Dcheck: A Derivation Checker

Karl Crary

November 15, 2021

1 Overview

Dcheck provides a simple, text-based framework for writing and checking logic derivations. Consider the
(blackboard-style) natural-deduction derivation:

u u
A true A true N
AN Atrue "

AD (ANA)true

In Dcheck the same derivation is written:

system ND
deriv simple =
A => (A /\ A) true

by ImpI(u)
>>
A /\ A true
by AndI
>>

{

A true

by u

}

{

A true

by u

}

The first line indicates that the system we are working in is natural deduction (“ND”). Following that is
the derivation. In it, we can see one of the main ways in which Dcheck derivations differ from blackboard
derivations (apart from being written in ASCII): Dcheck derivations grow downward, not upward.

A derivation consists of:

e a judgement (e.g., A => (A /\ A) true),

e the keyword “by” followed by a reason, which is usually a rule or a hypothesis name (e.g., ImpI(u)
or u), and

e zero or more premises, each of which is a derivation.

If a rule has one or more premises, the symbol “>>” separates the reason from the premises. If a rule has
two or more premises, each premise must be enclosed in curly braces. If a rule has one premise, the braces
are optional (in the example above they are omitted).

A Dcheck program is a sequence of clauses, each one of either:

e defines a derivation, written deriv (name) = (derivation)
e defines a proposition abbreviation, written prop (name) = (proposition).

e sets the current logical system, written system (system-name).

Comments can be included using the SML comment convention (that is, (* ignored text *)).

2 Propositions and Judgements

The syntax of propositions is given in the following table. Each group has greater precedence than the groups
below it. (Don’t worry if you aren’t familiar with all these connectives yet.)

connective blackboard Dcheck
truth T T
falsity F F
positive truth T+ T+
negative truth 7T~ T-
top T T
one 1 1
Z€ero 0 0
not! - -
upshift T up
downshift J down
bang ! !
box O 0
diamond O <>
and A /\
positive and AT /\+
negative and A~ /\-
tensor X *
or v \/
plus &) +
with &

implies D =>
lolli —o -0

IThis is the defined not (=P = P D F) unless the current system is classical, in which case it is classical logic’s primitive
not.

Any upper-case proposition identifier (other than T or F) is taken to be a metavariable. In systems where
atomicity matters (e.g., sequent calculus), any metavariable beginning with the letter P, Q, R, or S is taken to
be atomic. Any lower-case proposition identifier refers to a proposition abbreviation that was defined earlier
(for example, by the clause prop t_and_t = T /\ T). In focused logic, a metavariable should end with a
plus or minus to indicate polarity (such as P- for a negative atomic proposition).

The syntax of judgements is given in the following table:

system (system-name) blackboard Dcheck
natural deduction (ND) A true A true
natural deduction Aj true, ..., A, true - B true Al true, ..., An true |- B true
with contexts (NDC)
verifications & uses (VU) A1 A ver
Al A use
sequent calculus (SC) Ay,...,A, = B Al, ..., An ==> B
classical logic (CL) Atrue A true
A false A false
#
focused logic (FL) Ai,...,An:B1,...B,, = C Al,..., An ; B1,..., Bm -r-> C
Ay,...,Aw:By,...B, — C Al,..., An ; Bi,..., Bm -1-> C
Ay, Ay — C Al,..., An -—> C
Ay,...,An; Bl — C Al,..., An ; [B] -—> C
A, ..., Ay — [C] Al,..., An -—> [C]
linear logic (LL) Aq valid, ..., A,, valid; Al valid, ..., Am valid,
B true, ..., B, true IF C true Bl true, ..., Bn true |- C true
modal logic (ML) A valid, ..., A,, valid; Al valid, ..., Am valid,
Bj true, ..., B, true - C true Bl true, ..., Bn true |- C true
Aqvalid, ..., A, valid; Al valid, ..., Am valid,
Bj true, ..., B, true - C' poss Bl true, ..., Bn true |- C poss

3 Rules and Reasons

The rule sets of the various systems are given in Figures 1-6. Each rule may be used as a reason. The name
of a defined derivation (for example, by the clause deriv foo = A /\ B true by ...) or a hypothesis can
also be used as a reason.

