close to the target as possible.

The optimal sensing distance d∗
s for linear perception is:

d∗
s =

{
rp λ < 1
0 λ ≥ 1

(22)

With a quadratic sensing cost, cp(||q −T ||) = ||q −T ||2,
we can solve for α∗ using Eq. 14. In order to find the
minimum, we find the point αc with zero derivative

d
(
α∗d + λ(d − α∗d)2

)

α∗ = 0 ⇔ α∗ = 1 − 1

2dλ
(23)

Therefore, ideally the robot would move to a fixed
distance 1/(2λ) of the target to sense it optimally.

Again, the optimal sensing distance d∗
s for the quadratic

perception cost function also depends on rp:

d∗
s =

{ 1
2λ 1/(2λ) ≤ rp
rp 1/(2λ) > rp

(24)

We can interpret the quadratic cp as a function that
represents a cost that changes little with close distances.
When the robot is already close enough to the target,
changes in the distance to the target have a small impact
on the perception cost. On the other hand, the further away
the robot is from the target, the greater the impact of the
distance in the perception cost. Therefore, it is reasonable to
think of a fixed optimal sensing distance in that case, which
is a function of λ, the parameter that weights motion and
perception cost.

Having the optimal sensing distance d∗
s and checking the

boundary condition, the heuristic becomes:

hpp(n, T ) =
{

(||n − T || − d∗
s ) + λcp(d∗

s ) ||n − T || ≥ d∗
s

λcp(||n − T ||) ||n − T || < d∗
s

(25)

This heuristic equation can also be used for other
perception cost functions with similar properties (convex
functions with unique solutions), with the only requirement
of finding d∗

s .
The solution to the perception planning problems

depends greatly on the sensor used. That is the reason
we approached this problem in a more general perspective
first, introducing a heuristic that works for any perception
cost function, as long as it is an increasing function with
distance. The specific cases shown in this section were
only presented as examples of what needs to be done to
determine the heuristics for specific cost functions. It is
possible to adapt the cost functions to the problem in hand
(e.g., sensor properties), and then determine the heuristic for
that specific problem using our approach.
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3.4 Underlying Graph

In the solution presented until now, we assume there is
a grid-like discretization of the world which is used as
the underlying graph. Every grid point is a node in the
graph, and two nodes are connected if their respective grid
positions are neighbors, assuming 8-connectivity as the
adjacency rule. Due to the existence of obstacles between
grid positions, not all of them are reachable by the robot.

As explained before, nodes are expanded using a
heuristic that estimates howmuch the robot should approach
the target in order to have an optimal path. If there were
no obstacles in the PA* problem, the search would expand
nodes until reaching the final grid position F . In that case,
unless F = T , the heuristic for node F has an approaching
distance equal to zero, i.e. α∗ = 0, which could be used as
a stopping condition. However, in that case the heuristic in
the final expanded state would be non-zero if F �= T .

Furthermore, if we also consider the existence of
obstacles, other problem arises. As the search progresses,
assuming in current node n the optimal α∗ is greater than
zero, the algorithm has to continue search because the
possibility of approaching the target yields a solution with
lower cost. The meaning of this situation is that at the
current node n the solution is not guaranteed to be optimal
and there is the change to find another node with a lower
overall cost for both motion and perception. As search
progresses, the nodes that could in principle have a lower
cost might be blocked by obstacles, or not have line of sight
with the target.

Therefore, it is important that the algorithm can go back
to the previous node n if it has the global lower cost after
exploring other alternatives. While for this node n there
will always be a positive optimal approaching distance, after
exploring the rest of the graph and increasing the lower
bound for the overall cost, this will be the node minimizing
the cost as all the other possibly better alternatives have
already been tested and are not valid final positions.
However, the capability of backtracking to previous nodes
is not possible in the graph described so far.

We thus propose an alternative extension to the original
underlying graph that is built from the grid discretization,
as shown in Fig. 4. On this extension one more node, Te,
is added to the original graph. The cost between nodes in
the original graph is c(n, n′) = ||n − n′||, and they stay
the same in the extended graph. However, new connections
are added between every node and the new node Te such
as their cost is c(n, Te) = λcp(||n − Te||). The heuristic
value of this node is zero, hpp(Te, T ) = 0. Therefore, when
expanding node n, not only its grid neighbors are added
to the priority queue with the respective priority f (n′), but

Fig. 4 Extending the underlying graph with an additional node Te,
which must be reached to finish search

also the node Te is added with priority f (Te) = g(S, Te) =
g(S, n) + λcp(||n − Te||), where n is the last grid position
expanded.

3.5 Stopping Condition

Using the extended graph described before, the stopping
condition becomes trivial. In order for search to stop with a
feasible path for the robot, the node Te has to be expanded.
In that case, search stops after expanding a node with
heuristic equal to zero. Moreover, until now obstacles which
occlude the target have not been considered. So, when
expanding the node Te it is necessary to test with ray casting
if there is line of sight between the last position of the path in
the grid and the target. If the evaluation is successful, search
stops because the optimal path has been found.

As there can be multiple entries in the priority queue for
the node Te which come from connections with different
grid positions, it is necessary to memorize for each one what
was the last grid position m visited. When the ray casting
test results in a non-obstructed line of sight to the target, the
position m becomes F , and the g values are used to find that
optimal path from S to F , exactly as done in A* for motion
planning.

Furthermore, it is possible that the ray casting fails
and search has to continue. In that case, even though the
heuristic is consistent, the node Te can be expanded multiple
times. All the other nodes from the original graph built from
the grid can never be expanded more than once, and as such
are added to a closed list.

Finally, in the new extended graph the heuristic in the
goal state is always zero, so we can drop the constraint
cp(0) = 0 in order to have a consistent heuristic. The
multiple expansion of Te may seem contradictory to the fact
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Fig. 5 Given a sensing target and a maximum perception range rp ,
there is a set of candidate goal positions (green circle with radius rp).
From those positions, not all are feasible because obstacles can block
line of sight to the target. The darker green represents feasible goal
positions

that the heuristic is consistent, but can be explained as an
error in the cost of connections to the state Te. When ray

casting fails from node n to T , the cost of the connection
from node n to node Te should have been infinity instead
of λcp(||n − T ||). Therefore, this expansion of Te should
not have existed, and the first valid expansion will terminate
search.

As we show in Fig. 5, there is candidate and feasible
final path positions. For all the nodes outside of the circle,
the connection to node Te is infinity. For the grid positions
inside the circle, the cost of the connection to Te depends
on the distance to the target. This is known and used when
building the extended graph. Obviously, when the distance
to the target is more than the maximum sensing range rp, the
connection to Te is infinity and therefore unfeasible sensing
distances are never considered during search.

