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Abstract. In this paper we evaluate the instructional effectiveness of tu-
torial dialogue agents in an exploratory learning setting.  We hypothe-
size that the creative nature of an exploratory learning environment cre-
ates an opportunity for the benefits of tutorial dialogue to be more 
clearly evidenced than in previously published studies.  In a previous 
study we showed an advantage for tutorial dialogue support in an ex-
ploratory learning environment where that support was administered by 
human tutors [9].  Here, using a similar experimental setup and materi-
als, we evaluate the effectiveness of tutorial dialogue agents modeled 
after the human tutors from that study.  The results from this study pro-
vide evidence of a significant learning benefit of the dialogue agents. 

1 Introduction  

In this paper we evaluate the instructional value of an implemented tutorial dialogue 
system integrated with an exploratory simulation-based learning environment.  Tuto-
rial dialogue has long been argued to hold a great potential for improving the effec-
tiveness of instruction that can be offered by intelligent tutoring systems.  This claim 
is largely based on evidence from famous studies of expert human tutoring, where it 
was demonstrated to beat classroom instruction by two standard deviations [2,3].  
Dialogue offers the potential for eliciting a high degree of cognitive engagement from 
students and offers tutors a great deal of flexibility in adapting the presentation of 
material to the individual needs of students. 

While tutorial dialogue holds the potential for many benefits for the student, it also 
comes with a cost in terms of both time and energy.  Vanlehn et al. (2005) present a 
review of a series of experiments comparing human tutoring to non-interactive con-
trol conditions.  Surprisingly, the advantages of human tutoring are not consistently 
demonstrated across studies.  In order for the benefits of tutorial dialogue to be dem-
onstrated conclusively, the benefits must outweigh the cost.  One potential explana-
tion for the inconsistency in the pattern of results from previous comparisons of hu-
man tutoring to non-interactive alternatives is that some studies were conducted in 
environments that did not take advantage of the potential benefits of dialogue to a 
great enough extent for the benefits experienced by students to clearly outweigh the 



cost.  Consequently, our work is motivated more by the question of where tutorial 
dialogue might have the greatest impact on learning rather than evaluating whether 
dialogue is always a more effective form of instruction than an alternative.  Thus, the 
research goal of the CycleTalk project, which forms the context for the work pre-
sented in this paper, is to evaluate the benefits of tutorial dialogue in an exploratory 
learning context where we hypothesize that the creative nature of the task will create 
an environment in which the benefits of tutorial dialogue will be more clearly evi-
denced than in previously published comparisons. 

2 Motivation  

The study presented in this paper builds on results from a previous study in which the 
students performed the same task with the same simulation environment but inter-
acted with a human tutor rather than a tutorial dialogue system [9].  In that study, we 
compared three goal level conditions: The first condition was a script based learning 
condition (S) in which students worked through a set of written instructions that ex-
plained step-by-step how to move through the simulation space.  The second condi-
tion was a slightly more exploratory problem solving condition (PS) where students 
were given their instructions at a higher level in terms of problem solving goals and 
would need to use means-ends analysis to derive the set of low level steps required to 
satisfy those goals.  However, they were provided with reference material that con-
tained all of the same information about how to achieve those goals as the students in 
the S condition.  Thus, for all practical purposes, the only difference between the 
instructional materials provided to the PS condition students and those provided to 
the S condition students was the insertion of some extra section divisions and the 
labeling of the section headers.  Furthermore, they used an augmented version of the 
simulation environment that allowed them to request hints during their problem solv-
ing.  In a final, more exploratory condition, rather than being presented with an exact 
ordering of problem solving goals, students were provided with the same set of goals 
but told that they were free to address those goals in whatever order served their in-
structional objectives best.  They were to negotiate the ordering with a human tutor 
who was there to support them.  Thus, we referred to this condition as the Negotiated 
Problem Solving Goals (NPSG) condition.  Because the students were able to interact 
with a human tutor, they used the original version of the simulation software that did 
not include the help button that the PS students had access to.  The students in the 
NPSG condition, which was the only condition with dialogue-based support, learned 
the most out of the three conditions.  In particular, they learned significantly more 
than students in the PS condition (p < .05) and marginally more than the students in 
the S condition (p < .1).   

