Analogical Replay for Efficient Conditional Planning

Jim Blythe

*

Manuela Veloso

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

jblythe,veloso@cs.cmu.edu

Abstract

Recently, several planners have been designed that can
create conditionally branching plans to solve problems
which involve uncertainty. These planners represent
an important step in broadening the applicability of
Al planning techniques, but they typically must search
a larger space than non-branching planners, since they
must produce valid plans for each branch considered.
In the worst case this can produce an exponential in-
crease In the complexity of planning. If conditional
planners are to become usable in real-world domains,
this complexity must be controlled by sharing plan-
ning effort among branches. Analogical plan reuse
should play a fundamental role in this process. We
have implemented a conditional probabilistic planner
that uses analogical plan replay to derive the maxi-
mum benefit from previously solved branches of the
plan. This approach provides valuable guidance for
when and how to merge different branches of the plan
and exploits the high similarity between the different
branches in a conditional plan, which have the same
goal and typically a very similar state. We present
experimental data in which analogical plan replay sig-
nificantly reduces the complexity of conditional plan-
ning. Analogical replay can be applied to a variety of
conditional planners, complementing the plan sharing
that they may perform naturally.

Introduction

Most Al research in planning systems has been made
under the assumption that the planning domain is cer-
tain: the planner’s initial state is known absolutely,
the effects of all actions are perfectly predictable and
the planner is the only agent acting in an otherwise
unchanging world. These assumptions have allowed
sound fundamental work to be done and many inter-
esting planning systems to be built. However they have
also limited the applicability of these systems for real
problems, where the assumptions rarely hold.
Recently several planners have been designed that
relax these assumptions. They fall into two broad
groups: those that extend techniques for solving

*Copyright (c) 1997, American Association for Artifi-
cial Intelligence (www.aaai.org). All rights reserved. This
research is sponsored as part of the DARPA/RL Knowl-
edge Based Planning and Scheduling Initiative under grant
number F30602-95-1-0018.

Markov decision processes (MDPs) such as policy it-
eration (Dean & Lin 1995), and those that extend Al
planning algorithms such as sNLP (Draper, Hanks, &
Weld 1994). As remarked by Boutilier et al (Boutilier,
Dean, & Hanks 1995), the two groups of planners dif-
fer only in the emphasis of available techniques and do
not make different assumptions.

In this paper we concentrate on the efficiency prob-
lem for systems based on classical AI planners. Many
useful techniques have been developed to improve the
efficiency of classical planners, and we are interested in
the extent to which some of them can be used in plan-
ners for domains with uncertainty. In particular in this
work we investigate the use of derivational analogy in
conditional planners. The essence of the method is to
flexibly reuse the planning experience across the condi-
tional branches, thus avoiding the need for unnecessary
repeated search effort. The use of derivational analogy
in this context is similar to internal analogy (Hickman,
Shell, & Carbonell 1990) in which repeated solutions
to subproblems are reused within the same problem.

We have implemented a conditional probabilistic
planner that extends Prodigy 4.0 (Veloso et al. 1995).
We then integrated it with analogical plan replay to
derive the maximum benefit from previously solved
branches of the plan. This approach provides valuable
guidance for when and how to merge different branches
of the plan and exploits the similarity that can ex-
ist between different branches in a conditional plan,
which have the same goal and typically a very similar
state. We present experimental data in which analogi-
cal plan replay significantly reduces the complexity of
conditional planning. Finally we discuss some general
issues in plan sharing and contrast our approach with
those of other systems.

Conditional Planning

Consider a simple planning problem in which a pack-
age is to be loaded into a truck. In the initial state,
the package is at the depot and the truck is at the
warehouse. However, consider also that, in the time
it takes to drive the truck to the depot, the pack-
age can be misplaced with probability 0.5. When this
happens, the package is transferred from the depot to
the lost-property department, from where it cannot be



lost. The following branching plan solves this prob-
lem: drive the truck to the depot and if the package is
still there load it into the truck, otherwise drive to lost
property and load the package into the truck.

Several planning systems are capable of solving prob-
lems like this, such as ¢cNLP (Peot & Smith 1992), Cas-
sandra (Pryor & Collins 1993) and C-Buridan (Draper,
Hanks, & Weld 1994). We present here a conditional
planner that is an extension to PRODIGY4.0((Veloso et
al. 1995)), which we use to motivate and explore the
use of analogy in conditional planners.