The feasible positions are determined using ray casting.
That operation could be done in the beginning too in order
to have a correct cost in the connections to Te (again, cost
is infinity to non-feasible final path locations). However,
ray casting is an expensive operation, so we only test for
feasibility after expanding Te, updating the cost to infinity

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 6 PA* search for 2 values of λ and quadratic perception cost: map
has 8 grid positions, from which 6 are reachable by the robot; con-
nectivity between feasible robot positions is represented with dashed
black lines; the maximum sensing range is shown with the red circle
around the target (red cross), so all grids points except one are close
enough to perceive the target; each grid point, which is a graph node,

has a g(S, n) cost and a heuristic estimate h(n, T ); each grid point is
connect to the node Te of the extended graph; the priority value of Te

with a connection to each point shown as fTe in the respective image;
red arrows represent the optimal approach distance for the heuristic in
each point and the red dashed line the optimal perception distance in
the heuristic for each point
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in case ray casting fails during search, meaning there is no
line of sight from that position to the target.

In conclusion, the stopping criteria can be stated as
reaching node Te (with a connection from node n) when ray
casting from n to T returns a feasible line of sight from grid
position n to the target, with n becoming the final path
position F .

3.6 Example with Multiple Feasible Sensing
Positions

We show in Fig. 6 two PA* searches with different values
for the trade-off parameter λ. In Fig. 6a we have a simple
environment where black lines represent obstacles. We
assume the robot can only be in 8 positions (represented
with circles, where the big circle in the upper left corner is
the robot in its initial position). The vertical and horizontal
distance between grid points is 1 unit. From those 8
points only 6 are reachable, which are connected to the
initial position with the dashed lines. In Fig. 6b the target
position is shown with a red cross, and the red region
represents a circle with radius rp, the maximum sensing
range. Therefore, all the points inside the red region could
perceive the target if there were no obstacles. The bottom
left grid point is the only position from where the target
cannot be sensed.

The perception function is quadratic, with cp(||n−T ||) =
||n − T ||2 when ||n − T || < rp, and infinity otherwise.
In the first example, the weight parameter λ = 0.5, so the
optimal sensing distance is d∗

s = 1. For each point the
heuristic cost represents the minimal weighted sum of an
approach distance and the cost of a perception distance. The
approach distance, α∗d , is represented with a red arrow,
and the perception distance for the heuristic, (1 − α∗)d , is
represented with a red dashed line.

The reachable points are all connected in a line, and as
shown in Fig. 6 they are Point 1 to Point 6, which are nodes
n1 to n6 in the graph representation. In order to find the
optimal path from n1 to perceive the target, the algorithm
starts by expanding n1 in Fig. 6c. This node is not the goal
because search only stops after expanding the node Te in
the extended graph. The successors of n1 are node n2 with
priority f2 = 2.7 (= g2+h2 = 1+1.7), as shown in Fig. 6d,
and node Te with priority fTe = 2, as shown in Fig. 6c.
These two nodes are added to the priority queue. Because
Te has lower priority, it is the next expanded node, and the
stopping criteria is tested with ray casting, but fails because
there is no line of sight to the target from n1 as shown in
Fig. 6c.

In the next iteration the only node in the priority queue is
n2, which is expanded. The next node added to the priority
queue is n3 with priority f3 = g3 + h3 = 2 + 0.9 = 2.9,
because it is the only grid neighbor to n2 that was not

expanded before. The connection to Te from n2 has infinite
cost because it is beyond the maximum sensing range to the
target. As such, Te is not added to the priority queue this
time.

The next and only node in the priority queue is n3, shown
in Fig. 6e, which adds Te to the priority queue again, now
with priority (3.0). In this iteration, the node n4 is also added
with priority (3.5). There is now 2 nodes in the priority
queue, and the first expanded is again Te because it has
the lowest priority. Using ray casting, the algorithm finds
that n3 has no obstructions and can perceive the target.
Therefore, the stopping criteria is met and search stops.
Node n3 is the final position F , and the optimal path to
perceive this target with λ = 0.5 is ρ = {n1, n2, n3}, as
shown in Fig. 6i, with cost of 3 units. Due to the specific
parameters used, nodes n4 to n6 shown in Fig. 6f, g and h
are never expanded.

As a side note, it is possible to see in Fig. 6f and h that the
heuristic distance for perception takes the whole distance
from the node to the target, and as such f = g + h = fTe .

In the second example, λ = 4, making the perception
cost bigger in comparison to the motion cost, and as such
it is expected for the optimal solution to move closer to the
target in order to reduce the perception distance. Again, in
order to find the optimal path from n1 to perceive the target,
the algorithm starts by expanding n1 in Fig. 6j. This node
has successors node n2 with priority f2 = 3.2 (= g2 +h2 =
1 + 2.2), as shown in Fig. 6k, and node Te with priority
fTe = 16, as shown in Fig. 6j. These two nodes are added
two the priority queue.

Because n2 has lower priority, it is the next expanded
node. The next node added to the priority queue is n3 with
priority f3 = g3 + h3 = 2 + 1.4 = 3.4, because it is the
only grid neighbor to n2 that was not expanded before. The
connection to Te from n2 has infinite cost again, not being
added to the priority queue.

The next node in the priority queue with lowest priority
is n3, shown in Fig. 6l, which is expanded and adds Te to the
priority queue again, now with priority 10. In this iteration,
the node n4, the only not expanded neighbor, is also added
with priority 3.9. There is now 3 nodes in the priority queue,
n4 with priority 3.9 and Te twice with priorities 16 and 10.
The next expanded is n4, shown in Fig. 6m, which adds
again Te with priority 7.0, and n5 with priority 5.4, as shown
in Fig. 6n.

In the next iteration n5 is expanded, adding Te to the
priority queue with priority 12 and node n6 with priority
f6 = 5.0 + 0.9 = 5.9. Again all the nodes Te added to
the priority queue have higher cost, so the next expanded
node is n6, from Fig. 6o, and Te is added one last time, with
priority 9. At this point the priority queue has 5 nodes, all
of them being Te, with priorities 7, 9, 10, 12 and 16. The
first expanded is Te with a connection from n4, shown in
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Fig. 6m, but the stopping criteria fails with ray casting being
blocked by obstacles. Finally, the node Te with connection
from n6 and priority 9 is expanded, and search stops as n6
has line of sight with the target.

Having met the stopping criteria, node n6 is the final
position F , and the optimal path to perceive this target
with λ = 4 is ρ = {n1, n2, n3, n4, n5, n6}, as shown in
Fig. 6p, with cost of 9 units. As we can see, the priority of
expanded nodes always increases, which is a characteristic
of consistent heuristics.

For λ = 3, both solutions with paths stopping in n3 and
n6 have the same cost, with 8 units.