We consider these experimental results to contribute to the line of research investi-
gating the trade-offs between human tutoring and non-dialogue control conditions, 
although the experimental setup is different in important ways from that used in pre-
vious comparisons. Consider the following series of empirical investigations.  First, 
an evaluation of the AutoTutor system, a tutorial dialogue system in the domain of 
computer literacy, showed an advantage over re-reading of a textbook of about 0.5 



standard deviations [8]. The textbook re-reading condition itself was no better than a 
no-treatment control condition. Similarly, a recent evaluation of WHY-AutoTutor, a 
system based on the same architecture as the original AutoTutor but applied to the 
domain of qualitative physics, demonstrates a significant advantage of this system 
over a textbook reading control [6]. However, in a different experiment the learning 
results obtained with WHY-AutoTutor were no worse than a human tutoring condi-
tion and yet not better than those in a control condition in which students read tar-
geted “mini-lessons,” short texts that covered the same content as that presented in 
the dialogue [5].  In [9] as discussed in the previous paragraph, again we evaluated 
the merits of human tutoring (the NPSG condition) in comparison to two non-
dialogue control conditions (the S and PS conditions).  But note that the setup was 
different in important ways.  First, students in all conditions in our study were pre-
sented with informationally equivalent reading materials.  Rather than replacing the 
reading materials as in [5], the role of the human tutors in our study was to help stu-
dents navigate and understand the materials.  Secondly, the reading materials were 
neither as brief nor targeted to the test as the “minilessons” used in [5] nor were they 
as extensive as a text-book.  Thus, the key difference is that because decisions about 
how to navigate the materials were required, there was a potential benefit to be gained 
from support in this navigation from the negotiation with the tutor that would result in 
appropriate tailoring of the material. 

The purpose of the study presented in this paper is to evaluate the first implemen-
tation of the NPSG approach to instructional support in a simulation-based learning 
environment.  

3 The CycleTalk System  

 
We are conducting our research in the domain of thermodynamics, using as a founda-
tion the CyclePad articulate simulator [4].  CyclePad was developed with the inten-
tion of allowing students to engage in design activities earlier in their education than 
was possible previously.  Our explorations of CyclePad use focus on design and op-
timization of thermodynamic cycles, specifically Rankine cycles.  A thermodynamic 
cycle processes energy by transforming a working fluid within a system of networked 
components (condensers, turbines, pumps, and such). Power plants, engines, and 
refrigerators are all examples of thermodynamic cycles. Rankine cycles are a type of 
heat engine that forms the foundation for the design of the majority of steam based 
power plants that create the majority of the electricity used in the United States.  
There are three typical paradigms for design of Rankine cycles, namely the Simple 
Rankine Cycle, Rankine Cycle with Reheat, and Rankine Cycle with Regeneration.  
As students work with CyclePad on design and optimization of Rankine Cycles, they 
start with these basic ideas and combine them into novel designs.   

We have constructed a cognitive task analysis describing how students use Cy-
clePad to improve a design of a thermodynamic cycle [10].  Students begin by laying 
out the initial topology of a cycle using the widgets provided by CyclePad.  For ex-
ample, they may choose to construct the topology for a Simple Rankine cycle, which 



consists of a heater, a turbine, a condenser, and a pump.  Students must next set val-
ues for key parameters associated with each widget until the cycle’s state is fully 
defined.  At that point, the student can explore the relationships between cycle pa-
rameters by doing what are called sensitivity analyses, which allow the student to 
observe how a dependent variable’s value varies as an independent variable’s value is 
manipulated.  Students may experiment with a number of alternative designs.  Based 
on their experience they can plan strategies for constructing cycle designs with higher 
efficiency.  Making adjustments to improve cycle efficiency is called optimization.  
As part of this optimization process, students may reflect upon their understanding of 
how thermodynamic cycles work.  

As a foundation for a tutorial dialogue system, we constructed a tutoring system 
backbone to integrate with CyclePad.  The purpose of this tutoring system backbone 
was to introduce the capability of tracing the student’s path through their exploration 
through the simulation space as well as to provide the capability of offering students 
hints along the way in the style of model tracing tutors.  We used a tool set called the 
Cognitive Tutor Authoring Tools (CTAT) [7,1] to develop this backbone tutor.   The 
Cognitive Tutor Authoring Tools (CTAT) support the development of so-called 
Pseudo Tutors, which can be created without programming, namely, by demonstrat-
ing correct and incorrect solutions to tutor problems, which are then stored in a repre-
sentation referred to as a Behavior Graph, which is then used to trace the solution 
paths students follow as they are working with the Pseudo Tutors at run time. Each 
node in the Behavior Graph represents an action a student may make. We integrated 
tutorial dialogue with the psuedotutors by allowing dialogues to be launched either in 
response to hint requests or as success messages when students complete the action 
associated with a node in the Behavior Graph.  We build on the foundation of our 
prior work building and evaluating Knowledge Construction Dialogues (KCDs)[11].  