Our conditional planner, B-proDpIGY (for branch-
ing Prodigy), is implemented within the Weaver ar-
chitecture for planning under uncertainty. Weaver is
a probabilistic planner taking as input a probability
distribution of initial world states, a set of operators
with probability distributions of context-dependent ef-
fects and a set of probabilistic external events, which
are triggered by the state, independently of the ac-
tions taken by the planner. Weaver builds a series of
plans with increasing probabilities of success and itera-
tively calls B-PRODIGY to find improved versions of the
plan (Blythe 1994). At each iteration, Weaver decides
which sources of uncertainty to account for and which
to ignore. It hides the latter from B-pProODIGY, and al-
lows B-PRODIGY to reason about the relevant external
events by representing them as possible effects of ac-
tions. Like Cassandra, B-PRODIGY then searches for a
conditional plan that will succeed in every eventuality
that it is aware of.

B-PRODIGY’s search space is similar to that of
PRODIGY4.0, and the search control modules that
can be applied to PRODIGY4.0 can also be applied
to B-PRODIGY with a small degree of modification.
These modules provide suggestions to PRODIGY4.0 in
its search, usually through control rules. In partic-
ular the analogical replay method, implemented in
Prodigy/Analogy, uses previously successful problem-
solving traces to guide Prodigy.

The remainder of this paper concentrates on B-
PRODIGY as a separate conditional planner that does
not deal with probabilities, in order to cover the use of
analogical replay in this context in detail.

B-ProbiGgy

PRODIGY4.0 represents a partial plan in two parts, a
head plan, which is a totally ordered set of steps ap-
plicable from the initial state, and a tai plan, which
is a partially ordered set of steps in which each step
is linked to the step whose precondition it is used to
achieve. If there is a link from step A to step B we
say that A is an establisher of B. The head plan de-
termines a unique current state, the result of applying
the head plan to the initial state. PRODIGY4.0 begins
with an empty head plan and a tail plan consisting of
a step representing the goal statement, as the root of
the partial order. The algorithm terminates when the
goal is satisfied in the current state, and then the head

plan represents a valid plan.

B-PRODIGY has two main additions to PRODIGY4.0.
First, steps in both the head plan and the tail plan are
associated with contexts, which represent the branches
of the plan in which the step is proposed to be used.
Contexts are introduced when a branching action is
added to the tail plan, and correspond to the different
possible outcomes of the action. A step may belong
to several contexts, which must be a subset of those of
the step it is linked to. Second, the head plan is no
longer a totally-ordered sequence determining a single
current state, but is a branching sequence determin-
ing a set of possible states. Multiple recursive calls
are made to the B-PRODIGY routine when a branching
step is moved from the tail plan to the head plan, one
call for each possible result (context) of the step. In
each call, the steps in the tail plan that do not match
the context are removed, so that the call corresponds
to solving the specific branch of the plan for which it
is chosen. The several calls together produce a branch-
ing head plan. These two alterations are sufficient to
create branching plans in uncertain domains. Table 1
shows the algorithm (bold font shows the modification
to the original PRODIGY4.0 algorithm).

B-Probigy

1. If the goal statement G is satisfied in the current
state C, then return Head-Plan.

2. Either

e Add an operator O to the Tail-Plan to establish
some operator E. (The contexts of O must be
a subset of the contexts of I.) Or

e Choose an operator A from Tail-Plan whose pre-
conditions are satisfied in the current state, move
it to Head-Plan, and update the current state. If
A has multiple branches, for each one of
them, create a new partial plan and remove
from Tail-Plan all operators that do not
match the appropriate context (branch).

3. Recursively call B-PRODIGY on each resulting par-

tial plan.

Table 1: Algorithm for B-PrRODIGY, based on
PRODIGY4.0. Steps which appear only in B-PrRODIGY
are shown in bold.

If no branching steps are introduced, this algorithm
is identical to PRODIGY4.0. Like PRODIGY4.0, it is
easy to see that the algorithm is sound, yielding only
correct plans.

Figure 1 shows a tail plan with four steps that may
be constructed by the partial-order back-chaining al-
gorithm to solve the problem described at the begin-
ning of this section. The truck must be made ready,
with step 1 “start-truck” before it can be driven, and
the final goal requires that the truck is put away, with
step 4 “stop-truck.” The arc from “drive to depot” to



“load package at depot” indicates that the former step
is an establisher of the latter. We have omitted the
preconditions from the diagram.

