
Lecture Notes on
Types as Predicates

15-317: Constructive Logic
Frank Pfenning

Lecture 16
October 26, 2017

1 Introduction

One of the significant problems in using Prolog is the lack of static typing.
Prolog inherited this feature from predicate calculus, where it roots lie. In
the foundational study of propositions and quantification, types are often
omitted because it is said they can already be expressed. For example, in-
stead of saying ∀x:nat. A(x) we can say ∀x. nat(x)⊃A(x) if we have a pred-
icate nat that expresses the type nat. Similarly, we can express ∃x:nat. A(x)
as ∃x. nat(x) ∧ A(x). Predicates that provide an extensional representation
of types are not difficult to come by. For example, we can define (and have
defined) the natural numbers with two constructors z and s and the rules

nat(z) true
natz

nat(N) true

nat(s(N)) true
nats

Foundationally, this approach may have some merit, but it also has
some problems. One is that propositions such as ∀x:nat. append(x, nil, x)
which are meaningless become either true or false when written in an un-
typed way: ∀x. nat(x) ⊃ append(x, nil, x). In a language like Prolog this
has dire consequences because we compute with intuitively meaningless
propositions and bogus proofs, leading to unexpected behavior. A second
problem is that the untyped approach does not extend well to higher-order
logic, where we want to quantify over propositions and not just data. In
fact, several times in history well-regarded researchers such as Frege or
Church have attempted to avoid the organizing principles of types, lead-
ing to inconsistent logics.

LECTURE NOTES OCTOBER 26, 2017



L16.2 Types as Predicates

In this lecture we ask explore the question if we may still be able to
use the idea of defining types via (unary) predicates and obtain something
we can statically check and that executes efficiently at the same time. The
answer is “yes”, and the lessons learned from this has also had some impact
on functional programming in the guise of refinement types [FP91, DP03,
Dav97].

There have been multiple approaches to types in the logic programming
community (see [Pfe92] for various articles and technical realizations). We
will not go into a specific decidable language of types, although much of
what we show in this lecture applies to several systems that are different in
the technical details.

2 Modes and Types

Let’s reconsider something simple like addition on unary natural numbers.

nat(z)
natz

nat(N)

nat(s(N))
nats

plus(z, N,N)
pz

plus(M,N,P )

plus(s(M), N, s(P ))
ps

Now we want to show the combined mode and type specification:

plus(+nat,+nat,−nat)

which we interpret as follows: if proof search is initiated with a goal plus(m,n, P )
where nat(m) and nat(n) and succeeds, then P = p with nat(p).

Rigorously, we would have to prove this by induction over the structure
of computation (that is, proof search). In the absence of such an operational
semantics, we prove it by induction over the structure of the rules. Assume
we are searching for a proof of plus(m,n, P ) for a variable P and terms m
and n with nat(m) and nat(n).

Case: Rule pz. We know nat(z) (which adds no new information) and
nat(n). Applying the rule will succeed and instantiate P = n and
so nat(P ).

Case: Rule ps. We know m = s(m′) and nat(s(m′)) and also nat(n). From
the first fact, by inversion (only rule nats could be used to prove this)

LECTURE NOTES OCTOBER 26, 2017



Types as Predicates L16.3

we obtain nat(m′). Now we can appeal to the induction hypothesis:
if the subgoal plus(m′, n, P ′) succeeds, the P ′ = p′ and nat(p′). Then
nat(s(p′)) by rule nats.

So far, there is not much new or interesting in this when compared to
types as we know them from functional languages. But we can define new
and interesting types as predicates and reason about them in the same style.
For example, we can distinguish the even and odd numbers and reason
about the properties of addition.

even(z)
evz

odd(N)

even(s(N))
evs

even(N)

odd(s(N))
ods

Let’s try to check that adding two even numbers results in an even number.

plus(z, N,N)
pz

plus(M,N,P )

plus(s(M), N, s(P ))
ps

plus(+even,+even,−even)

Case: Rule pz.

even(z) mode +even of first arg.
even(N) mode +even of second arg.
even(N) previous line

Case: Rule ps.

even(s(M)) mode +even of first arg.
odd(M) by inversion from previous line
even(N) mode +even of second arg.

At this point we are stuck because we cannot apply the induction
hypothesis, only knowing that M is odd.

So we need to generalize our declaration to

(i) plus(+even,+even,−even)
(ii) plus(+odd,+even,−odd)

and restart our proof.