4 Content Development for Tutorial Dialogues 

 
Using an exploratory corpus analysis tool called InfoMagnets that was developed in 
our research group, a thermodynamics domain expert constructed a topic analysis of a 
corpus of human tutoring dialogues collected during the previous classroom study 
involving CyclePad mentioned earlier [9]. Altogether each student’s protocol was 
divided into between 10 and 25 segments such that the entire corpus was divided into 
approximately 379 topic segments altogether.  The resulting analysis consisted of 15 
distinct topics, with each student covering between 4 and 11 of these topics either 
once or multiple times throughout their interaction with the tutor. In support of the 
instructional value of these discussion topics, we found a strong and reliable correla-
tion between topic coverage (i.e., percentage of topics discussed at least once) and 
post-test score, with pre-test score used as a covariate (R2=.715, N=21, p < .05).   The 
topic analysis of the corpus gives us a way of quickly getting a sense of how tutors 
divided their instructional time between different topics of conversation.  Based on 
our topic analysis of the human-tutoring corpus, we designed 12 KCDs, 7 of 



which were focused on the specifics of optimization and 5 of which were more 
conceptual. 

Here is an example collected during our study of a student conversing with a KCD 
about manipulating the maximum temperature of the cycle. 

 
Tutor: Let’s stop for a minute and reflect on what we have seen.  Having 
seen how changing T-Max (i.e., the Maximum Temperature at the Heater 
Outlet) affects the efficiency of the cycle, do you think it is a good idea in 
general for the Maximum Temperature to be increased and kept high? 
Student: yes 
Tutor: Okay.  Let’s think now about one important consequence of keeping 
T-Max high.  What happens to the steam quality at the turbine exit if you in-
crease the maximum temperature of the cycle? 
Student: Increases 
Tutor: Right.  As increasing the temperature makes the efficiency and steam 
quality better, we should increase the maximum temperature of the cycle.   
But can we keep on increasing the maximum temperature at the heater outlet 
indefinitely, or are there limitations to keep in mind? 
Student: there are limitations such as material constraints 
Tutor: Great.   we should try to keep T-Max (i.e., the maximum temperature 
at the Heater outlet of the cycle) as high as possible without risking safety 
concerns or exceeding the maximum temperature the material can withstand. 
Keeping T-Max high increases efficiency and keeps the steam quality high, 
which are both important.  This is an important principle to keep in mind 
while optimizing the efficiency of your cycle. 

5 Method 

 
The purpose of our study was to test whether we can achieve the same benefit with an 
implemented tutorial dialogue system as we obtained with the presence of a human 
tutor in the NPSG condition from [9]. 
 
Experimental procedure common to all conditions. The study consisted of a 3 hour 
lab session.  We strictly controlled for time between conditions.  The 3-hour lab ses-
sion was divided into 9 segments:  (1) After completing the consent form, students 
were given 15 minutes to work through an introductory exercise to familiarize them-
selves with the CyclePad software.  (2) Students then had 15 minutes to work through 
a 50 point pre-test consisting of short answer and multiple choice questions covering 
basic concepts related to Rankine cycles, with a heavy emphasis on understanding 
dependencies between cycle parameters.  (3) Students then spent 15 minutes reading 
an 11 page overview of basic concepts of Rankine cycles.  (4) Next they spent 40 
minutes working through the first of three focused materials covering the Basic 
Rankine Cycle.  The materials included readings, suggested problem solving goals, 



and analyses to help in meeting those goals.  (5) Next they spent 20 minutes working 
through the second set of focused materials, this time focused on Rankine Cycles 
with Reheat.  (6) They then spent 20 minutes through the third set of focused materi-
als, this time focusing on Rankine Cycles with Regeneration.  (7) They then spent 10 
minutes on each of two Free Exploration exercises, one of which was designed to test 
whether students learned how to fully define a Rankine cycle, and one of which was 
designed to test the student’s ability to optimize a fully defined cycle.  (8) They then 
spent 20 minutes taking a post-test that was identical to the pretest.  (9) Finally, they 
filled out the questionnaire.  The experimental manipulation took place during steps 
(4)-(6).   
 