Step 2 “drive to depot,” is a context-producing step
that has two possible sets of effects. Contexts a and
(3 correspond respectively to the situations where the
package is still at the depot and where it is in lost
property, when the truck arrives. A step is marked as
context-producing externally to B-PRODIGY (in fact by
Weaver as we described).

1: Start-truck
+a, B
2: Driveto depot 4: Stop-truck
\

3: Load package at depot
Root

Figure 1: Initial tail plan to solve example prob-
lem. The directed arcs are causal links showing that a
step establishes a necessary precondition of the step it
points to.

When a branching step is introduced into the tail
plan, producing new contexts, the other steps are ini-
tially assumed to belong to all contexts. This is true of
step 3, “load package at depot.” However each step’s
contexts can be restricted to a subset, and new steps
can be added to achieve the same goal in the other
contexts. In this example, new operators could be in-
troduced both for the top-level goal and the goal for
the truck to be at the depot. The branching step is
always introduced with a commitment that one of its
outcomes will be used to achieve its goal, and all the
ancestors of the step in the tail plan must always apply
to that context. In this example step 2 was introduced
to establish step 3 using context «, so step 3 may not
be restricted to context 3.

In Figure 2, step 3 has been restricted to context
a, new steps have been added to achieve the top-level
goal in context 3, and steps 1 and 2 been moved to
the head plan. Two recursive calls to B-pPrRoODIGY will
now be made, one for each context, in each of which B-
PRODIGY will proceed to create a totally-ordered (but
possibly nonlinear) plan. In context a, the steps la-
belled with 8, driving to and loading at lost-property,
will be removed from the tail plan. In context 3, the
step labelled with «, “load package at depot,” will be
removed. Step 4, stop-truck, has not been restricted
and remains in the tail plan in both contexts. No
steps are removed from the head plan, whatever their
context. Each recursive call produces a valid totally-
ordered plan, and the result is a valid conditional plan
that branches on the context produced by the step
“drive to depot.”

1: Start-truck
2: Drive to depot

e

Head Plan
Tail Plan 5: Driveto lost-property
4: Stop-truck P i

6: Load package at lost-property

3: Load package at depot f/
o]

Root

Figure 2: A second stage of the planner. There are
now two possible current states for contexts a and .

Sharing planning effort in B-ProDIGY

The ability to create conditional plans is vital to plan-
ners that deal with uncertainty, however creating them
can lead to high computational overheads because of
the need for separate planning effort supporting each of
the branches of the conditional plan, measured in terms
of the computation required to search for an validate
the plan. This problem can be alleviated by sharing as
much of the planning effort as possible between differ-
ent branches. Analogical replay enables sharing the
effort to construct plans, while revalidating decisions
for each new branch. As the following three examples
show, in some cases the planning architecture directly
supports sharing this effort and in others it does not.

1. Step 1, start-truck, is shared through the head plan.
The step is useful for both branches, but is only
planned for in one since its effect is shared through
the current state. Although in this plan there is only
one step, in general an arbitrary amount of planning
effort could be shared this way.

2. Step 4, stop-truck, is shared through the tail plan.

As shown in Figure 2, this step does not have a con-
text label and achieves its goal in either context.
Thus when the branching step is moved to the head
plan, it remains in the tail plan in each recursive
call made to B-PRODIGY, making the planning ef-
fort available in each call.

3. Sometimes duplicated planning effort is not archi-

tecturally shared as in the last two examples. Sup-
pose that extra set-up steps are required for loading
a truck. These would be added to the tail-plan in
Figure 2 in two different places, as establishers of
steps 3 and 6, and restricted to different contexts
in the two places. Thus, the planning effort can-
not be shared by the tail-plan unless it is modified
from a tree to a DAG structure. But this approach
would lead to problems if descendant establishing
steps were to depend on the context, for instance on



the location of the truck. We show below how the
use of analogy can transfer planning effort of this
kind between contexts. Analogy provides an elegant
way to handle other kinds of shared steps as well.