LECTURE NOTES OCTOBER 26, 2017



L16.4 Types as Predicates

Case (i): Rule pz.

even(z) mode +even of first arg.
even(N) mode +even of second arg.
even(N) previous line

Case (i): Rule ps.

even(s(M)) mode +even of first arg.
odd(M) by inversion from previous line
even(N) mode +even of second arg.
odd(P ) by i.h.(ii)
even(s(P )) by rule evs

Case (ii): Rule pz.

odd(z) mode +odd of first arg.
Contradiction by inversion (no rule concluding odd(z))

Case (ii): Rule ps.

odd(s(M)) mode +odd of first arg.
even(M) by inversion from previous line
even(N) mode +even of second arg.
even(P ) by i.h.(i)
odd(s(P )) by rule ods

Note there that the case pz in the proof of (ii) is impossible: the rule pz
cannot apply if the first argument of plus is odd. From the contradication in
this case we can infer anything, in particular that the third argument will
be odd if the search succeeds, which it never will.

We see two differences here already to a system of types for languages
such as ML: we have a natural notion of multiple related types (such as
even and odd numbers, as well as arbitrary natural numbers), and a given
predicate such as plus may have multiple types, all of them necessary for
type-checking purposes.

LECTURE NOTES OCTOBER 26, 2017



Types as Predicates L16.5

3 Subtyping

Types defined as predicates come with a natural notion of subtyping. For
two predicates s and t we write s ≤ t if ∀x. s(x)⊃t(x), that is, every element
satisfying s also satisfies t.

To appreciate the need for subtyping, we consider once again binary
numbers and numbers in standard form (no leading zero’s). We defined
this slightly differently from last lecture by stipulating that in a term b0(N),
N must be positive. This enforces that it cannot be e, which represents zero
and is therefore not positive.

std(e)
stde

pos(N)

std(b0(N))
std0

std(N)

std(b1(N))
std1

no rule pose

pos(N)

pos(b0(N))
pos0

std(N)

pos(b1(N))
pos1

We now recall the increment predicate and try to verify that, if given a
standard number it will construct a positive one.

inc(e, b1(e))
ince

inc(b0(M), b1(M))
inc0

inc(M,N)

inc(b1(M), b0(N))
inc1

inc(+std,−pos)

Case: Rule ince.

pos(b1(e)) by rules pos1 and stde

Case: Rule inc0.

std(b0(M)) first arg.
pos(M) by inversion
std(M) by pos ≤ std, see below
pos(b1(M)) by rule pos1

Case: Rule inc1.

std(b1(M)) first arg.
std(M) by inversion
pos(N) by i.h.
pos(b0(N)) by rule pos0

LECTURE NOTES OCTOBER 26, 2017



L16.6 Types as Predicates

At this point the proof is complete, if we can show that pos ≤ std. This is
now a property that no longer requires appeal to the definition of inc; it is
just a property of the two types. We can proceed by induction (actually, just
a proof by caes is required) on the definition of pos.

Case: Rule pos0.

pos(N) premise
std(b0(N)) by rule std0

Case: Rule pos1.

std(N) premise
std(b0(N)) by rule std1

Next we see how this kind of static type checking (phrased here as theo-
rem proving) can help uncover errors. For example, we may want to check
that

inc(−std,+std)

Case: Rule ince. Then std(e).

Case: Rule inc0.

std(b1(N)) second arg. of inc
std(N) by inversion
Need: pos(N) not true in general!
std(b0(N)) by rule std0

There is no way to fix the missing step in the second case (we didn’t even
get around to the third case). std(N) does not imply pos(N), with N = e as
a counterexample. Indeed, one solution for

?- inc(M, b1(e))

is M = b0(e) which is not in standardard form.
At this point we might consider some other properties. Let’s define

some new types, such as zero(N) and empty(N):

zero(e)
zeroe

no rule for empty(N)

LECTURE NOTES OCTOBER 26, 2017



Types as Predicates L16.7

Now we can show, with type checking that a query inc(M, e) cannot suc-
ceed. The type we ascribe is

inc(−empty,+zero)

which expresses that if a query inc(M,n) with zero(n) succeeds with M =
m, then empty(m). Since there is no such m, this means if inc has the given
type then decrementing zero can not succeed. This means it either doesn’t
terminate or it fails after a finite number of steps.

Now to the type checking:

Case: Rule ince.

zero(b1(e)) second argument
Contradiction by inversion (no rule concludes zero(b1(e)))

Case: Rule inc0.

zero(b1(M)) second argument
Contradiction by inversion

Case: Rule inc1.

zero(b0(M)) second argument
Contradiction by inversion

All cases are impossible, to the type inc(−empty,+zero) is correct.
As a last example we revisited the even/odd distinction, now on binary

numbers. We could just look at the least significant bit, but we arrange that
even ≤ std and odd ≤ pos to ease working with these types.

pos(N)

even(b0(N))
ev0

std(N)

odd(b1(N))
od1

We leave it to the reader to now verify that

inc(+even,−odd)
inc(+odd,−even)

LECTURE NOTES OCTOBER 26, 2017



L16.8 Types as Predicates

4 Refinement types for functional languages

The idea that we have more precise types than just nat (like even and odd)
or binary numbers (like std, pos, zero, empty) could be a priori useful for
functional languages as well.

