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Abstract

Robotic soccer is a new challenging multi-agent domain,
in which agents need to collaborate in an adversarial en-
vironment to achieve specific objectives. In this paper, we
describe CMUnited-97, our team of robotic agents that we
developed to enter the RoboCup-97 competition. We first
discuss the challenges underlying the robotic soccer domain
as a multi-agent system. We then introduce our team archi-
tecture, briefly describe the system’s perception, and present
the robots’ actions ranging from low-level individual behav-
iors to coordinated, strategic team behaviors. The robots
can organize themselves in formations, hold specific roles,
and pursue their goals. In game situations, they extensively
used their role-based behaviors, and demonstrated collab-
oration on multiple occasions. As homogeneous agents, the
robots can also switch roles to maximize the overall per-
formance of the team. CMUnited-97 won the RoboCup-97
small-robot competition at IJCAI in Nagoya, Japan.

1 Introduction

A complete intelligent agent should exhibit cognition,
perception, and action capabilities. For many years now,
Artificial Intelligence and Robotics researchers have been
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working towards the goal of building physical (i.e. robotic)
intelligent agents. This goal has proven to be quite chal-
lenging, but great progress has been made.

As individual robots can operate in the real world with in-
creasing reliability, researchers have recently been focusing
on building systems with multiple robotic agents. CMU-
nited, as presented in this paper, represents an effort to build
a multi-agent robotic system in which the emphasis is on
designing mobile robots not only capable of navigation and
perception, but most importantly, capable of robust individ-
ual and collaborative high-level behaviors.

CMUnited is developed within the context of robotic
soccer, an interesting emerging domain that is particularly
appropriate for studying these multi-agent issues. Robotic
soccer is being developed both in simulation environments
and with different kinds of robots. We have pursued research
in both simulation and with real robots. Although the simu-
lation test-bed is not meant to mimic the real robots, we have
successfully applied our multi-agent team structure across
the two frameworks.

This paper is organized as follows: Section 2 discusses
the multi-agent characteristics and challenges of the robotic
soccer domain. Section 3 introduces the CMUnited robotic
architecture. Section 4 describes the underlying algorithmic
team architecture. Section 5 presents some of the specific
single-agent and multi-agent behaviors implemented. Sec-
tion 6 draws conclusions.

This paper contributes the overall architecture of our
robotic soccer system. The combination of robust hard-
ware, real-time vision, and intelligent control represented
a significant challenge which we were able to successfully
meet. The work described is fully implemented using the
robotic agents pictured in Figure 1.



Figure 1. The CMUnited-97 robot team that
competed in RoboCup-97.

2 Robotic Soccer

Robotic soccer with real robots is an exciting domain for
many reasons. The fast-paced nature of the domain neces-
sitates real-time sensing coupled with quick behaving and
decision making. Furthermore, the behaviors and decision
making processes can range from the most simple reactive
behaviors, such as moving directly towards the ball, to arbi-
trarily complex reasoning procedures that take into account
the actions and perceived strategies of teammates and oppo-
nents. Opportunities, and indeed demands, for innovative
and novel techniques abound.

Previously, multi-agent systems have been applied to sev-
eral domains, including design, planning, entertainment,
games, air-traffic control, air combat, personal assistants,
load-balancing, and robotic leg control (as surveyed in [10]).

Robotic soccer is a particularly good domain for studying
multi-agent systems. Originated by Alan Mackworth [9], it
has been gaining popularity in recent years, in particular in
the RoboCup international competition [4]. It is also the
subject of an official IJCAI-97 Challenge [5]. It can be used
to evaluate different multi-agent systems techniques in a
direct manner: teams implemented with different techniques
can play against each other.

The pursuit domain is another example of a test-bed do-
main. Robotic soccer is much more complex and interesting
as a general test-bed. Even with many predators and several
prey, the pursuit domain is not complex enough to simulate
the real world. Although robotic soccer is a game, most
real-world complexities are retained. A key aspect of soc-
cer’s complexity is the need for agents not only to control
themselves, but also to control the ball which is a passive
part of the environment.

Robotic soccer can be played either with real robotsorina
simulator [7, 8]. Although more costly and time consuming
to develop, a number of groups have developed real robotic
systems. The first robotic soccer system was the Dynamo
system [9]. Sahota et al. builta 1 vs. 1 version of the game.
Asada et al. have used vision-based RL with their soccer
playing robots [2].