Experimental design. Our experimental manipulation consisted of 3 conditions.  The 
only difference between conditions during the experimental manipulation was the 
version of the software the students used.  In the control condition, students used the 
original CyclePad system.  This was a replication of the script condition (S) from [9].  
In the first experimental condition, students used a version of CyclePad augmented 
with feedback and help that were integrated with CyclePad using psuedotutors 
(PSHELP).  The PSHELP condition was similar to the problem solving condition 
(PS) from [9] except that in addition to typical hints and feedback messages, dia-
logues in the form of Knowledge Construction Dialogues (KCDs) were attached to 
nodes related to KCD topics in such a way that if a student asked for help on that 
node, they would get the dialogue as the hint message.  Thus, students only saw dia-
logues when they asked for help on nodes that had KCDs attached to them.  In a sec-
ond experimental condition, the same KCDs were attached to success messages on 
the same nodes so that students got the dialogues after they successfully completed an 
action or if they asked for help on that action (PSSUCCESS).  In both experimental 
conditions, students only viewed each unique KCD once.  If additional opportunities 
to view the same KCD came up, students instead were presented with a hint summa-
rizing the message of the KCD. 
 
Outcome Measures: We evaluated the effect of our experimental manipulation on 
three outcome measures of instructional effectiveness.  One outcome measure was 
assessed by means of a Pre/Post test containing 32 multiple choice and short answer 
questions that test analytical knowledge of Rankine cycles, including relationships 
between cycle parameters.  A domain expert associated each question on the test with 
the set of concepts related to the 12 authored KCDs discussed in Section 4 that the 
student would need to have a grasp on in order to correctly answer the problem.  
Using this topic analysis of the test, we can compute a concept specific score for each 
student on each test, and thus measure concept specific knowledge gain. Next there 
were two separate measures of practical knowledge, based on success at the two Free 
Exploration exercises from step 7 of the experimental procedure.  For the Free Explo-
ration 1 exercise where students were charged with the task of fully defining a 
Rankine cycle, they received a 1 if they were successful and 0 otherwise.  For Free 
Exploration 2, the students were evaluated on their ability to optimize a fully defined 
cycle.  Thus, their score for that exercise was the efficiency they achieved, as meas-
ured by the CyclePad simulator. 



 
Participants.  31 students from a sophomore Thermodynamics course at Carnegie 
Mellon University participated in the study in order to earn extra credit.  The study 
took place one and a half weeks after Rankine cycles were introduced in the lecture 
portion of their class.  The study took place over two days, with two lab sessions on 
each day.   

6 Results 

The goal of our evaluation was to measure the value added of dialogue to the Cycle-
Talk system.  Our two experimental conditions present two different approaches to 
integrating dialogues with a version of CyclePad that was augmented with an intelli-
gent tutoring framework that allowed students to ask for hints.  Students had the op-
portunity to encounter two different types of dialogues.  In particular, 5 dialogues 
covered basic knowledge about the concept of Reheat, the concept of Regeneration, 
and some basic knowledge about properly initializing cycle parameters prior to opti-
mization.  7 additional KCDs covered specific topics related to interpreting sensitivity 
analyses and doing optimization based on the results.   

As mentioned, the difference between the PSHELP condition and the 
PSSUCCESS condition was that students in the PSHELP condition only received 
KCDs in response to help requests whereas students in the PSSUCCESS condition 
also received KCDs as success messages after successfully completing a sensitivity 
analysis.  Thus, the PSSUCCESS condition included more paths where students had 
the opportunity to encounter KCDs, although the system ensured that each full KCD 
was never viewed by the same student more than once.  Students in the PSSUCCESS 
condition were significantly more likely to see each KCD than students in the 
PSHELP condition, as computed from logfile data using a binary logistic regression 
with an observation for each KCD (i.e., whether the student viewed that KCD or not 
during their experience with CyclePad) for each student in the two experimental con-
ditions (p < .05).  Students in the PSHELP condition only viewed a KCD when they 
asked for a hint.  And in practice, students in the two experimental conditions did not 
ask for help frequently.  Specifically, only about 14% of the problem solving actions 
of students were help requests.  On average, students in the PSHELP condition 
viewed 1.8 KCDs (st. dev .837) whereas students in the PSSUCCESS condition saw 
2.7 (st. dev. 1.9).  The difference in coverage of KCDs between conditions was 
mainly on the KCDs related to sensitivity analyses.  Only 1 of 7 KCDs focusing on 
interpreting sensitivity analyses was viewed by any student in the PSHELP condition, 
whereas in the PSSUCCESS condition all but one of these KCDs was viewed by at 
least one student.  The difference between experimental conditions is interesting from 
the standpoint of evaluating the contribution of manipulating the number of KCDs 
viewed on learning.  Nevertheless, it is a concern that so few of the authored KCDs 
were viewed by students on average even in the condition where they were viewed 
most frequently, and further increasing the number of opportunities for students to 
view KCDs is one of the goals of our continued work. 