Analogical Replay in B-PRODIGY

Analogical reasoning has been combined with classi-
cal operator-based planning in Prodigy as a method
to learn to improve planning efficiency (Veloso 1994).
This integrated system, Prodigy/Analogy, has been re-
implemented in PRODIGY4.0. Its replay functionality
makes it suitable to be combined with B-PRODIGY.
B-PRODIGY controlled by Weaver is integrated with
Prodigy/Analogy. First, a previously visited branch is
selected to guide planning for the new branch. By de-
fault, the branch that was solved first is used. Next
B-PrODIGY is initialized to plan from the branch-
point, the point where the new branch diverges from
the guiding branch. Then B-prRODIGY plans for the
new branch, guided by Prodigy/Analogy, proceeding
as usual by analogical-replay: previous decisions are
followed if valid, unnecessary steps are not used, and
new steps are added when needed. Prodigy/Analogy
successfully guides the new planning process based on
the high global similarity between the current and past
situations. This is particularly well suited for the ana-
logical replay guidance and typically leads to minor
interactions and a major sharing of the past planning
effort. The smoothness of this integration is made
possible by the common underlying framework of the
Prodigy planning and learning system.

In this integration of conditional planning and anal-
ogy, the analogical replay within the context of differ-
ent branches of the same problem can be viewed as an
instance of internal analogy (Hickman, Shell, & Car-
bonell 1990). The accumulation of a library of cases is
not required, and there is no need to analyze the sim-
ilarity between a new problem and a potentially large
number of cases. The branches of the problem need
only to be cached in memory and most of the domain
objects do not need to be mapped into new objects, as
the context remains the same. While we currently use
this policy in our integration, the full analogical rea-
soning paradigm leaves us with the freedom to reuse
branches across different problems in the same domain.
We may also need to merge different branches in a new
situation.

Table 2 presents the analogical reasoning procedure
combined with B-pProDIGY. We follow a single case
corresponding to the plan for the last branch visited
according to the order selected by Weaver.

The adaptation in the replay procedure involves a
validation of the steps proposed by the case. There
may be a need to diverge from the proposed case step,
because new goals exist in the current branch (step 9).
Some steps in the old branch can be skipped, as they
may be already true in the new branching situation
(step 13). Steps 8 and 12 account for the sharing be-

procedure b-prodigy-analogical-replay
1. Let C be the guiding case,
and C; be the guiding step in the case.
Set the initial case step Cy based on the branch
point.
Let : = 0.
Terminate if the goal state is reached.
Check which type of decision is Cj:
If C; adds a step O to the head plan,
If O can be added to the current head plan
and no tail planning is needed before,
then Replay Cj; Link new step to Cj; goto 14.
else Hold the case and call B-PRODIGY,
if planning for new goals is needed; goto 5.
10.If C; adds a step Oy to the tail plan, to achieve
goal g,
11. If the step Oy is valid and g is needed,
12. then Replay Cj; Link new step to Cj; goto 15.
13. else Mark unusable all steps dependent on Cj;
14. Advance the case to the next usable step Cj;
15.2 < j; goto 5.

o

e

© oo

Table 2: Overview of the analogical replay procedure
combined with B-PRODIGY.

tween different branches and for most of the new plan-
ning, since typically the state is only slightly different
and most of the goals are the same across branches.
This selective use of replay controls the combinatorics
of conditional planning.

Analysis and Experiments

Each segment of a conditional plan has a corresponding
planning cost. If a segment is repeated k& times and can
be shared but is not, the planner incurs a penalty of
k—1 times the cost of the segment. Suppose that a plan
contains n binary branches in sequence, all of which
share steps. Either the first or the last part of the
plan may be created 2" times, but with step sharing
it may only need to be created once. This exponential
cost increase can quickly become a dominant factor in
creating plans for uncertain domains.

We have successfully applied our approach to a large
realistic oil-spill clean-up domain and continue to apply
it to real-world domains. To isolate problem features
that are pertinent to performance, a family of synthetic
domains was created in order to comprehensively ver-
ify experimentally the effect of analogy in conditional
planning. These domains allow precise control over the
number of branches in a plan, the amount of planning
effort that may be shared between branches and the
amount that belongs only to each branch.

Table 3 describes the operators. The top-level goal
is always g, achieved by the operator Top. There is
a single branching operator, Branch, with N different
branches corresponding to N contexts. A plan consists
of three main segments. The first segment consists of
the steps taken before the branch point. These are all
in aid of the goal bb, the only goal initially unsatis-



fied, which is achieved by the step Branch. All of the
branches of Branch achieve bb, but delete cx and sh.
Each branch also adds a unique “context” fact, ¢;. Af-
ter the branch point, the second segment is a group of
steps unique to each individual branch, in aid of the
goal cx. We name each of these segments “C;.” Fi-
nally, the third “shared” segment contains the steps
which are the same in every branch in aid of the goal
sh. They must be taken after the branching point,
since Branch deletes sh. The planning work done in
each segment is controlled by the iterative steps that
achieve the predicates iter-bbg, iter-cx; ¢ and iter-shy.
The plan to achieve iter-shg, for example, has a length
determined by some number z for which iter-sh, is the
initial state. The planner selects the operators S-shg
which succeed or F-shy (k = 0,...,2) which fail as
their preconditions u-shy of the operators A-shy are all
unachievable. The domain can have N copies of these
operators. So the planning effort to solve iter-shg is up
to 2N x z operators added to the tail plan, all but z
of which are removed.