Although there are many possible ways to divide
multi-agent systems, we identify two main dimensions:
agent heterogeneity and amount of communication among
agents [10]. Robotic soccer offers different multi-agent sce-
narios. Homogeneous non-communicating agents can be
studied in robotic soccer by fixing the behavior of the op-
posing team and populating the team being studied with
identical, mute players. To keep within the homogeneous
agentscenario, the opponents must not be modeled as agents.
In this context, the players can be reactive or deliberative to
any degree. The extremely reactive agent might simply look
for the ball and move straight at it, shooting whenever pos-
sible. At this extreme, the players may or may not have any
knowledge that they are part of a team. On the other hand,
players might model each other, thus enabling deliberative
reasoning about whether to approach the ball or whether to
move to a different part of the field in order to defend or to
receive a pass. With players modeling each other, they may
also reason about how to affect each other’s behaviors in
this inherently dynamic environment. Finally it is possible
to study the relative merits of local and global perspectives
on the world. Robots can be given global views with the
help of an overhead camera; however, robotic soccer is often
approached as a problem requiring local sensing.

Robotic soccer is also useful for studying the issues
associated with heterogeneous non-communicating agents.
Since each player has several teammates with the same
global goal and several opponents with the diametrically
opposed goal, each player is both benevolent and compet-
itive at the same time. This possibility for combination
of collaborative and adversarial reasoning is a major fea-
ture of the domain. When trying to collaborate, players’
actions are usually interdependent: to execute a success-
ful pass, both the passer and the receiver must execute the
appropriate actions. Thus modeling each other for the pur-
pose of coordination is helpful. Social conventions, such
as programmed notions of when a given agent will pass or
which agents should play defense, can also help coordina-
tion. Since communication is still not allowed, the players
must have a reliable method for filling the different team
roles needed on a soccer team (defense, offense, goalie).
Ideally, the players are able to switch roles during the course
of a game when appropriate.

Robotic soccer is perhaps best suited for the study of the

most complex multi-agent scenario: heterogeneous commu-
nicating agents. Since the agents can indeed communicate,



the full potential of the domain is realized in this scenario.
With players posting messages to the blackboard, they must
have a language in order to understand each other. Protocols
are also needed for commitment to team plays: the passer
and receiver in a pass play must both agree to execute the
pass. For more complex team plays, several players may
need to commit to participate. But then the issue arises
of how single-mindedly they must adhere to the committed
play: when may they react to more pressing situations and
ignore the commitment? For any team play, including a
simple pass, timing is very important in such a real-time
scenario. Thus, players must coordinate their actions very
carefully. Finally, speech acts are particularly interesting in
the environment that is both collaborative and adversarial. If
the opponents can understand the same language, a planned
utterance can affect the knowledge of both teammates and
opponents. The utility of communication must be carefully
considered and the possibility of lying in order to fool the
opponent arises.

While our research in simulation considers communicat-
ing agents [11], our real robot team described here imple-
ments homogeneous non-communicating agents.

3 TheCMUnited Architecture

Our robotic architecture merges high-level and low-level
reasoning by viewing the overall system as the combina-
tion of the robots, a camera over-looking the playing field
connected to a centralized interface computer, and several
clients as the minds of the small-size robot players. Figure 2
sketches the building blocks of the architecture.
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Figure 2. CMUnited architecture with global
perception and multiple agents.

Coaching/
Perceiving/
Transmitting
Interface

The complete system is fully autonomous consisting of a
well-defined and challenging processing cycle. The global
vision algorithm perceives the dynamic environment and
processes the images, giving the positions of each robot and
the ball. This information is sent to an off-board controller
and distributed to the different agent algorithms. Each agent

evaluates the world state and uses its strategic knowledge to
decide what to do next. Actions are motor commands that
are sent by the off-board controller through radio commu-
nication. Commands can be broadcast or sent directly to
individual agents. Each robot has an identification binary
code that is used on-board to detect commands intended for
that robot. This complete system is fully implemented.

The fact that perception is achieved by a video camera
that over-looks the complete field offers an opportunity to
geta global view of the world state. Although this setup may
simplify the sharing of information among multiple agents,
it presents a challenge for reliable and real-time processing
of the movement of multiple moving objects—in our case,
the ball, five agents on our team, and five agents on the
opposing team.