4 Approximate Visibility Maps

In this section we will summarize a technique for effec-
tive determination of the observability capabilities of robots
in 2D gridmaps. We show how to use morphological oper-
ations in order to build approximate Visibility Maps [16].
These maps can then be used to obtain information that,
when considered in the heuristic of perception planning, can
improve the search efficiency.

We assume robots have a circular shape, and a maximum
sensing range, rp. The goal of visibility maps is to
efficiently determine the observability of a robot in a certain
environment, i.e., determine what regions can be sensed
from any point that is reachable from the initial robot
position. The algorithm is a function of robot size and
sensing range. We show in Fig. 7 a simulated environment
with obstacles, and the resulting Approximate Visibility
Map (A-VM).

Robots move along the environment, which we assume
is represented as a gridmap. Given the robot’s geometric
properties, there will be some regions that are accessible
to the robot, and some regions that will be unaccessible.
Furthermore, robots can use their sensors to perceive inside
unaccessible regions.

(a) (b)

Fig. 7 Given a black and white gridmap, an omnidirectional circular
robot (green), and a sensing range (green circumference), the A-VM
determines what can be sensed from reachable positions

Considering maps are discrete representations of the
environment, there is a duality between images and maps,
because both of them are a discrete sampling of the world.
Our algorithm performs purely geometric operations on the
map in order to obtain all the regions that can be sensed by
the robot, using image oriented techniques. The first step of
our algorithm is to transform an occupancy grid map (with
probabilities of occupation in each cell) into a binary map
of free and obstacle cells, using a threshold. The occupancy
grid can be obtained through SLAM methods.

In order to determine the robot-dependent map, we use
the partial morphological closing operation, which can be
applied on images using a structuring element with a given
shape to represent the robot. Here the structuring element
is a circle representing a circular robot. The domain is a
grid of positions G. The input is a black and white binary
image representing the map (Fig. 8a), with M being the set
of obstacle positions, and with every pixel corresponding to
a node in the underlying graph. The structuring element, R,
represents the robot. The morphological operation dilation
on the obstacle set M by R is

M ⊕ R =
⋃

z∈R

Mz (26)

where Mz = {p ∈ G | p = m + z, m ∈ M}, i.e., the
translation of M by z over the grid G.

Applying the dilation operation to the obstacles in the
map (black pixels in the map image), the algorithm inflates
the obstacles by the robot radius, which can be used to find
the free configuration space in Fig. 8b.

Cf ree = {p ∈ G | p /∈ M ⊕ R} (27)

The same approach is used in most motion planning
algorithms, with obstacle inflation being used to find the
configuration space and do path planning while avoiding
collisions. Indeed, inflation is the solution used, for
example, in the ROS navigation package. [11].

The configuration space shows where the robot center
can be, representing the feasible positions for the robot
center, but not giving any information of what regions can
be actuated or sensed by the robot.

From Cf ree, it is possible to find the points in the free
configuration space that are reachable from the initial robot
position S, which belong to the reachable set Reach(S).

Reach(S) = {p ∈ Cf ree | p connected to S} (28)

The reachability set Reach(S), in Fig. 8d, is the set of
points in the free configuration space that are connected to
the initial position S, i.e., there is always a path between
points in Reach(S) and S through adjacent cells in the
free configuration space. The reachable space can easily be
obtained using the image processing technique labeling.
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The partial morphological closing is obtained by applying
the second morphological operation (erosion) to a subset of
the original dilated image. Thus here the erosion is applied
to the complement of the reachable set Reach(S) instead
of being applied to the overall image with dilated obstacles
M ⊕ R. Because dilation and erosion are dual operations,
the partial morphological closing was computed by dilating
the reachable set instead. With this operation only positions
reachable from the starting position are considered.

A(S) = Reach(S) ⊕ R (29)

Using the partial morphological operation we determine
the actuation space, A(S), which represents the regions a
circular robot can touch with its body, given its radius and
an initial position.

If we think of a robot that actuates in the world, applying
the partial morphologic operation to an image map results in
the Actuation Map, in Fig. 8e, which represents the regions
of the environment that can be actuated by a robot, assuming
the actuation radius is equal to the robot size. If the actuation
range is smaller than the robot radius, this approach can still
be used to determine the actuation map A(S) by using a
smaller circle for the second dilation operation instead of
R. The regions outside the actuation space, U(S), cannot be
reached by the robot body, and thus cannot be actuated.

U(S) = {p ∈ G | p /∈ A(S) ∧ p /∈ M} (30)

As an example, we can consider a vacuum cleaning robot.
The configuration space represents the possible center posi-
tions, and A(S) represents the regions the robot can clean.
Finally, the unreachable regions are the parts of the environ-
ment the robot cannot clean. The unreachable regions might
result from the circular shape of the robot, that makes it
impossible for it to clean corners, as shown in Fig. 8.

Furthermore, if we consider the problem of perception,
a Visibility Map represents the regions of the input map

that are visible by the robot from some reachable position.
The sensing range is expected to be bigger than the robot
radius.

The easier approach to solve the visibility problem for
robots in a certain environment is to use a brute-force
algorithm. For each position in the map to be tested for
visibility, we only need to find a feasible robot position in
Reach(S) that has line of sight to the point being tested.
For that purpose we use the ray casting technique. This
approach is however very inefficient. If the robot moves in
an environment with unexpected and dynamic obstacles, the
visibility map needs to be updated frequently. Therefore,
using the brute-force would lead to high idle times.

4.1 Visibility from Critical Points

As an alternative to using the brute-force approach, we can
take the actuation space A(S) and consider it as a first appro-
ximation of the Visibility Map, because it shows the visible
points assuming a sensing radius equal to or smaller than
the robot size. However, in order to have a transformation
from the input image map to the complete Visibility Map,
we have to consider sensing beyond the robot radius.

The Approximate Visibility Map is built incrementally
from the first approximation given by A(S). The unreach-
able regions U(S) are divided in a set of different discon-
nected components Ul(S), which is useful because it allows
to determine additional visibility inside each one indepen-
dently. Each region Ul(S) has its unique openings to the
actuation space, from where visibility inside Ul(S) is pos-
sible. These openings are the frontiers, defined as the points
of the unreachable space that are adjacent to A(S), as shown
in Fig. 9a.