Operator | Preconds Adds Deletes
Top bb, cx, sh g -
Branch iter-bbg bb.c; sh, cx
where 1 refers to each branch i, 1 =1,..., B
Contx; iter-cx; g, ¢ cx —
Shared iter-shg sh —
F-bb, a-bb; iter-bb; -
A—bbl u—bbl a—bbl -
S-bb; iter-bb; 41 iter-bb; -
F-cxi m a-CX;,m iter-cx; m -
A-cX; m U-CX; m a-CX; m -
S-¢Xi m iter-cx; m41 | 1ter-cxim —
F-shy a-shy, iter-shy, -
A-shy u-shy a-shy, -
S-shy, iter-shy 41 iter-shy, —

where [, k, m capture the lengths of the segments
Table 3: Operator schemas in the test domain.

Figure 3 shows an example of a plan generated for
for a problem with goal g, and initial state cx, sh, iter-
bb,, iter-cxq y, ..., iter-cxp 4, and iter-sh, .

S-bb,...S-bby Branch
S-cxq,y...S-cxq,0 Contxy S-sh;...S-shg Top

S-cxB,y. . .S-cxp,0 Contxp S-sh....S-shy Top

Figure 3: A typical plan in the test domain.

We have performed extensive experiments with a va-
riety of setups. As an illustrative performance graph,
Figure 4 shows the planning time in seconds when the
number of branches is increased from 1 to 10. For

this graph, the final plan has one step in each of the
“C;” and the “shared” segments. The domain was cho-
sen so that B-PRODIGY examined 4 search nodes to
create a “C;” segment and 96 for the “shared” seg-
ment. With less extreme proportions of shared plan-
ning time to unique planning time, the shape of the
graph is roughly the same and analogical replay still
produces significant speedups. With 24 search nodes
examined for each unique plan segment, and 72 for the
shared segment, B-PRODIGY completes the plan with
10 branches more than twice as quickly with analogical
replay as without it.

The improvement in time is similar when the depth
and breadth of search are increased for the shared seg-
ment and the number of branches is held constant.

207 norma —— A
analogy —
15 |
10 + |
sf R—
0 : I ! L L 1 1
2 3 4 5 6 7 8 9 10

Branches

Figure 4: Time in seconds to solve planning problem
with and without analogy plotted against the number
of branches in the conditional plan. Each point is an
average of five planning episodes.

The use of analogical replay in B-PRODIGY is a
heuristic based on the assumption that a significant
proportion of planning work can be shared between
the branches. We tested the limits of this assumption
by experiments holding constant both the number of
branches and the effort to create the shared segment,
and increasing the effort to create each unique segment.
Under these conditions, the time taken by B-proDIGY
grows at the same rate whether or not analogical replay
is used, because the overhead of replay is small relative
to planning effort, and appears constant. When the
planning effort for each C-1 was increased from 4 to 100
search nodes while the effort to create a shared branch
was held constant at 24 search nodes, B-PRODIGY took
about 1 second longer with analogy than without it, an
overhead of less than 10 per cent when each C-i took
100 search nodes.

Related Work

In (Peot & Smith 1992), Peot and Smith introduce a
planner called cNLP with a representation for partial-
order branching plans based on sNLP (McAllester &



Rosenblitt 1991). This representation uses contexts,
and has been adopted in B-PRODIGY as well as Cas-
sandra (Pryor & Collins 1993) and C-Buridan (Draper,
Hanks, & Weld 1994). All three planners keep track of
the branches that steps belong to using context propa-
gation, assigning contexts to steps based on those they
are causally linked to. C-Buridan’s version consists of
a “forwards sweep” in which the context of each step is
restricted to the disjunction of the contexts of the steps
that help establish it, followed by a “backwards sweep”
in which the context of each step is restricted to the
disjunction of the contexts of the steps it establishes.