The RoboCup small robot league limits the size of each
robot to approximately the equivalent area of a 15cm diam-
eter circle. The reactiveness of the soccer robots requires
real-time vision processing. However, due to rich visual
input, researchers have found that dedicated processors or
even DSPs are often needed [9, 1]. We use a color-based vi-
sion processing algorithm that allows the use of fixed color
space thresholds to segment the different colors into regions.

Each robot is fitted with two colors to differentiate the
team and the orientation. We developed a reliable detection
algorithm that uses a minimum distance principle between
frames to retain association [3]. In the setting of a robot
soccer game, the sole ability to detect the location of objects
in the field is often not enough. Like real soccer players, it is
often useful and necessary to have the ability to predict future
locations of the ball and of the players. We have utilized an
extended Kalman-Bucy filter for such a purpose. Through
a careful adjustment of the filter parameters modelling the
system, we were able to achieve successful tracking and, in
particular prediction of the ball trajectory, even when sharp
bounces occur.

Our vision processing approach worked perfectly during
the RoboCup-97 games. We were able to detect and track
11 objects (5 teammates, 5 opponents and a ball). The pre-
diction provided by the filter allowed the goalkeeper to look
ahead in time and predict the best defending position. Dur-
ing the game, no goals were suffered due to miscalculation
of the predicted ball position.

4 Team Architecture

Our new teamwork structure is situated within a team
member architecture suitable for periodic time synchroniza-
tion domains [12] in which individual agents can capture
locker-room agreements and respond to the environment,
while acting autonomously. Based onastandard agent archi-
tecture, our team member architecture allows agents to sense
the environment, to reason about and select their actions, and



toact in the real world. The locker-room agreement captures
for example, the triggers for specific individual and collab-
orative actions, and role changing rules. Figure 3 shows the
functional input/output model of the architecture.
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Figure 3. The CMUnited team member archi-
tecture.

The agent keeps track of three different types of state:
the world state, the locker-room agreement, and the internal
state. The agent also has two different types of behaviors:
internal behaviors and external behaviors.

The World State reflects the agent’s conception of the real
world, both via its sensors and via the predicted effects
of its actions. It is updated as a result of processed
sensory information. It may also be updated accord-
ing to the predicted effects of the external behavior
module’s chosen actions. The world state is directly
accessible to both internal and external behaviors.

The Locker-Room Agreement is set by the team when it
is able to privately synchronize. It defines the flexible
teamwork structure as presented below. The locker-
room agreement may change periodically when the
team is able to re-synchronize; however, it generally
remains unchanged. The locker-room agreement is
accessible only to internal behaviors.

The Internal State stores the agent’s internal variables. It
may reflect previous and current world states, possi-
bly as specified by the locker-room agreement. For
example, the agent’s role within a team behavior could
be stored as part of the internal state, as could a dis-
tribution of past world states. The agent updates its
internal state via its internal behaviors.

The Internal Behaviors update the agent’s internal state
based on its current internal state, the world state, and
the team’s locker-room agreement.

The External Behaviors reference the world and internal
states, sending commands to the actuators. The ac-
tions affect the real world, thus altering the agent’s
future percepts. External behaviors consider only the
world and internal states, without direct access to the
locker-room agreement.

Our notion of behavior is consistent with that laid out in
[6]. In particular, behaviors can be nested at different levels:
selection among lower-level behaviors can be considered a
higher-level behavior, with the overall agent behavior con-
sidered a single “do-the-task™ behavior. There is one such
top-level internal behavior and one top-level external behav-
ior; they are called when it is time to update the internal state
or act in the world, respectively. We now introduce the team
structure that builds upon this team member architecture.

Our teamwork structure involves flexible roles that are
organized into formations.

41 Role

Arole, r, consists of a specification of an agent’s internal
and external behaviors. The conditions and arguments of
any behavior can depend on the agent’s current role, which
is a function of its internal state. At the extreme, a top-level
behavior could be a switch, calling an entirely different
behavior graph for each possible role. However, the role
can affect the agent’s overall behavior at any level of its
complete behavior graph. Notice that roles need not be rigid:
by specifying ranges of parameters or behavior options, the
agent filling role » can be given an arbitrary amount of
flexibility.

For example, a role in the robotic soccer domain, can be
a position such as a midfielder. In the hospital maintenance
domain, a role could specify the wing of the hospital whose
floors the appropriate agent should keep clean, while in the
web search domain, it could specify a server to search.