F l(S) = {p ∈ Ul(S) | ∃p′ : p′ is adj. to p ∧ p′ ∈ A(S)}.
(31)

(a) (b) (c) (d) (e)

Fig. 8 In (a) two possible positions for the robot are shown, the green
one being feasible, while in the red the robot overlaps with obstacles.
These positions correspond to green and red points in the configuration
space in (b), obtained by application of the morphological operation
dilation to the map (Cf ree is set of green regions). The morphological
closing is shown in (c). From the configuration space, the connected

parts to the initial position (gray robot) are determined, which results
in the reachable space presented in (d). If the second dilation operation
is only applied to the reachable space instead of all Cf ree, applying the
partial morphological operation to the reachable space, it is possible to
determine the actuation space, in (e)



J Intell Robot Syst

(a) (b)

Fig. 9 In a we show A(S) in white, in pink the unreachable regions
that connect with A(S), and in blue an example of a disconnected
unreachable region Ul(S). In b we highlight that disconnected region,
showing in dark blue the frontier segment points F li(S), and in red the
critical point c∗

li (S), and the expected visibility V cli
e (x) from a critical

point is shown in light blue, estimating visibility inside an unreachable
region through a frontier. Gray points of the unreachable region cannot
be visible from the critical point. The points from the Reachable Space
are shown in green

The frontier can be composed of disjoin segments F li(S),
and visibility inside the unreachable region should be
determined for each segment independently.

When determining visibility for a sensing range greater
than robot size, the additional visibility always comes from
points inside of Ul(S) with line of sight through F li(S).
Every viable line of sight inside the unreachable regions
passes through points in the frontier. Therefore, regions
without frontiers do not need to be checked, because they
are disconnected from the observable world by walls or
obstacles. Checking for the existence of frontiers reduces
the search of visibility only to the sensing-accessible parts
of the world.

There are multiple candidate positions that can sense
inside Ul(S), and all of them have to be in Reach(S), the
feasible positions for the robot center. In order to have the
true visibility map, all points from Reach(S) should be
considered.

The complete solution is computational expensive, so
an alternative was proposed, where the visibility inside
unreachable regions through each frontier segment is
considered only from one point of the reachable space.

As only one point is being used, the final visibility map
is an approximation of the ground-truth. In order to obtain a
good approximation, the point chosen has to maximize the
expected visibility inside the unreachable region. Given a
point p and a frontier F li(S) it is possible to determine an
expected visibility inside Ul(S), V

pli
e (S), as the area of an

annulus sector defined by the robot size, sensing radius, and
the frontier extremes.

In order to maximize the expected utility, a point closer
to the frontier is chosen, which is equivalent to having a

deeper and wider expected visibility inside Ul(S). For this
ideal point the sum of the distances to all frontier points is
minimized:

c∗
li (S) = argmin

p∈Reach(S)

∑

ζ∈F li (S)

‖p − ζ‖2 (32)

where c∗
li (S) is called a critical point, which is explained in

Fig. 9b. For each frontier F li(S) there is one critical point.
If we determined visibility inside unreachable regions from
all the points in the reachable space, we would obtain the
true visibility map.

In order to deal with occlusions, we determine the true
visibility of V cli

e (S) from critical points c∗
li (S) using ray

casting, considering a maximum sensing range.
Although the method is not efficient to determine the

full visibility, here we only calculate visibility from a small
set of points, with most having a high probability of being
visible.

By transforming the original large-scale brute-force task
in a set of small problems solved only using the critical
points, it is possible to use ray casting more efficiently to
determine visibility.

From each pair of frontier F li(S) and critical point
c∗
li (S), the algorithm determines the expected visibility

V cli
e (S). Then, in order to determine which points are part

of the visible regions from the critical point, we consider
occlusions using ray casting.

The algorithm determines the true visibility from the
critical point and through the corresponding frontier inside
an unreachable regions. Those points of true visibility define
the set V cli

t (S) ⊆ V cli
e (S).

The additional visibility V cli
t (S) corresponds to the

points inside Ul(S) visible from the critical point c∗
li (S)

(a) (b)

Fig. 10 In this figures the green region is the reachable set, Reach(S).
Critical points are represented as red dots. All the critical points and
respective extended visibility regions are presented in (a). The final
visibility map, shown in (b) is the union of the actuation space and the
extended visibility from all critical points
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through the frontier F li(S). Finally, the Approximate
Visibility Map is given by

V (S) = A(S)
⋃

li

V cli
t (S) (33)

After analyzing unreachable regions Ul(S) indepen-
dently, we were able to determine the visibility inside each
one. The overall visibility for the all map is then simply
given by the union of the actuation space with the indi-
vidual visibilities V cli

t (S) obtained for each region Ul(S),
as shown in Fig. 10. We show the overall technique in
Algorithm 1.

Algorithm 1 Approximate Visibility Map: Creating visibil-
ity maps from grid maps

Require: Occupancy Map Mocc, robot initial position S,
shape R, maximum sensing range rp

1: M ← im2bw(Mocc) � b&w image from gridmap
2: Cf ree ← dilation(M, R) � inflation of obstacles
3: Reach(S) ← labeling(Cf ree, S) � reachable space

from S

4: A(S) ← dilation(Reach(S), R) � partial morph.
closing

5: V (S) ← A(S) � visibility initialized with A(S)

6: U(S) ← unreachable(A(S), M) � unreachable regions
7: {Ul(S)} ← labeling(U(S)) � find disconnected regions
8: for each Ul(S) do
9: F l(S) ← frontier(Ul(S), M) � find frontiers

10: {F li(S)} ← clustering(F l(S)) � disconnected
frontiers

11: for each F li(S) do
12: c∗

li (S) = argmin
z∈Reach

∑

ζ∈F li

‖z − ζ‖2 � critical point

13: V cli
e (S) ← expected visibility(Uli, F li , c∗

li , rp)
14: V cli

t (S) ← ray casting(V cli
e (S), c∗

li (S))
15: V (S) ← V (S)

⋃
V cli

t (S)

16: end for
17: end for
18: Return V

5 Perception Planning with A-VM

In this section we show that with an initial fixed cost of
building the Approximate Visibility Map (A-VM), it is
possible to use the critical points from the A-VM to improve
the search heuristic of PA* [14].

The visibility map gives information on the feasibility
of perception, while not giving any information about the
positions fromwhere targets can be perceived. Nevertheless,
the transformation provides structured information about

the environment, and it is possible to separate grid points
into three categories:

1. Reachable Space: points that can be reached by the
robot center, Reach(S);

2. Actuation Space: points that can be “touched” by the
robot body, A(S);

3. Unreachable Regions: points the robot cannot cover
with its body and motion only, because they lie in
positions not traversable by the robot, U(S).

The second category is a superset of the first. While
there is no perception information for targets in the first
category, it is possible to gain information about points in
the second category only, i.e., T ∈ (Actuation Space) \
(Reachable Space). We know these targets T have a distance
to the reachable set not bigger than the size of the robot.
Therefore, with a small search bounded by the robot size,
it is possible to find the closest point p in the reachable set
minimizing distance to the target T . The distance ||p − T ||
is a lower bound for the perception distance. However, in
this specific case the gained information will probably have
only negligible effects on the search efficiency.

