
Constructive Logic (15-317), Spring 2021
Assignment 10: Focusing and Chaining

Instructor: Karl Crary
TAs: Avery Cowan, Katherine Cordwell, Matias Scharager, Antian Wang

Due: Wednesday, November 17, 11:59 pm

The assignments in this course must be submitted electronically through Gradescope. For this
homework, you will be submitting both written pdf files and Dcheck coding files:

• hw.deriv (your coding solutions)

• hw.pdf (your written solutions)

The coding portion will use the experimental Dcheck derivation checker. You can find documen-
tation and examples on the Software page at the course web site (cs.cmu.edu/~crary/317-f21/
software.html). That document has been updated with information on preparing focused logic
derivations.

1

cs.cmu.edu/~crary/317-f21/software.html
cs.cmu.edu/~crary/317-f21/software.html

Focusing and Chaining

A major theme of this course has been the discovery of theory through practice: strategies for
efficient proof search in the concrete conditions of real-world implementations are transformed into
razor-edged intellectual weapons, entirely new logics which sharpen the principal contradiction of
proof theory: the dialectic of the positive and negative (polarity).

The decomposition of truth into verification and use was our first encounter with the scientific
law, “One Divides Into Two”. By studying invertibility in the context of the sequent calculus (when
does a conclusion imply its premises?), we were able to achieve a firmer grasp of the fault-lines at
play, summarized in a dangerously over-simplified1 form below:

LEFT RULE RIGHT RULE

POSITIVE invertible non-invertible
NEGATIVE non-invertible invertible

Inversion Invertible rules can always be applied without any need for backtracking: since the
conclusion of an invertible rule implies its premises, the “future truth” of the goal is preserved
under free application of such rules. This practical insight, which is crucial for implementing a
performant proof search engine, can be codified by sharpening the logic to include deterministic

inversion phases Γ; Ω
L−→ C and Γ; Ω

R−→ C (where Ω is an ordered context of propositions).

Chaining While the above gives a clear and deterministic account of invertible rules, the non-
invertible ones beg for something similar. In this week’s lecture, we began to study chaining, which

fixes a dynamics for the non-invertible rules based on two forms of judgment, Γ −→ [A+] and

Γ; [A−] −→ C . Chaining is a technique to minimize backtracking by applying a sequence of
non-invertible rules in one go.

1 Polarization

Task 1 (5 pts). Consider the following depolarized formula:

((A+ ∨B−)⊃ F)⊃ ((A+ ⊃ F) ∧ (B− ⊃ F))

Come up with two distinct polarizations of the formula, adding shifts in appropriate places.
You do not need to prove them. (This is a written problem. Include your answer in hw.pdf.)

2 Focusing

Provide derivations of the following Focused Logic judgements using Dcheck syntax.

Task 2 (5 pts). Define a derivation named task2 that derives:

·; · R−→ ↓((P+ ⊃Q−) ∧− (P+ ⊃R−))⊃ (P+ ⊃ (Q− ∧− R−))
1In structural or persistent logic, some rules which ought to be non-invertible turn out to be invertible; polarity arises

properly from the proof search dynamics of linear logic, and casts an imperfect shadow in persistent logic.

2

Task 3 (5 pts). Define a derivation named task3 that derives:

·; · R−→ ↓P− ⊃ ↓(↓P− ⊃Q−)⊃ ↓((↓P− ∧+ ↓Q−)⊃R−)⊃R−

Task 4 (5 pts). Define a derivation named task4 that derives:

·; · R−→ ↓(↑P+ ∧− (P+ ⊃ ↑Q+))⊃ ↓((Q+ ∨R+)⊃ ↑R+)⊃ ↑R+

3 Saturation

Consider the following grammar of ground terms representing binary numbers:

n ::= ε | b0(n) | b1(n)

In class, we learned to write forward logic programs using inference rules; a forward logic
programming engine will apply these inference rules until saturation is reached, and then the result
of our program can be read from the saturated proof state. In the tasks that follow, you are free to
introduce any auxiliary predicates that you require. You need to ensure that your rules saturate
when new facts of the indicated form are added to the database.

In the problems that follow, you are required to implement forward logic programs by writing
down systems of inference rules. You may find it useful to experiment with DLV, an implementation
of forward logic programming which can be downloaded here: http://www.dlvsystem.com/dlv/.
DLV can be used to test your ideas on specific cases and quickly determine if they are likely to
work; but it is not required.

Task 5 (5 pts). Implement a forward logic program std(n) which derives the atom no iff it is not the
case that n is in standard form. You may assume that n is ground (i.e. not subject to unification).

Task 6 (5 pts). Next, implement a forward logic program succ(m,n) which derives no when it is
not the case that m + 1 = n. For the purpose of this exercise, you may assume that m and n are
ground. You may also assume that m and n are in standard form.

3

http://www.dlvsystem.com/dlv/

	Polarization
	Focusing
	Saturation