4.2 Formation

We achieve collaboration between agents through the in-
troduction of formations as a team structure. A formation
decomposes the task space defining a set of roles. Forma-
tionsinclude as many roles as there are agents in the team, so
that each role is filled by one agent. In addition, formations
can specify sub-formations, or units, that do not involve the
whole team. A unit consists of a subset of roles from the
formation, a captain, and intra-unit interactions among the
roles.

For a team of n agents A = {aj,ap,...,a,}, any
formation is of the form F' = {R,{U1,Usz,...,Ux}}
where R is a set of roles R = {r1,72,...,7,} such that



¢t # j = r; # r;. Note that there are the same num-
ber of roles as there are agents. Each unit U; is a sub-
set of R: U; = {ri,7i2,...,mi} such that r;, € R,
a # b = riq # rp and 7 is the captain.  The map
A — R is not pre-specified: roles can be filled by different
homogeneous agents. A single role may be a part of any
number of units and formations.

Formations can affect the agent’s external behaviors by
specifying inter-role interactions. Since roles can be re-used
among formations, their formation-specific interactions can-
not be included in the role definitions. Instead these inter-
actions are part of the formation specification.

Units are used to deal with local problem solving issues.
Rather than involving the entire team in a sub-problem, the
roles that address it are organized into a unit.

Roles and formations are introduced independently from
the agents that are to fill them. The locker-room agreement
specifies an initial formation, a map from agents to roles,
and run-time triggers for dynamic changing of formations.
At any given time, each agent should know what formation
the team is currently using. Agents keep mappings A — R
from teammates to roles in the current formation. All this
team structuring information is stored in the agent’s internal
state. It can be altered via the agent’s internal behaviors.

In the real robotic soccer domain, the agents are au-
tonomous and do not communicate. Hence, there is no
guarantee that they will all think that the team is using the
same formation, nor that they have accurate maps A — R.
In fact, the only guarantee is that each agent knows its own
current role. However, we create robust behaviors for team
agents which ensure that the behaviors never absolutely de-
pend upon having correct, up-to-date knowledge of team-
mates’ internal states: they must degrade gracefully.

We achieve multi-agent strategy through the combination
of accurate individual and collaborative behaviors. Agents
reason through the use of persistent reactive behaviors that
are developed to aim at reaching team objectives.

Figure 4 summarizes the CMUnited overall team struc-
ture.

5 Individual and Team Behaviors

In order to be able to successfully collaborate, agents
require robust basic skills. These skills include the ability to
go to a given place on the field, the ability to direct the ball
in a given direction, and the ability to intercept a moving
ball. All of these skills must be executed while avoiding
obstacles such as the walls and other robots.

5.1 Ball Handling

If a robot is to accurately direct the ball towards a target
position, it must be able to approach the ball from a specified
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Figure 4. Team agreements, behaviors, and
roles in the CMUnited-97 team.

direction. Using the ball prediction from the vision system,
the robot aims at a point on the far side of the target position.
The robots are equipped with two methods of doing so:

o Ball collection: Moving behind a ball and
knocking it towards the target.

o Ballinterception: Waiting for the ball to cross
its path and then intercepting the moving ball
towards the target.

When using the ball collection behavior, the robot con-
siders a line from the target position to the ball’s current or
predicted position, depending on whether or not the ball is
moving. The robot then plans a path to a point on the line and
behind the ball such that it does not hit the ball on the way
and such that it ends up facing the target position. Finally,
the robot accelerates to the target. Figure 5(a) illustrates this
behavior.

When using the ball interception behavior (Figure 5(b)),
on the other hand, the robot considers a line from itself
to the target position and determines where the ball’s path
will intersect this line. The robot then positions itself along
this line so that it will be able to accelerate to the point of
intersection at the same time that the ball arrives.

In practice, the robot chooses from between its two ball
handling routines based on whether the ball will eventually
cross its path at a point such that the robot could intercept
it towards the goal. Thus, the robot gives precedence to the
ball interception routine, only using ball collection when
necessary. When using ball collection, it actually aims at
the ball’s predicted location a fixed time in the future so
as to eventually position itself in a place from which it can
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Figure 5. Single-agent behaviors to enable
team collaboration: (a) Ball collection; (b)
Ball interception.

intercept the ball towards the target.

In the robotic soccer field, there are often obstacles be-
tween the robot and its goal location. Our robots try to
avoid collisions by planning a path around the obstacles.
Due to the highly dynamic nature of this domain, our obsta-
cle avoidance algorithm uses closed-loop control by which
the robots continually replan their goal positions around ob-
stacles. Even with obstacle avoidance in place, the robots
can occasionally get stuck against other robots or against
the wall. Particularly if opponent robots do not use obstacle
avoidance, collisions are inevitable. When unable to move,
our robots identify the source of the problem as the closest
obstacle and “unstick” themselves by moving away. Once
free, normal control resumes.