The third category of points, those that belong to the un-
reachable regions, is the category with the greatest benefits
in terms of information gain from the Visibility Map trans-
formation. Targets in the unreachable regions have asso-
ciated a critical point, which gives information about a
possible position from where they can be sensed. Further-
more, the distance between a target in region Ul(S) and a
critical point c∗

li (S) can be used as a better estimate of the
perception distance in the heuristic for perception planning.
Therefore, we will focus our discussion only to points that
belong to the third category, Unreachable Regions.

Considering the base heuristic of PA*, independently
of the perception cost function, we know it is associated
with the cost of approaching the target in order to sense it
from a better sensing position, reducing the perception cost.
Moreover, the heuristic does not consider obstacles, and the
best sensing position lies in the straight line between the
current node n and the target T . We assume we can solve
the heuristic minimization problem (Eq. 7) for a specific
cost function cp, and find the optimal sensing distance d∗

s .
Assuming 0 ≤ d∗

s ≤ ||n − T ||, the heuristic can be
given as

hpp(n, T ) = ||n − T || − d∗
s + λcp(d∗

s ) (34)

The visibility map gives information about the minimum
sensing distance from any point in the reachable space to
a point in the unreachable region, which can be used in
the heuristic instead of the optimal sensing distance d∗

s

given by the straight line solution, as shown in Fig. 11.
When using the Approximate Visibility Map, and being the
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(a) (b)

Fig. 11 Impact of using the distance to the critical point, dc(T ), as the
guaranteed minimum perception distance on the improved heuristic h1

distance from critical point to T ∈ Ul(S) (≡ T l) equal to
dc
li(T ) = ||T − c∗

li (S)||, the heuristic becomes:

h1(n, T l) =
⎧
⎨

⎩

||n − T l || − dc
l (T

l) + λcp(dc
l (T

l))

∀||n − T l || ≥ dc
l

λcp

(
dc
l (T

l)
) ||n − T l || < dc

l

(35)

where dc
l (T

l) = min
i

dc
li (T

l). This applies to the case

dc
l (T

l) ≥ d∗
s , otherwise the original heuristic hpp is used.

Here we are not considering the possibility that dc
l is bigger

than rp, but in that case the target would not be visible.
In order to use this heuristic as admissible and guarantee
an optimal path, we only need to prove the distance from
unreachable T l to any other point in the reachable space is
bigger than dc

l (T
l).

In the unreachable regions, the minimum sensing dis-
tance is the smallest distance from the target to the corres-
ponding critical point. Again, that distance can be used
as the minimum sensing distance in the PA* heuristic to
improve the search speed.

Theorem 3 Distance of points inside unreachable regions
to the critical point is minimal in comparison to distance to
any other point in the Reachable Space.

Proof We assume only one critical point and frontier, for
sake of simplicity. As shown in Fig. 12, we consider only
the frontier extremes, the two obstacles at points O1(0, −ζ )

and O2(0, ζ ), with ζ < R, being R the robot radius. The
frontier is between those two obstacles. If the robot starts at
some point with x > 0, then the unreachable region consists
of points with x ≤ 0. If there were other obstacles besides
the points O1 and O2, there might be unreachable points
with x > 0, but those are not relevant to this proof, and as
such we kept the minimum number of obstacles.

Fig. 12 Given two obstacles at positions (0, ζ ) and (0, −ζ ), the set
of points in the reachable space that can sense the point (a, b) is
represented with the filled region; the critical point (

√
R2 − ζ 2,0) is

the point with the minimum distance to any (a, b) in the unreachable
region

Using the same reasoning, only points of the reachable
space with x > 0 are interesting because those are the
only ones that can be used to have visibility inside the
unreachable region.

Following this description, the critical point results
as the point that is at R distance from both obstacles,
(
√

R2 − ζ 2, 0). For any point (a, b), with a < 0, the
distance to the critical point has to be the minimum distance
between (a, b) and any point in the reachable space,
(α′, β ′), with α′ > 0. As we can see in Fig. 12, for any point
(α′, β ′) there is a point (α, β) in the border of reachability
that has lower distance to (a, b). And the distance between
(a, b) and (α, β) is given by

d2 = (γ + R cos θ)2 + (R sin θ)2

= γ 2 + R2 cos2 θ + 2γR cos θ + R2 sin2 θ

= γ 2 + R2 + 2γR cos θ (36)

As we can see from the equation, the distance is
minimized when increasing the angle θ , and the angle θ

is maximized at the critical point. Thus, we prove the
distance to any unreachable target is minimized by the
critical point.
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Only minimal errors exist due to discretization. While in
the continuum space there is only one point that minimizes
the distance to all frontiers, in the gridmap, there might
be two points that minimize the distance, with the same
cost. If we take into account the discretization error when
determining the minimal distance, then it is possible to use
the distance to the critical point to still obtain an admissible
heuristic. That can be accomplished by subtracting the
quantization error from the distance to the critical point.

With heuristic h1 we can also use the distance to the
critical point, dc, for the stopping condition. Given that dc is
proved to be minimal, we can change the cost of connections
to node Te if their distance is less than the critical point
distance to the target, reducing the number of points to be
tested with ray casting.

c(n, T l
e ) = ∞ , ||n − T l || < dc

l (T
l) (37)

However, it is still possible to improve the proposed
heuristic. Instead of using the critical point to have only a
lower bound estimate on the perception distance, we can
use it to estimate a lower bound for motion cost as well, as
shown in Fig. 13.

At first we assume the optimal sensing distance d∗
s is

lower than the distance to the critical point, dc
li . Thus, from

any position with line of sight to the target (robot at point
x > 0 in Fig. 14), the robot will move to a point as close
as possible to the unreachable target, i.e., a border of the
reachable space. Therefore, we know that the minimum
motion cost will be the distance between the current node n

and the closest point in the border of the Reachable Space.
From Fig. 14, we can see that in the worst case scenario, the
distance between the critical point and any other point of the
Reachable Space border, with line of sight to the target, is
2R. Thus, the new admissible heuristic becomes:

h2(n, T l) = min
i

(
max(||n−c∗

li (S)||−2R, 0)+λcp(dc
li (T

l))
)

(38)

(a) (b)

Fig. 13 Impact of using the critical point location for a better estimate
of the motion cost on the improved heuristic h2

Fig. 14 Worst case scenario for the distance between critical point
and the border of reachable space (the two half circumferences with
x > 0), from Fig. 12: for the worst case, the distance between obstacles
points is exactly the diameter of the robot, and the further point in the
border of the reachable space is at distance 2R from the critical point

We can also update the heuristic to consider the case
d∗
s > dc

li(T
l), using δ = max(d∗

s − dc
li(T

l), 0).

h2(n, T l) = min
i

(
max(||n − c∗

li (S)|| − 2R − δ, 0)

+λcp(dc
li(T

l))
)

(39)

Finally, the first heuristic h1 might be a better estimate in
cases there is line of sight between n and T , so in order to
always use the best heuristic, we choose the one closest to
the true value, considering they are both admissible.

hAV M(n, T l) = max(h1(n, T l), h2(n, T l)) (40)

Theorem 4 Heuristic using Approximate Visibility Map
dominates original heuristic in PA*.