The main complication is that we also need to include intersection types [CDCV81,
Rey91] to make this work. We retain the usual data types, but we add
data sort declarations that declare refinements [FP91]. The examples in this
section and many more can be found in a converservative extension of
Standard ML with datasort refinements called Cidre [Dav97], available on
GitHub1.

For example, we can define even and odd unary numbers as follows:

datatype nat = z | s of nat

datasort even = z | s of odd
and odd = s of even

But now if we have a simple function such as

fun succ x = s(x)

we find

succ : (nat -> nat) & (even -> odd) & (odd -> even)

so we need to be able to ascribe multiple types to a function or expression.
This is what the intersection type operator A uB achieves, which we write
as A & B in concrete syntax. Sometimes, several types are needed. For
example

fun twice f x = f (f x)

then we should be able to show (among many other types)

twice : ((nat -> nat) -> nat -> nat)
& (((even -> odd) & (odd -> even)) -> (even -> even))
& (((even -> odd) & (odd -> even)) -> (odd -> odd))

The resulting system has some remarkable properties, such as decid-
ability of type inference, bidirectional type checking, and conservative ex-
tension over ML. It is implemented in the Cidre front end, which accepts

1https://github.com/rowandavies/sml-cidre

LECTURE NOTES OCTOBER 26, 2017

https://github.com/rowandavies/sml-cidre


Types as Predicates L16.9

the full syntax of Standard ML and uses stylized comments to assign re-
finement types that are then checked.

You probably have seen one example where this might have been help-
ful. On the fragment of propositions with implication and conjunction only,
we defined proof terms in Assignment 6 via the following data type

datatype term = Fun of var * term
| Pair of term * term
| Var of var
| App of term * term
| Fst of term
| Snd of term

In a way, this was a compromise, since we distinguished, in the problem
statement and the algorithm, between checkable and synthesizing terms.
The corresponding data type declaration would be something like

datatype cterm = Fun of var * cterm
| Pair of cterm * cterm
| Syn of sterm

and sterm = Var of var
| App of sterm * cterm
| Fst of sterm
| Snd of sterm

but there are two drawbacks: (1) we need to make the transition from syn-
thesizing to checkable terms explicit (see Syn constructor), which compli-
cates practical examples, and (2) now everywhere that terms are used, even
in places where the distinction would be insignificant, we have to be cog-
nizant and specific about whether we are working with checkable or syn-
thesizing terms. With refinement types, we would first declare the type of
terms, and then think of checkable and synthesizing terms as refinements.

datasort cterm = Fun of var * cterm
| Pair of cterm * cterm
| sterm

and sterm = Var of var
| App of sterm * cterm
| Fst of sterm
| Snd of sterm

We can now freely use either term (where it doesn’t matter) or cterm or
sterm where the distinction is significant.

LECTURE NOTES OCTOBER 26, 2017



L16.10 Types as Predicates

References

[CDCV81] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Ven-
neri. Functional characters of solvable terms. Mathematical Logic
Quarterly, 27(2-6):45–58, 1981.

[Dav97] Rowan Davies. A practical refinement-type checker for Stan-
dard ML. In Michael Johnson, editor, Algebraic Methodology and
Software Technology Sixth International Conference (AMAST’97),
pages 565–566, Sydney, Australia, December 1997. Springer-
Verlag LNCS 1349.

[DP03] Joshua Dunfield and Frank Pfenning. Type assignment for
intersections and unions in call-by-value languages. In A.D.
Gordon, editor, Proceedings of the 6th International Conference
on Foundations of Software Science and Computation Structures
(FOSSACS’03), pages 250–266, Warsaw, Poland, April 2003.
Springer-Verlag LNCS 2620.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In
Proceedings of the SIGPLAN ’91 Symposium on Language Design
and Implementation, pages 268–277, Toronto, Ontario, June 1991.
ACM Press.

[Pfe92] Frank Pfenning, editor. Types in Logic Programming. MIT Press,
Cambridge, Massachusetts, 1992.

[Rey91] John C. Reynolds. The coherence of languages with intersection
types. In Takayasu Ito and Albert R. Meyer, editors, Theoreti-
cal Aspects of Computer Software, volume 526 of Lecture Notes in
Computer Science, pages 675–700, Berlin, 1991. Springer-Verlag.

LECTURE NOTES OCTOBER 26, 2017


	Introduction
	Modes and Types
	Subtyping
	Refinement types for functional languages

