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Abstract. In simple terms, one can say that team coaching in adversarial domains
consists of providing advice to distributed players to help the team to respond effec-
tively to an adversary. We have been researching this problem to find that creating
an autonomous coach is indeed a very challenging and fascinating endeavor. This
paper reports on our extensive empirical study of coaching in simulated robotic
soccer. We can view our coach as a special agent in our team. However, our coach
is also capable of coaching other teams other than our own, as we use a recently
developed universal coach language for simulated robotic soccer with a set of pre-
defined primitives. We present three methods that extract models from past games
and respond to an ongoing game: (i) formation learning, in which the coach cap-
tures a team’s formation by analyzing logs of past play; (ii) set-play planning, in
which the coach uses a model of the adversary to direct the players to execute a
specific plan; (iii) passing rule learning, in which the coach learns clusters in space
and conditions that define passing behaviors. We discuss these techniques within
the context of experimental results with different teams. We show that the tech-
niques can impact the performance of teams and our results further illustrate the
complexity of the coaching problem.

1 Introduction

As multi-agent systems continue to grow more important, the types of rela-
tionships between agents continue to be studied. One important relationship
that humans often exhibit is still largely lacking among our agents. This
relationship is one of a coach or advisor who provides advice to others. We
consider this to be the central feature of a coach relationship, and autonomous
agents could from benefit from the development of this sort of relationship.
One of the primary ways that advice can be generated is through an agent’s
observations of and experience with the world. Processing past and current
observations into a form usable as advice is indeed a challenging problem.
We have implemented a coach for the Soccer Server System [10], a simu-
lated robotic soccer environment. Notably, because of the creation of a stan-
dard language CLang [16], coaches and teams from researchers around the
world are able to work together. We have worked towards this research goal of
our coach working with a team for which it was not specifically designed. This
was the basis for a small coach competition at RoboCup2001 [5] in which four

* This research was sponsored by United States Air Force Grants Nos. F30602-
00-2-0549 and F30602-98-2-0135 and by an NSF Fellowship. The content of this
publication reflects only the position of the authors.



teams competed. By exploring a few possible techniques for processing ob-
servations and providing advice and then evaluating their effects, we hope to
further understand the challenges this problem poses. This paper reports on
our coaching strategies implemented in simulated robotic soccer and presents
the results of our focused experimentation. We believe these results provide
a basis for future experimental work, as well as a grounding for more general
explication of the coaching problem.

2 Environment

The Soccer Server System is a server-client system that simulates soccer
between distributed agents. Clients communicate using a standard network
protocol with well-defined actions. The server keeps track of the current state
of the world, executes the actions which the clients request, and periodically
sends each agent noisy, incomplete information about the world. Agents re-
ceive noisy information about the direction and distance of objects on the
field (the ball, players, goals, etc.); information is provided only for objects
in the field of vision of the agent.

There are 11 independent players on each side as well as a coach agent.
The coach agent sees the position and velocity of all players and the ball, but
does not directly observe the actions or the perceptions of the agents.

Actions must be selected in real-time, with each of the agents having an
opportunity to act 10 times a second. Each of these action opportunities
is known as a “cycle.” Visual information is sent 6 or 7 times per second.
Over a standard 10 minute game, this gives 6000 action opportunities and
4000 receipts of visual information. All units of distance discussed here are
simulated meters, with the whole field measuring 105m x 68m.

The communication model between the coach and players was designed to
require significant autonomy for the players, especially during the active parts
of the games. Basically, the model permits the coach to say one message every
30 seconds (every 300 cycles). Messages are delayed 5 seconds (50 cycles)
before being sent to the players.

The coach messages are in a standard coach language called CLang, which
was developed by members of the simulated soccer community. Each message
basically consists of a set of condition-action rules for the players. The con-
ditions can include relative and absolute positions of the players and the ball
as well as the play mode and the player currently controlling the ball. The
actions include directions to pass or dribble, move to an area of the field, and
“mark” (take a defensive position) against a player or region.

The exact communication model as well as further technical details can
be found in [16].



3 Coaching Techniques

This section covers the techniques we use to coach simulated robotic soccer.
All of these techniques are designed to learn information about the oppo-
nents and how to play effectively against them. Learning about the team
to be coached the next research step, as discussed in the empirical results
(Section 4).

3.1 Formations by Learning

One important concept in robotic soccer is that of the formation of the team
[19]. The concept of formation used by CLang is embodied in the “home
area” action. The home area specifies a region of the field in which the agent
should generally be. It does not require that the agent never leave that area;
it is just a general directive.