Proof The original heuristic hpp(n, T ) in PA* is always less
than the real cost, because it uses the optimal solution for the
euclidean distance without any obstacles, assuming optimal
motion and perception distances. The heuristics using the
A-VM replace the perception and motion costs by better
estimates, but still underestimating the real cost as shown
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in Figs. 12 and 14 and Theorem 3. Thus the estimates
h1(n, T ) and h2(n, T ) are always greater or equal than
hpp(n, T ), because we proved the sensing distance to the
critical point is the minimal perception distance. Moreover,
if both h1(n, T ) and h2(n, T ) are admissible heuristics,
the maximum operation keeps that property. Therefore,
hpp(n, T ) ≤ hAV M(n, T ). And because hAV M(n, T ) is
admissible, it is also dominant over hpp(n, T ).

Like we did in Eq. 37, we can use the added information
of the critical point location to update the cost of connecting
nodes to Te, filtering the clearly unfeasible positions. That
allows not only to reduce the size of the priority queue that
manages the PA* search, but also the number of ray casting
operations. Nodes n from where perception is not feasible
are updated such as c(n, Te) = ∞.

Given a target T l in an unreachable region, we consider
the distance from the target to the critical points, dc

li(T
l).

We know that frontiers F li are generated by the robot body,
which is a circle with radius R. Therefore, the distance
between frontier points and the critical point c∗

li is R. Using
this information, we can determine an annulus sector from
the target to the possible frontier points with a distance R

around the critical point, and guarantee that any feasible
position with line of sight to the target has to be in that
annulus sector. So, determining the maximum possible
angle range between target and frontier points allows us to
filter the feasible points for perception.

Assuming a critical point c∗
li and target aligned with the

x axis, as in Fig. 15, the maximum angle to the frontier is
given by:

θ
f
li (T

l) = max
φ

atan

(
R sin(φ)

dc
li(T

l) − R cos(φ)

)
(41)

Because dc
li(T

l) > R, we can solve the equation and find
the optimal φ∗

cos(φ∗) = R

dc
li(T

l)
(42)

Fig. 15 Determining the maximum angle range from the target to the
frontier points, considering the distance to the critical point and the
robot size R

and the maximum angle to the frontier θf becomes

θ
f
li (T

l) = atan

⎛

⎜⎝
R

√(
dc
li(T

l)
)2 − R2

⎞

⎟⎠ (43)

Then, we are able to filter the feasible nodes n for
perception of the target using the angle between n and the
target T l , θn, and the angle between the target and the
critical points c∗

li , θ
c
li .

c(n, Te) =
⎧
⎨

⎩

λcp(||n − T l ||) ||n − T l || < dc
l (T

l)∧
∃i : θc

li − θ
f
li ≤ θn ≤ θc

li + θ
f
li∞ otherwise

(44)

6 Results

In this section we present several experiments that show
the benefits of each improvement proposed for the PA*
heuristics. Only target points that are located in unreachable
regions are considered for this analysis. Those are the
only ones associated with critical points, thus being the
regions where it is possible to use structured information
from visibility maps to help the performance of PA* by
improving its heuristics. For targets in other regions, the
algorithm uses just the base PA* heuristic, resulting in no
negative impacts on efficiency. We consider 5 variants of
PA*: base PA*, PA* with improved heuristic h1 (PA1), PA*
with h1 and use of Eq. 37 (PA1R), PA* both improved
heuristics h1 and h2 and Eq. 37 (PA1R2), and finally
PA* with both h1 and h2 and Eq. 44 (PA1R2A). The
color meaning of figures in this section is explained in
Table 1. Search colors are applied only on top of the
white regions of the map representation (free configuration
space or reachable space, depending on PA* version in
consideration), because white regions represent all the
possible nodes that can be visited in search. Point colors are

Table 1 Color meaning for map, search and points
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used on top of the layer with search colors. In the map colors
layer, light gray is used only for the improved PA* versions
to represent the visible parts of the unreachable space. For
the layer with search colors, purple represents the expanded
nodes that are considered feasible locations for perception
(c(n, Te) has a finite cost), and orange represents the nodes
tested as goal position using ray casting.

First of all, we evaluate the impact of the first heuristic
improvement h1, from Eq. 35. In this heuristic the distance
to the critical point dc is used as an indication of what is the
minimum perception distance to the target. If the distance to
the critical point is greater than the optimal sensing distance
from the base PA*, d∗

s , the heuristic can use this distance
to make a more realistic estimate of the cost to perceive the
goal. The impact of this heuristic improvement is greater
when the difference to the base heuristic is bigger, i.e., when
the λ parameter is higher (lower optimal sensing distance
of PA*, d∗

s ), and the distance to the critical point greater.
In those cases, for targets in unreachable regions whose
real minimum perception distance is large, the base PA*
algorithm will reach the critical point but not consider it
as the final position, and search will continue expanding
nodes with lower f values, assuming it might be possible
to perceive the target from a smaller and better distance.
Then, only after having explored a large portion of the
space, the algorithm will find the critical point to be the
right perception position, and test it with ray casting in
the stopping condition. However, using the information
from the visibility maps, i.e., the distance to the respective
critical point (or minimum distance in case of multiple
critical points from where the target can be perceived),
the improved heuristics does not consider an unrealistic
perception distance. Therefore, it converges much faster to
the solution, because it knows shortly after reaching the
critical point that no other nodes can have lower cost, and
node expansion is greatly minimized. Figures 16b, 17, 18b,
19 and 20b show the great impact of this heuristic for small
d∗
s in comparison to dc

l , while Figs. 21b, 22, 23, 24 and 25b
show the much smaller impact of this heuristic for similar
d∗
s and dc

l .
Moreover, when using the improved heuristic h1 it is also

possible to use the distance to the critical point, dc, as an
additional improvement on efficiency by filtering the ele-
ments that are tested with the stopping condition (PA-1R).
Given the distance to the critical point being the minimum
perception distance possible, we know that nodes with lower
distances to the target cannot be the last position of the path,
and obstacles are guaranteed to be in between, not allow-
ing line-of-sight. In the base PA* algorithm, all expanded
nodes are connected to the final node Te if their distance is
less than the maximum perception range. However, in our
improved heuristic, using Eq. 37, only nodes with a distance
to the target of at least dc

l are connected to Te, thus reducing

(a) (b)

(c) (d)