As mentioned above, the study took place over two days, with two lab sessions on 
each day. Two lab sessions on day 1 were assigned to the control condition (S).  The 
first lab session on the second day was assigned to the first experimental condition 
(PSHELP).  The final experimental condition took place during the second lab ses-
sion on the second day (PSSUCCESS).  We learned after the experiment was in pro-
gress that a quiz on Rankine cycles was administered to the class in between the lab 
sessions on the first day and the lab sessions on the second day.  Thus, presumably 
because students were studying the day before the quiz, on average pretest scores 
increased from lab session to lab session such that there was a weak but significant 
correlation between lab session number and pretest score (R-squared = .14, p < .05, 
N=17).  We expect that students on the second day when the experimental conditions 
took place were less motivated to learn the material than students on the first day 
since the quiz had already been given.  Furthermore, since they had already studied, 
any learning that would take place would necessarily need to be on topics that re-
mained difficult for the students even after studying.  Finally, attendance in the first 
lab on the second day was lower than in the other conditions.  Because of the inter-
ference of the quiz between the lab sessions where the control condition was con-
ducted and the lab sessions where the two experimental conditions were conducted, 
we disregard the comparison between the control condition and the two experimental 
conditions and focus only on the difference between the two experimental conditions, 
although a summary of results from all three conditions is displayed in Table 2. 
 

Table 1 Summary of results from all three conditions. 

Condition Pretest 
Average 
Total 

Posttest 
Average Total 

FreeExplore 1 
Success Rate 

FreeExplore 2 
Average Efficiency 

S 20.64 
(5.56) 

31.39 (5.86) 23% 38.14 (10.97) 

PSHELP 20.67 
(3.56) 

27.83 (6.02) 0% 38.09 (13.12) 

PSSUCCES
S 

24.86 
(4.10) 

32.45 (4.06) 20% 34.09 (14.17) 

 
 
There was a significant effect of test phase F(1,60) = 44.98, p < .001, with no signifi-
cant interaction with condition.  Thus, students in all three conditions learned.  It is 
impressive that the lab sessions on the second day when the experimental conditions 
were conducted yielded significant learning gains even though they were conducted 
on the same day as the quiz, which took place that morning.  Because the difference 
in presentation of KCDs between the two experimental conditions is subtle, in order 
to increase the statistical power of the comparison, we evaluated the significance of 
the difference in learning between conditions using a repeated measures ANOVA, 
with a separate observation for each of the concepts the pre/post test was designed to 
test.  The effect of condition on Concept Posttest Score with Concept Pretest Score 
used as a covariate and Concept as a fixed factor demonstrated a significant effect 



both of Concept, F(10, 327) = 15.55, p < .001, and of Condition, F(2, 327) = 3.25, p 
<  .05, with no significant interaction.  Thus students learned more about some con-
cepts than others consistently across conditions.  A pairwise Tukey test comparing 
learning between the PSHELP and PSSUCCESS conditions demonstrated signifi-
cantly more learning in the PSSUCCESS condition, which is the condition where 
more KCDs were viewed (P < .05), effect size .35 standard deviations.  Thus, ma-
nipulating the number of KCDs viewed had a significant positive effect on student 
learning, although there were no significant effects of condition on either of the Free-
Exploration exercises.    

In a follow-up study with the same materials conducted at the US Naval Academy 
where we contrasted the S and PSSUCCSS conditions, we confirmed a significant 
effect in favor of the PSSUCCESS condition F(1,86) = 5.57, p < .05, effect size .25 
standard deviations. 

7 Discussion and conclusions 

In this paper we presented results from a study that demonstrate the instructional 
effectiveness of Knowledge Construction Dialogues (KCDs) modelled after the hu-
man tutors from the study previously published in [9].  Nevertheless, the system we 
evaluated in this study still falls far short of a full implementation of the NPSG condi-
tion from that study.  In our current work we are exploring ways to increase the simi-
larity between our implemented tutorial dialogue system and the behavior of the hu-
man tutors from the NPSG condition.  In particular, the number of KCDs students 
view during their experience with the system still need to be increased by a factor of 
2 or 3 to bring it more in line with the number of topics covered in discussions with 
the human tutors from the human tutoring study.  Furthermore, while the content 
development for the KCDs evaluated in this study were motivated by an analysis of 
the human tutoring corpus from the previous study, they played more of a role of 
eliciting reflection from students rather than assisting with navigation to the same 
extent that the human tutors did. 
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