Our coach represents a formation as an axis aligned rectangle for each
player on the team. From the home areas, agents can also a infer a role in
the team, with the common soccer distinctions of defenders, midfielders, and
forwards.

(a) After Phase 1 (b) After Phase 2

Fig. 1. The learning of the CMUnited99 formation from RoboCup2000 games.

All coaching based on formation uses an algorithm for learning the for-
mation of a team based on observation of that team. The algorithm’s input
is the set of locations for each player on a team over one or more games. The
learning then takes place in two phases.

1. The goal of the first phase is, for each agent, to find a rectangle which
is not too big, yet encompasses the majority of the points of where the
agent was during the observed games. The learning is done separately for
each agent with no interaction between the data for each agent. First the
mean position of the agent (cg, c,) is calculated, as well as the standard
deviation (s, s,). We then do a random search over possible rectangles



(o is used a parameter for the search). The rectangles to evaluate are
generated from the following distribution (for the left, right, top, and
bottom of the rectangles), where N(m,o) represents a Gaussian with
mean m and standard deviation o (note that we use a coordinate frame
where (0,0) is in the upper left):

(N(cg — $2,0), N(cg + 84,0), N(cy — $y,0),N(cy + sy,0)) (1)

The evaluation function is a weighted sum (with parameter v which we
set to 0.95) of two quantities, both with maximum values of 1. The first
involves f, the fraction of points where the agent was which are inside
R. We simply use f” to (where 3 is a parameter which we set to 1/3).
The second quantity uses A (the area of R) and a scaling parameter M
(which we set to 900). The evaluation function is then:

B(R) =1+ (1= (1- 47 @)

. The first phase of learning ignores correlation among the agents. In fact
it quite common for all agents to shift one direction or another as the
ball moves around the field. This tends to cause the average positions
(and therefore the rectangles from phase 1 of the learning) to converge
towards the middle of the field, as shown in Figure 1(a). The second phase
is designed to capture some pairwise correlations among the agents. The
rectangles are moved around, but their shape is not changed.

For this phase, conceptually think of a spring being attached between
the centers of the rectangles of every pair of agents. The resting length
for that spring is the observed average distance between the agents. Also,
attach a spring with a resting length of 0 between the center of a rectangle
and its position at the end of phase 1. A hill-climbing search is then done
to find a stable position of the system. Figure 1(b) shows an example
result after the second phase of learning.

Now we describe the details of the algorithm. First, the observed average
distance t;; between every two agents is calculated. Next, for each pair of
agents, a value a;; roughly corresponding the the tension of the spring in
the above description is calculated as follows (w and m are parameters):

aij =™ (i # ) (3)
Qi = W (4)

Eq. (3) provides a higher value (i.e. higher spring tension) between agents
which are closer, reflecting the assumption that the correlated movement,
of nearby agents is more important than those of far away agents. The pa-
rameter m (which we set to —0.01) controls that exact weighting. Eq. (4)
is used for the connection of an agent to its original position, since Eq. (3)
would provide an extremely high weight since ¢;; = 0. The constant w



is set to 0.5, which is the weight calculated by Eq. (3) for a distance of
approximately 69 meters.

At each step of the hill-climbing search, a particular agent p is chosen at
random to have its rectangle shifted. All other rectangles are held fixed.
For all ¢, let 0; be the original position of rectangle ¢ and let ¢; be the
vector of the center of current position of rectangle ¢. The evaluation
function used is (where smaller is better):

app (dist(cp, Op))2 + Z apj (dist(cp, ¢j) — tpj)2 (5)
i#p
This simply uses the « values computed in Egs. (3) and (4) to compute
the additive penalty for the imaginary springs not being at their resting
length.
The gradient of the evaluation function as a function ¢, is easily calculated

and a small step is taken in the direction of the gradient (with learning
rate 0.001).

Formation learning is used in two ways. The first is an instance of im-
itation where we imitate the formation of another team. This is especially
important for the rule learning described in Section 3.3. The other technique
we call “formation based marking.” Here the coach observes the previous
games of the opponent we will play and learns their formation. Each of the
defenders is then assigned one of the forwards of the opponent to mark for the
whole game. Ordinarily a team may change its assignment of which defend-
ers mark which forwards. Sending static marking assignments may reduce
flexibility, but it also reduces coordination problems and gives the player
knowledge of the opponent they did not previously have.

3.2 Set plays

Set plays refer to times of the game when the ball is stopped (due to an out
of bounds call, free kick, or kick off) and one team has time to prepare before
kicking the ball. Our coach takes advantage of this time to make a plan for
the movement of the ball and the agents. This plan is based on refinement of
plan templates with a model of the opponent used in evaluating plan changes.
Details about this process are described elsewhere [14].