Fig. 16 S1: Node expansion and ray casting results for search on
200x200 gridmap, R = 13, rp = 130, λ = 0.04, quadratic perception
cost function, d∗

s = 12.5, and target inside unreachable region with
large distance to critical point

(a) (b)

(c) (d)

Fig. 17 S2: Node expansion and ray casting results for search on
200x200 gridmap, R = 13, rp = 130, λ = 0.04, quadratic perception
cost function, d∗

s = 12.5, and target inside unreachable region with
large distance to critical point
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(a) (b)

(c) (d)

Fig. 18 S3: Node expansion and ray casting results for search on
200x200 gridmap, R = 13, rp = 130, λ = 0.04, quadratic perception
cost function, d∗

s = 12.5, and target inside unreachable region with
large distance to critical point

the number of nodes tested with ray casting as feasible
final positions of the path. This is an important contribution,
because ray casting is expensive to compute, and enables us
to improve the search time. As seen in all figures, the cloud
of points that are expanded remains the same as before, but
this feature reduces greatly the number of nodes considered
feasible, and as such it reduces the number of ray casting
operations to test for line of sight (the location of ray cast-
ing tests is represented as orange in the figures). While the
h1 heuristic has small impact in some scenarios, the PA-
1R variant has a good impact independently of λ and dc

l , as
confirmed in Figs. 23c to 25c.

As showed in the previous section, h1 only updates
the perception distance estimate, being agnostic to the
critical point positions. Therefore, many times h1 makes
the search expand nodes in undesirable directions, possibly
contrary to the critical points, not directing search into the
only regions from where the target is observable. Again,
the expansion with h1 might still result in a waste of
computation resources, even tough it is better than the
original heuristic. For that purpose, we contributed h2, in
Eq. 39, which directs the node expansion toward the points
from where targets are observable, i.e., the critical points.
As shown before, this new improvement can result in a great
search efficiency boost. Besides being useful for expanding
directly toward the best critical point if there are multiple

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 19 S4, S5 and S6: Node expansion and ray casting results for
search on 375x200 gridmap, R = 13, rp = 130, λ = 0.04, quadratic
perception cost function, d∗

s = 12.5, and target inside unreachable
region with large distance to critical points, for 3 different target
positions, T1, T2 and T3

ones (Figs. 26 and 19), this heuristic is also useful to
direct search toward the feasible regions for perception of
the target, i.e., the critical point, even when there is only
one. For the special case where the target, initial position
and critical point are aligned, as shown in Fig. 16, the
h1 heuristic is dominant, and h2 has very little impact.
However, as shown in many other figures, the improvements
from h2 can have a great impact on search efficiency. Even
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(a) (b)

(c) (d)

Fig. 20 S7: Node expansion and ray casting results for search on
200x200 gridmap, R = 13, rp = 130, λ = 0.04, quadratic perception
cost function, d∗

s = 12.5, and target inside unreachable region with
large distance to critical point

(a) (b)

(c) (d)

Fig. 21 S8: Node expansion and ray casting results for search on
200x200 gridmap, R = 13, rp = 130, λ = 0.04, quadratic perception
cost function, d∗

s = 12.5, similar to S1, but target inside unreachable
region with small distance to critical point

(a) (b)

(c) (d)

Fig. 22 S9: Node expansion and ray casting results for search on
200x200 gridmap, R = 13, rp = 130, λ = 0.04, quadratic perception
cost function, d∗

s = 12.5, similar to S2, but target inside unreachable
region with small distance to critical point

(a) (b)

(c) (d)

Fig. 23 S10: Node expansion and ray casting results for search on
200x200 gridmap, R = 13, rp = 130, λ = 0.007, quadratic perception
cost function, d∗

s = 71.4, and target in unreachable region with
dc
l (T ) ≈ d∗

s
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(a) (b) (c)

Fig. 24 S11: Node expansion and ray casting results for search on
375x200 gridmap, R = 13, rp = 130, λ = 0.007, quadratic perception
cost function, d∗

s = 71.4, and target in unreachable region with
dc
l (T ) ≈ d∗

s

though for Fig. 18 the PA1R and PA1R2A variants have a
similar cloud of expanded nodes at the end of search, an
analysis of the initial expansion behavior, from Fig. 27, is
useful for understanding what differentiates each variant.
While PA* just starts expanding toward the target position,
even though it is blocked by a wall, PA1 expands more
uniformly, using the information that the target cannot be
observed from a small distance. The PA1R variant expands
exactly like PA1, but it does not use unnecessary ray casting

(a) (b)

(c) (d)

Fig. 25 S12: Node expansion and ray casting results for search on
200x200 gridmap, R = 13, rp = 130, λ = 0.007, quadratic perception
cost function, d∗

s = 71.4, and target inside unreachable region with
dc
l (T ) > d∗

s

(a) (b)

Fig. 26 Progression of node expansion with multiple critical points

operations, resulting in a faster expansion. Finally, PA1R2
and PA1R2A use the critical point location in the heuristic,
and as such start expanding in the direction of the critical
point. In the Fig. 20 example, the impact of h2 is visible
even at the final search step.

This new heuristic is also capable of being of great help
for lower λ, where the d∗

s and dc might be similar and where
h1 introduces less gains, as shown in Figs. 24 and 25.
Heuristic h2 improvements are less dependent on λ, because
the heuristic does not improve only the estimate for the
perception distance, but also the motion cost estimate, using
the critical points.

When there are multiple critical points, h2 can produce
great differences. As shown in Fig. 19, for the T1 target
positions, the target, optimal and closest critical point and
initial position are aligned, so h1 and h2 produce similar

(a) (b)

(c) (d)

Fig. 27 Initial stage of search for problem S3, Fig. 18
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Table 2 Number of expanded nodes (Exp.), number of stopping
condition tests (SC) and ray casting operations, and computation time
for the 12 test scenarios and the 5 studied variants of PA*

Test Exp. (#) SC (#) Time (ms)

S1 PA 33312 11795 63

PA1 1963 11 1

PA1R 1954 2 2

PA1R2 1947 2 3

PA1R2A 1946 1 3

S2 PA 33789 12272 72

PA1 11076 3694 24

PA1R 7765 383 8

PA1R2 5348 329 9

PA1R2A 5020 1 5

S3 PA 33813 12296 66

PA1 15604 6684 29

PA1R 9324 404 8

PA1R2 9110 404 10

PA1R2A 8707 1 9

S4 PA 65092 15349 159

PA1 1122 25 1

PA1R 1101 4 1

PA1R2 1096 4 1

PA1R2A 1093 1 2

S5 PA 70138 20395 150

PA1 51628 17425 105

PA1R 36571 2368 68

PA1R2 1652 39 2

PA1R2A 1614 1 2

S6 PA 65108 15365 114

PA1 58165 15365 106

PA1R 46809 4009 65

PA1R2 24147 2614 43

PA1R2A 21534 1 24

S7 PA 11822 4069 18

PA1 9741 4069 14

PA1R 6126 454 6

PA1R2 3620 454 6

PA1R2A 3185 19 4

S8 PA 1792 1 1

PA1 532 1 0.5

PA1R 532 1 0.5

PA1R2 532 1 0.5

PA1R2A 532 1 0.5

S9 PA 5143 168 6

PA1 3961 165 8

PA1R 3941 145 5

PA1R2 3778 123 6

PA1R2A 3656 1 5

Table 2 (continued)

