
Dcheck: A Derivation Checker

Karl Crary

November 11, 2021

1 Overview

Dcheck provides a simple, text-based framework for writing and checking logic derivations. Consider the
(blackboard-style) natural-deduction derivation:

A true
u

A true
u

A ∧A true
∧I

A ⊃ (A ∧A) true
⊃Iu

In Dcheck the same derivation is written:

system ND

deriv simple =

A => (A /\ A) true

by ImpI(u)

>>

A /\ A true

by AndI

>>

{

A true

by u

}

{

A true

by u

}

The first line indicates that the system we are working in is natural deduction (“ND”). Following that is
the derivation. In it, we can see one of the main ways in which Dcheck derivations differ from blackboard
derivations (apart from being written in ASCII): Dcheck derivations grow downward, not upward.

A derivation consists of:

� a judgement (e.g., A => (A /\ A) true),

1

� the keyword “by” followed by a reason, which is usually a rule or a hypothesis name (e.g., ImpI(u)
or u), and

� zero or more premises, each of which is a derivation.

If a rule has one or more premises, the symbol “>>” separates the reason from the premises. If a rule has
two or more premises, each premise must be enclosed in curly braces. If a rule has one premise, the braces
are optional (in the example above they are omitted).

A Dcheck program is a sequence of clauses, each one of either:

� defines a derivation, written deriv 〈name〉 = 〈derivation〉

� defines a proposition abbreviation, written prop 〈name〉 = 〈proposition〉.

� sets the current logical system, written system 〈system-name〉.

Comments can be included using the SML comment convention (that is, (* ignored text *)).

2 Propositions and Judgements

The syntax of propositions is given in the following table, in decreasing order of precedence:

connective blackboard Dcheck
truth T T

falsity F F

positive truth T+ T+

negative truth T− T-

not1 ¬ ~

upshift ↑ up

downshift ↓ down

and ∧ /\

positive and ∧+ /\+

negative and ∧− /\-

or ∨ \/

implies ⊃ =>

Any upper-case proposition identifier (other than T or F) is taken to be a metavariable. In systems where
atomicity matters (e.g., sequent calculus), any metavariable beginning with the letter P, Q, R, or S is taken to
be atomic. Any lower-case proposition identifier refers to a proposition abbreviation that was defined earlier
(for example, by the clause prop t_and_t = T /\ T). In focused logic, a metavariable should end with a
plus or minus to indicate polarity (such as P- for a negative atomic proposition).

The syntax of judgements is given in the following table:

1This is the defined not (¬P = P ⊃ F) unless the current system is classical, in which case it is classical logic’s primitive
not.

2

system (system-name) blackboard Dcheck
natural deduction (ND) A true A true

sequent calculus (SC) A1, . . . , An =⇒ B A1, ..., An ==> B

classical logic (CL) A true A true

A false A false

#

focused logic (FL) A1, . . . , An;B1, . . . Bm
R−→ C A1, ..., An ; B1, ..., Bm -r-> C

A1, . . . , An;B1, . . . Bm
L−→ C A1, ..., An ; B1, ..., Bm -l-> C

A1, . . . , An −→ C A1, ..., An --> C

A1, . . . , An; [B] −→ C A1, ..., An ; [B] --> C

A1, . . . , An −→ [C] A1, ..., An --> [C]

Additional systems may be supported in the future.

3 Rules and Reasons

The rule sets of natural deduction, sequent calculus, classical logic2, and focused logic are given in Figures 1–
4. The name of a defined derivation (for example, by the clause deriv foo = A /\ B true by ...) or a
hypothesis can also be used as a reason.

An important difference between blackboard derivations and Dcheck derivations is Dcheck premises must
be given in the standard order. For example, in the following fragment of a derivation, the two premises
A true and B true cannot be given in the opposite order (whereas in a blackboard derivation the order
would not matter):

...

A /\ B true

by AndI

>>

{

A true

by ...

}

{

B true

by ...

}

Additionally, some rules require an assumption number (notably sequent-calculus left rules). In such rules,
assumptions are counted from right to left (with the rightmost being 0). For example:

2or, more precisely, classical natural deduction

3

system SC

deriv another_simple =

==> P /\ Q => P

by ImpR

>>

P /\ Q ==> P

by AndL1(0)

>>

P /\ Q, P ==> P

by AndL2(1)

>>

P /\ Q, P, Q ==> P

by Init(1)

As usual in sequent calculus, assumptions are taken to be unordered. Also, unneeded assumptions can be
silently dropped. For example, the following derivation fragment is legal:

...

A /\ B, C, D ==> E

by AndL1(2)

>>

D, A, C ==> E

by ...

This also applies to focused logic, except assumptions in the stoup3 cannot be reordered or dropped.

4 Using the checker, and additional resources

When you submit your solution to Gradescope, the autograder will first run a set of sanity checks. These
ensure that your solution parses correctly and passes some other elementary checks. If your solution passes
the sanity checks, the autograder will grade it and produce output for any problems with instant feedback.
The full results will be visible when the assignment is over.

� You can run the sanity checks by themselves on Andrew by executing ~crary/bin/dsanity <filename>.

� You can visualize your program in blackboard-style structure (i.e., derivations growing upward, hori-
zontal lines to separate premises from conclusion) by running ~crary/bin/dvis <filename>.

� There is a set of examples at cs.cmu.edu/~crary/317-f21/example.deriv.

3the second group of assumptions in inversion stages

4

blackboard Dcheck
∧I AndI

∧E1 AndE1

∧E2 AndE2

⊃I ImpI(〈name〉)
⊃E ImpE

∨I1 OrI1

∨I2 OrI2

∨E OrE(〈name〉, 〈name〉)
TI TI

FE FE

Figure 1: Natural Deduction (ND) Rules

blackboard Dcheck
Init Init(〈number〉)
∧R AndR

∧L1 AndL1(〈number〉)
∧L2 AndL2(〈number〉)
⊃R ImpR

⊃L ImpL(〈number〉)
∨R1 OrR1

∨R2 OrR2

∨L OrL(〈number〉)
TR TR

FL FL(〈number〉)

Figure 2: Sequent Calculus (SC) Rules

blackboard Dcheck
∧T AndT

∧F1 AndF1

∧F2 AndF2

⊃T ImpT(〈name〉)
⊃F ImpF

∨T1 OrT1

∨T2 OrT2

∨F OrF

TT TT

FF FF

¬T NotT

¬F NotF

T# ContraT(〈name〉)
F# ContraF(〈name〉)
Contra

Figure 3: Classical Logic (CL) Rules

5

blackboard Dcheck
PR PR

↑R UpR

⊃R ImpR

∧−R AndmR

T−R TmR

PL PL

↓L DownL

∧+L AndpL

T+L TpL

∨L OrL

FL FL

Stable Stable

FocusL FocusL(〈number〉)
FocusR FocusR

Init− Initm

↑L UpL

⊃L ImpL

∧−L1 AndmL1

∧−L2 AndmL2

Init+ Initp(〈number〉)
↓R DownR

∧+R AndpR

T+R TpR

∨R1 OrR1

∨R2 OrR2

Figure 4: Focused Logic (FL) Rules

6