5.2 Positions, Formations, and Active Modes

Although the single-agent behaviors are very effective
when just a single robot is on the field, if all five robots were
simultaneously chasing the ball and trying to shoot it at the
goal, chaos would result. In order to achieve coordinated
multi-agent behavior, we organize the five robots into a
flexible team structure.

The team structure, or formation, defines a set of roles, or
positions with associated behaviors. The robots are then dy-
namically mapped into the positions. Each robot is equipped

with the knowledge required to play any position in each of
several formations.

The positions indicate the areas of the field which the
robots should move to in the default situation. There are
also different active modes which determine when a given
robot should move to the ball or do something else instead.
Finally, the robot with the ball chooses whether to shoot or
pass to a teammate using a passing evaluation function.

These high-level, multi-agent behaviors were originally
developed in simulation and then transferred over to the
robot-control code. Only the run-time passing evaluation
function was redefined. Further details, particularly about
the flexible team structures, are available in [12].

Positions are defined as flexible regions within which the
player attempts to move towards the ball. For example, a
robot playing the “right-wing” (or “right forward”) position
remains on the right side of the field near the opponents’ goal
until the ball comes towards it. Positions are classified as
defender/midfielder/forward based on the locations of these
regions. They are also given behavior specifications interms
of which other positions should be considered as potential
pass-receivers (see Section 5.3).

At any given time each of the robots plays a particular
position on the field. However, each robot has all of the
knowledge necessary to play any position. Therefore the
robots can—and do—switch positions on the fly. For exam-
ple, robots A and B switch positions when robot A chases
the ball into the region of robot B. Then robot A continues
chasing the ball, and robot B moves to the position vacated
by A.

The pre-defined positions known to all players are col-
lected into formations, which are also commonly known.
An example of a formation is the collection of positions
consisting of the goalkeeper, one defender, one midfielder,
and two attackers. Another possible formation consists of
the goalkeeper, two defenders and two attackers.

As is the case for position-switches, the robots switch for-
mations based on pre-determined conditions. For example,
if the team is losing with very not much time left in the game,
the robots would switch to a more offensive formation. On
the other hand, if winning, they might choose a defensive
formation. The precise conditions for switching positions
and formations are decided upon in advance, in what we
call a “locker-room agreement,” [12] in order to eliminate
the need for complex on-line negotiation protocols.

Although the default action of each robot is to go to
its position and face the ball, there are three active modes
from which the robot must choose. The default position-
holding behavior occurs when the robot is in an inactive
state. However, when the ball is nearby, the robot changes
into an active state. In the active state, the robot moves
towards the ball, attempting either to pass it to a teammate or
to shoot it towards the goal based on an evaluation function



that takes into account teammate and opponent positions (see
Section 5.3). A robot that is the intended receiver of a pass
moves into the auxiliary state in which it tries to intercept a
moving ball towards the goal. Our current decision function
sets the robot that is closest to the ball into the active state;
the intended receiver robot (if any) into the auxiliary state;
and all other robots into the inactive state.

5.3 Run-time Evaluation of Collaborative Oppor-
tunities

One of CMUnited-97’s main features is the robots’ ability
to collaborate by passing the ball. When in active mode, the
robots use an evaluation function that takes into account
teammate and opponent positions to determine whether to
pass the ball or whether to shoot. In particular, as part of
the formation definition, each position has a set of positions
to which it considers passing. For example, a defender
might consider passing to any forward or midfielder, while
a forward would consider passing to other forwards, but not
backwards to a midfielder or defender.

For each such position that is occupied by a teammate,
the robot evaluates the pass to that position as well as eval-
uating its own shot. To evaluate each possible pass, the
robot computes the obstruction-free-index of the two line
segments that the ball must traverse if the receiver is to
shoot the ball (lines b and ¢ in Figure 6). In the case of
a shot, only one line segment must be considered (line a).
The value of each possible pass or shot is the product of
the relevant obstruction-free-indices. Robots can be biased
towards passing or shooting by further multiplying the val-
ues by a factor determined by the relative proximities of
the active robot and the potential receivers to the goal. The
robot chooses the pass or shot with the maximum value. The
obstruction-free-index of line segment [ is computed by the
following algorithm (variable names correspond to those in
Figure 6):

1. obstruction-free-index = 1.