An important difference to be noted is that the plans used in this work
were described as a set of rules in CLang rather than as a Simple Temporal
Network [7]. Compiling coordination constraints into rule-based systems can
be difficult.

3.3 Rule Learning

The passing patterns of a team are an important component in a team’s
performance. Our coach observes the passes of teams in previous games in
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order to learn rules which capture some of these passing patterns. These rules
can then be used either to imitate a team, or to predict the passes that an
opponent will do.

The rule learning uses a combination of clustering (using Autoclass C [3])
to create regions on the field and C4.5 [12] to generate rules describing the
passing behavior of a team. The attributes for the rules are the locations of
the passer and receiver (using the regions learned from clustering) and the
relative position of all teammates and opponents. The rules from C4.5 are
then transformed into rules in CLang.

To illustrate, we now provide an example of an learned rule. The format
here is almost the format of the CLang language. A few things have been
renamed or left out for clarity.

((and (play_mode play_on)

(bowner our)
(bpos "PLINCLO")
(ppos our {6} (arc (ball) 23 1000 -180 360))
(ppos opp {10} (arc (ball) O 1000 151 29)))
(do our {2 - 11} (bto "PLOUTCL1" {p}))
(do our {11} (pos "PLOUTCL1")))
Lines 1-5 are the conditions for the rule and lines 6-7 are the actions. Line 2
says that some player on our team is controlling the ball. Line 3 says that
that the ball in a particular cluster (“PLINCLO” is the name of the cluster).
Lines 4 and 5 are on the position of particular players. Line 4 says that
teammate number 6 is at least 23m away, while line 5 says that the angle
of opponent number 10 is between 151 and 180 degrees. Note that we do
use absolute player numbers here. This is one of the reasons we developed
the formation learning techniques described in Section 3.1. As long as the
opponent has not changed its formation, the absolute player numbers should
be valid. Line 6 instructs all players on our team (except the goalie who is
number 1) to pass the ball to the a particular cluster. Line 7 instructs a
teammate number 11 (whose home formation position is closest to cluster
“PLOUTCLL”) to position itself in that region.

4 Experimental Setup and Results

The language CLang was adopted as a standard language for a coach compe-
tition at RoboCup2001. Four teams competed providing a unique opportunity
to see the effects of a coach designed by one group on the team of another.
We participated in the coach competition, which consisted a single game in
each test case. This section reports on our later thorough empirical evaluation
of our coach and the techniques used. Each experimental condition was run
for 30 games and the average score difference (as our score minus their score)
is reported. Therefore a negative score difference represents losing the game



and a positive score difference is winning. All significance values reported are
for a two tailed t-test.

We use eight teams for our evaluation. We will use initials (denoted in
parentheses here) for the teams. The teams that understand CLang are:
the DirtyDozen (DD) from University of Osnabriick; and ChaMeleons (CM)
from Carnegie Mellon University. Also from RoboCup2001, we use Gemini
(GEM) from the Tokyo Institute of Technology and Brainstormers (B) from
the University of Karlsruhe. Team descriptions for these teams are avail-
able in [5]. From the RoboCup2000 competition, we use the following teams:
VirtualWerder (VW) from the University of Bremen; ATHumboldt (ATH)
from Humboldt University; and FCPortugal (FCP) from the Universities of
Aveiro/Porto (team descriptions can be found in [2]). We also use CMU-
nited99 (CMU99) from Carnegie Mellon [18], which competed at RoboCup99
and RoboCup2000. In order to run these experiments, we slowed the server
down to 3-6 times normal speed so that all agents could run on one machine.

Our experiments aim to separate out the effects of the techniques of our
coach. To do this, we ran a sequence of games with different combinations of
the five techniques: formation (F) (Section 3.1), set plays (S) (Section 3.2),
offensive and defensive rules (R) (Section 3.3), and formation based marking
(M) (Section 3.1).

For playing against GEM, our coach observed one game of B playing
against GEM. Advice was sent to imitate B’s formation and formation based
marking was used against GEM’s formation. Rule learning was also done for
those games. Similarly, our coach learned from 5 games of CMU99 playing
against VW and from 10 games of FCP playing against ATH.

The results are shown in Figure 2. The CMvATH set is different from the
others in several respects. No combination of the techniques resulted in an
improvement for CM, and several combinations (F, FSR, FSRM) resulted in
significantly worse performance (p < .05) compared to no coach.