C-Buridan combines context propagation with
SNLP’s ability to use steps already existing in its plan as
establishers to produce a simple and elegant technique
for sharing steps between different branches of a con-
ditional plan, which are not architecturally shareable
in our planner. In solving the example problem in this
paper, C-Buridan might begin with a similar candidate
plan to B-PRODIGY’s tail plan shown in Figure 2. If
the step “open-truck” was required to enable loading
the truck in steps 3 and 6, C-Buridan could use one
step to establish both of them, and share the planning
effort to establish that step.

Although elegant, sharing plan steps with context
propagation and linking to existing steps is not always
as efficient as using analogical replay. Analogical re-
play can skip parts of an old plan and add new steps
while replaying, creating plans that branch and re-
merge several times if necessary guided by the current
state. Context propagation in C-Buridan may result in
new context values being propagated over long plans
as each new branch is added. Consider the following
set of operators, in which the step Branch-op has n

branches:
(step Branch-op

(branch-0 adds { gy })
(branch-¢ adds { qn, g, xi }))
(step do-Qi preconds { q[i — 1] }
if (y)adds { q¢ } else deletes { g } )
Given the conjunction of g and qn as a goal and

q0 initially true, a successful plan uses Branch-op to
achieve both goals in every branch except branch-0,
where the sub-plan do-QO0, do-Q1, .. ., do-Qn is used to
achieve qn. These operators must not be applied in any
other branch since they will delete g. C-Buridan will
have to resolve the threat from each step do-Qi in the
plan to each branch of Branch-op where it shouldn’t
be used, O(n?) threats in all. Analogical replay will
only add the extra steps in the branch where they are
needed and will take linear time.

On the other hand our implementation of analogy
requires one branch to be completed before it can be
used to guide others, a restriction that reduces the
chance to plan in two branches synergistically. It is
also guided by the current state as a heuristic, which
can lead to extra work. However, an attractive feature
of analogical replay is that it is applicable to all the

conditional planners we have mentioned, and can im-
plement several types of plan sharing independently of
those explicitly shared by the particular architecture.

Conclusion

We have shown that analogy can be used to reduce the
overhead of producing plans that have many branches,
each covering somewhat different situations. This is an
example of how machine learning techniques designed
for planners that made the assumption of complete in-
formation can be brought to bear on planners that re-
lax this assumption. Although different architectural
constraints in planners allow different parts of branch-
ing plans to be shared easily, analogy provides a general
mechanism that can share all types of planning work.
The approach is also applicable to partial-order condi-
tional planners such as Cassandra and C-Buridan.

References

Blythe, J. 1994. Planning with external events. In
de Mantaras, R. L., and Poole, D., eds., Proc. Tenth
Conference on Uncertainty in Artificial Intelligence,

94-101. Morgan Kaufmann.
Boutilier, C.; Dean, T.; and Hanks, S. 1995. Plan-

ning under uncertainty: structural assumptions and
computational leverage. In Proc. European Workshop
on Planning. Assissi, Italy: 10S Press.

Dean, T., and Lin, S.-H. 1995. Decomposition tech-
niques for planning in stochastic domains. In Proc.
14th International Joint Conference on Artificial In-
telligence, 1121 — 1127. Morgan Kaufmann.

Draper, D.; Hanks, S.; and Weld, D. 1994. Proba-
bilistic planning with information gathering and con-
tingent execution. In Hammond, K., ed., Proc. Sec-

ond International Conference on Artificial Intelli-
gence Planning Systems, 31-37. AAAI Press.

Hickman, A. K.; Shell, P.; and Carbonell, J. G. 1990.
Internal analogy: Reducing search during problem
solving. In Copetas, C., ed., The Computer Science
Research Review. Carnegie Mellon University.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proc. Ninth National Confer-

ence on Artificial Intelligence, 634-639. AAAT Press.

Peot, M. A., and Smith, D. E. 1992. Conditional non-
linear planning. In Hendler, J., ed., Proc. First Inter-
national Conference on Artificial Intelligence Plan-
ning Systems, 189-197. Morgan Kaufmann.

Pryor, L., and Collins, G. 1993. Cassandra: Planning
for contingencies. Technical Report 41, The Institute
for the Learning Sciences.

Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.;
Fink, E.; and Blythe, J. 1995. Integrating planning
and learning: The prodigy architecture. Journal of

Ezperimental and Theoretical AT 7:81-120.

Veloso, M. M. 1994. Planning and Learning by Ana-
logical Reasoning. Springer Verlag.