2. For each opponent O:

e Compute the distance z from O to ! and the
distance y along [ to I’s origin, i.e. the end
at which the ball will be kicked by the robot
(See Figure 6).

e Define constants min-dist and max--
denominator. Opponents farther than min-
dist from [ are not considered. When dis-
counting obstruction-free-index in the next
step, the y distance is never considered to be
larger than max-denominator. For example,
in Figure 6, the opponent near the goal would
be evaluated with y = max-denominator,
rather than its actual distance from the ball.
The reasoning is that beyond distance max-

denominator, the opponent has enough time
to block the ball: the extra distance is no
longer useful.

e if 2z < min-distand z < y,
obstruction-free-index *= z/MIN (max-
denominator,y).

3. return obstruction-free-index.

Teammate

linea
Robot X ‘
e
Ball

Opponent

Figure 6. Pass evaluation is based on path
position of opponents.

Thus the obstruction-free-index reflects how easily an
opponent could intercept the pass or the subsequent shot.
The closer the opponent is to the line and the farther it is
from the ball, the better chance it has of intercepting the
ball.

5.4 A Special-Purpose Agent: The Goalkeeper

To this point, we have assumed that the entire team con-
sists of homoeneous agents. Thus they are able to feely
interchange roles as the game proceeds. However, there is
one exception: the goalkeeper robot has both special hard-
ware and special software. Thus, itdoes not switch positions
or active modes like the others. The goalkeeper’s physical
frame is distinct from that of the other robots in that it is as
long as allowed under the RoboCup-97 rules (18cm) so as
to block as much of the goal as possible. The goalkeeper’s
role is to prevent the ball from entering the goal. It stays
parallel to and close to the goal, aiming always to be directly
even with the ball’s lateral coordinate on the field.

Ideally, simply staying even with the ball would guaran-
tee that the ball would never get past the goalkeeper. How-
ever, since the robots cannot accelerate as fast as the ball can,
it would be possible to defeat such a behavior. Therefore,
the goalkeeper continually monitors the ball’s trajectory. In
some cases it moves to the ball’s predicted destination point
ahead of time. The decision of when to move to the pre-
dicted ball position is both crucial and difficult. Our goalie



robot currently take into account the predicted velocity and
direction of the ball to select its moves.

6 Discussion and Conclusion

CMUnited-97 successfully demonstrated the feasibility
and effectiveness of teams of multi-agent robotic systems.
Within this paradigm, one of the major challenges was to
“close the loop,” i.e., to integrate all the different modules,
ranging from perception to strategic multi-agent reasoning.
CMUnited is an example of a fully implemented multi-agent
system in which the loop is closed. In addition, we imple-
mented interesting strategic behaviors, including agent col-
laboration and real-time evaluation of alternative actions,
and we developed a new multi-agent team structure.

It is generally very difficult to accumulate significant sci-
entific results to test teams of robots. Realistically, extended
runs are prohibited by battery limitations and the difficulty
of keeping many robots operational concurrently. Further-
more, we only had the resources to build a single team of
five robots, with one spare so far. Therefore, we offer a re-
stricted evaluation of CMUnited based on the results of four
effective 10-minute games that were played at RoboCup-
97. We also include anecdotal evidence of the multi-agent
capabilities of the CMUnited-97 robotic soccer team.

The CMUnited-97 robot team played games against
robot teams from Nara Institute of Science and Technology
(NAIST), Japan; University of Paris VI, France (team name
“MICROB”); and University of Girona, Spain. The results
of the games are given in Table 1. In total, CMUnited-97

| Opponent | Score ||
NAIST 5-0
MICROB 3-1

U. of Girona 2-0
NAIST (finals) 3-0

[ TOTAL [ 131 |

Table 1. The scores of CMUnited’s games
in the small robot league of RoboCup-97.
CMUnited-97 won all four games.

scored thirteen goals, allowing only one against. The one
goal against was scored by the CMUnited goalkeeper against
itself, though under an attacking situation from France.

As the matches proceeded, spectators noticed many of
the team behaviors. The robots switched positions during
the games, and there were several successful passes. The
most impressive goal of the tournament was the result of a
4-way passing play that ended with a successful shot into
the goal.

We are aware that many issues are open for further re-
search and development. We are systematically identifying
them and including them in our on-going research agenda.
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