For the other teams, the combination of all techniques (FSRM) is always
significantly better than no coach (p < .000002). Looking at the individual
techniques is also illustrative. Sending a formation sometimes helps the team
(DD v GEM) and sometimes hurts the performance (CM v GEM), even
though exactly the same formation is sent in each case. Even though the
advice is the same, the effect on the team being coached is vastly different.
From this, we conclude that the coach needs to learn something about the
team being coached.

Except for the CM v ATH line, neither the rules nor the formation based
marking make a significant impact on the score difference of the games. The
formation based marking was a minor part of the coach and it is no great
surprise that it’s impact is small. The rule learning, however, was the most
ambitious of the coaching techniques used. There are several reasons why the
rules may have failed to have a large impact. The number of examples from
which to learn varied considerably, from 51 to 1638) and so did the accuracy of



Score Difference

No Coach F FS FSR FSRM
CMvGEM DDvGEM CMvVW CMvATH
-6.5 [—7.2,—5.9] -17.2 [—18.1,—16.3] -2.8 [—3.7,—1.9] 1.2 [0.8,1.7]

Fig. 2. The score difference of teams coached by a random coach and various tech-
niques of C-CM. The score differences have been additively normalized to the no
coach values shown in the lower table. All error bars are 95% confidence intervals.
Note that we do not have random coach results for all cases.

the rules on the reserved test set (35%—75%). Some preliminary experiments
indicate that changing the input attributes could improve the performance.
The attributes are currently based on the absolute player numbers, where
sorting the player’s by distance to the passer may be useful. This was done
primarily because of the expressibility of the current version of CLang, and
a new version is in progress (see [16] for details).

5 Related Work

The area of imitation has been studied under many different names. There
has been extensive research in the robotics literature on learning a task by
imitating a human being, called variously “teaching by guiding,” “learning
by watching,” “programming by demonstration,” and “imitation learning.”
Bakker and Kuniyoshi have a recent survey [1] and Dautenhahn emphasizes
the biological connection [6]. Similarly, an area commonly called behavioral
cloning deals with learning a control strategy for a task [17,20]. Imitation is
only one possible aspect of successful coaching. In particular for this work,
we are imitating one aspect of agent interaction (passing), not simply agent
interaction with the environment.

Some work has also been done in creating agents capable of receiving
advice. For example, the RATLE system by Maclin and Shavlik [8] can in-
corporate advice generally specified as if-then rules (similar to the language
we use here) into a reinforcement learning agent. Their results in Pengo, a



grid and blocks world, also suggest that the learning agents need to be able
to refine advice to achieve high performance. Clouse [4] find a similar results
in a discrete driving task. They created an automated trainer to improve the
learning speed of the learning agent. If the trainer gives too much advice, the
learner can fail to converge.

Previous research in Intelligent Tutoring Systems (ITS) has examined how
to give advice to human beings. For example, Miller, et. al. [9] consider how
to give advice to students who are constructing arguments based on scientific
data. The system works by comparing the structure of the student’s argument
(explicitly given by the student) to known patterns. The CAST system [11]
trains humans to act in a team. Here, a coach agent provides advice based
on tracking belief state of the human being coached. The primary difference
between the ITS literature and this research is that tutoring systems generally
rely on a fairly rigid and predefined task structure. Deviations from that
structure are the focus of the advice. Here, we have no such predefined plan
or structure.

The ISAAC system [13] is an automated game analysis tool for simulated
robotic soccer. It does off-line analysis of games at several levels. It employs
a local adjustment approach to suggest small changes (such as “shoot when
closer to the goal”) to a team’s designer in order to improve performance. The
suggestions are backed up by examples from the games analyzed and provided
in a format useful for the designers to examine. However, ISAAC’s suggestion
are provided to the designer of the team, not to the agents themselves; there
is no automated effect on the team.

6 Conclusion

We have presented several implemented coaching techniques for a simulated
robotic soccer domain. We further presented the results from an extensive set
of experiments to understand the effects of the coaching techniques presented
here, using agents created at a variety of institutions. The experiments repre-
sent 630 games and over 20 days of computer time. The experiments justify
that coaching can help teams improve in this domain. However, all of our
coaching techniques are based on learning about the adversary and not on
understanding the functioning of the team to be coached. Consequently, the
effect of the advice on different teams varies greatly. Our results support the
need for a coach to understand its team in order to achieve robust perfor-
mance.

These empirical study is a first but significant step in the project of un-
derstanding an advice-based relationship between automated agents. We in-
tend to use this experimental basis to aid in the understanding of the gen-
eral coaching problem (see [15] for one characterization). This research raises
many interesting question which we will continue to pursue.
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