Test Exp. (#) SC (#) Time (ms)

S10 PA 9348 4503 21

PA1 8288 3973 18

PA1R 7366 3051 16

PA1R2 5310 2314 14

PA1R2A 3003 7 3

S11 PA 35430 12681 87

PA1 33638 11806 90

PA1R 30128 8296 80

PA1R2 1157 1 12

PA1R2A 1157 1 13

S12 PA 10271 4729 16

PA1 10159 4729 17

PA1R 6560 1130 8

PA1R2 3493 854 4

PA1R2A 2686 47 2

results. On the other hand, for T3, the bottom critical point
is optimal, and h2 is better at directing search toward it.
However, more interesting here is the case of T2, where the
optimal critical point is the top one, while the minimum
perception distance to the target is the distance to the bottom
critical point. In that case, h1 will expand nodes using the
distance between the target and the bottom critical point in
the heuristic, resulting in a lot of unnecessary expansions
while search tries to find a solution with a smaller perception
distance. On the other hand, h2 uses the trade-off between
perception and motion cost, and immediately stops search
at the top critical point, knowing it is not worth to
expand more and thus greatly reducing the number of node
expansions.

Table 3 Computation time to construct the Visibility Maps of each 12
test scenarios

Test (#) Time (s)

S1 0.90

S2 0.99

S3 0.95

S4 1.32

S5 1.32

S6 1.32

S7 0.76

S8 0.92

S9 0.94

S10 0.93

S11 1.33

S12 0.89
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Fig. 28 Path planning for two robots (blue and red) which have to
perceive a set of regions of interest (green), minimizing both motion
and perception cost, in a 200x200 gridmap, with both robots having
size 13, rp = 130 and λ = 0.04; white represents actuation space, gray
the visible space, and black the obstacles or non-visible space

Finally, we consider the last variant, PA1R2A, using the
rule from Eq. 44. This case does not need much explanation,
as the results speak for themselves. Considering the
geometry of the environment, this variant limits the feasible
perception positions to the ones in front of a frontier,
resulting in a huge reduction of the nodes tested with ray
casting (orange in the figures), with great benefits in terms
of computation time. As a note, in the same way that PA1
and PA1R had the same node expansion cloud and were
only different in the number of expanded nodes that were
tested with ray casting, PA1R2 and PA1R2A have the same
expansion cloud and again they are only different in terms

Fig. 29 Comparison of average
number of nodes expanded by
PA* and PA* with Visibility
Maps (PA-VM) as a function of
λ, for both linear and quadratic
perception cost function

of the number of ray casting operations, also having a big
impact on scenarios with low λ and large optimal perception
distance d∗

s .
All the tested scenario’s details can be found in Tables 2

and 3, which shows that the time spent building the visibi-
lity maps can be gained back with 10 to 15 searches. The vi-
sibility maps calculation can also be done once before-hand,
as an offline pre-processing of the map, while PA* searches
can use its information for faster real-time operation. More-
over, operations to build the visibility map are highly paral-
lelizable, so it is possible to reduce its computation times
significantly.

We also run an experiment with multi robot path planning
for perception tasks, shown in Fig. 28. This problem has
two robots, and a set of regions of interest defined by the
user, that have to be observed by any of the robots, while
minimizing both the motion and perception cost with the
trade-off parameter λ. An algorithm to solve this problem
was already proposed [17], which is based on running
PA* from different locations and clustering the perception
positions in waypoints that can be used with a constructive
heuristic to find paths for the robots. This method is heavily
dependent on PA*, and we evaluated the impact of our
heuristic improvements. As shown in Fig. 28, we chose
30 regions of interest with equal size, out of each only
10 are inside unreachable regions and can benefit from
our contributions, while the other 20 will just run with the
base PA*. Moreover, we use λ = 0.04, which results in a
small d∗

s = 12.5, but the 10 regions that benefit from our
heuristics are evenly distributed in space, thus some of them
have large distances to the respective critical points, while
others have small perception distances from the critical
points.
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The first part of the algorithm runs PA* multiple times
and clusters the perception points, taking 2439 seconds
(41 minutes) when using the base heuristic, and only 1088
seconds (18 minutes) when using our contributed PA1R2A
variant, reducing more than half the total computation
time of this phase. Moreover, the time to compute the
visibility maps was only 2 seconds, which is completely
negligible compared to the total time to complete all the
PA* searches and clustering. The second phase, with the
constructive heuristic, took 321 seconds to compute the
robot paths, shown in the figure, as a combination of
waypoints determined from the first phase.

We also tested in a simulated map of Figure 8a the
performance of our proposed algorithm with a dominant
heuristic (PA-VM), against the original PA* heuristic,
comparing the number of expanded nodes and presenting
the results in Fig. 29. The change in efficiency was analyzed
as a function of changes of the weight parameter λ, with
7 values ranging between 0.008 and 125. Eight different
initial robot positions distributed uniformly in the reachable
space were considered, and 25 different target positions,
also uniformly distributed, resulting in 1400 different search
instances over the range of λ. Because the only difference is
for points in U(S), we only tested targets in the unreachable
regions. As shown in Fig. 29, for λ greater than one (small
optimal sensing distances d∗), there is a great improvement
in the average number of nodes expanded, with our method
expanding only 35% of nodes expanded by PA*. The
results depend highly on the environment topology, having
a high variance. Depending on the target position, the node
expansion percentage can change from almost 0 to 90%, for
large λ. Even for low λ, where both heuristics have similar
average results, there were some instances with a gain of
50% in the number of nodes expanded.

7 Conclusions

We reviewed both PA* and Approximate Visibility Map
algorithms. The first is an informed search method to find
optimal paths for perception tasks. The latter is a map
transformation that represents the observable regions in a
2D environment by a given robot. Adding information about
the structure of environment can be used to improve the
heuristics in PA*, resulting in a reduced search, expanding
less nodes. So, the critical points from the Visibility Map
were used to create better estimates of the motion and
perception costs, while proving they can be used as an
admissible and dominant heuristic compared to the one
proposed for PA*. In this work only circular robots were
considered, with perception cost functions that are rotation
invariant. In the futurewewould like to considermore complex
motion and perception cost functions for any-shape robots.
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