An important difference between blackboard derivations and Dcheck derivations is Dcheck premises must
be given in the standard order. For example, in the following fragment of a derivation, the two premises
A true and B true cannot be given in the opposite order (whereas in a blackboard derivation the order
would not matter):

A /\ B true
by AndI
>>
{
A true
by ...
}

{
B true

by ...
¥

Additionally, some rules require an assumption number (notably sequent-calculus left rules). In such rules,
assumptions are counted from right to left (with the rightmost being assumption zero). For example:

system SC
deriv another_simple =
=>P /\ Q=P

by ImpR

>>
P/\NQ==>P
by AndL1(0)
>>

P/\Q, P==>P

by AndL2(1)

>>

P/\NQ, P, Q==>P
by Init(1)

In modal logic, where multiple sorts of hypothesis can appear in the context, a hypothesis’s index is based
only on hypotheses of the same sort. For example, if the context is A valid, B true, the location of the A
hypothesis is validity hypothesis zero, not as (overall) hypothesis one. (Multiple sorts of hypotheses can also
appear in the context in linear logic, but it turns out this counting issue never arises. Can you see why?)

As usual in sequent calculus, assumptions are taken to be unordered. Also, unneeded assumptions can be
silently dropped. For example, the following derivation fragment is legal:

A/\NB, C, D==>E
by AndL1(2)

>>

D, A, C==>E

by ...

This also applies to focused logic, except assumptions in the stoup? cannot be reordered or dropped.

2the second group of assumptions in inversion stages

4 Using the checker, and additional resources

When you submit your solution to Gradescope, the autograder will first run a set of sanity checks. These
ensure that your solution parses correctly and passes some other elementary checks. If your solution passes
the sanity checks, the autograder will grade it and produce output for any problems with instant feedback.
The full results will be visible when the assignment is over.

e You can run the sanity checks by themselves on Andrew by executing ~“crary/bin/dsanity <filename>.

e You can visualize your program in blackboard-style structure (i.e., derivations growing upward, hori-
zontal lines to separate premises from conclusion) by running ~crary/bin/dvis <filename>.

e There is a set of examples at cs.cmu.edu/~crary/317-f21/example.deriv.

blackboard Dcheck

A
AE1
AE2
DI
DOF
VIl
VI2
VE
TI
FE

AndI

AndE1

AndE2

ImpI((name))

ImpE

OrI1l

0rI2

OrE((name), (name))
TI

FE

Figure 1: Natural Deduction (ND) Rules

blackboard Dcheck

Hyp
A
AE1
ANE2
oI
OF
VIl
VI2
VE
TI
FE

Hyp((number))
AndI
AndE1
AndE2
ImpI
ImpE
O0rI1
OrI2
OrE
TI

FE

Figure 2: Natural Deduction with Contexts (NDC) Rules

blackboard Dcheck

AT AndI

ALl AndE1

AL2 AndE2

ot ImpI((name))
ol ImpE

Vaul OrIt

V12 0rI2

A 0rE((name), (name))
Tt TI

Fl FE

T o

Figure 3: Verifications and Uses (VU) Rules

blackboard Dcheck

AT AndT

AF'1 AndF1

ANEF2 AndF2

oT ImpT((name))
DOF ImpF

V71 0rT1

i 0rT2

VF OrF

TT TT

FF FF

-T NotT

-F NotF

T# ContraT((name))
F# ContraF((name))
Contra

Figure 4: Classical Logic (CL) Rules

blackboard Dcheck

Init Init({number))
AR AndR

AL1 AndL1({number}))
AL2 AndL2((number}))
DR ImpR

oL ImpL((number))
VRI1 OrR1

VR2 OrR2

VL OrL((number))
TR TR

FL FL({number))

Figure 5: Sequent Calculus (SC) Rules

blackboard Dcheck

PR PR

TR UpR
DR ImpR
AR AndmR
TR TmR

PL PL

L DownL
ATL AndpL
TTL TpL

VL OrL

FL FL
Stable Stable
FocusL FocusL(({number))
FocusR FocusR
Init™ Initm
TL UpL

DL ImpL
ATL1 AndmL1
ATL2 AndmL2
Init™ Initp({number))
JR DownR
ATR AndpR
TTR TpR
VR1 OrR1
VR2 OrR2

Figure 6: Focused Logic (FL) Rules

blackboard Dcheck

Hyp Hyp
Hypv Hypv((number))
@I TensI
QF TensE
&I WithI
&FE1 WithE1l
&E2 WithE2
@Il PlusI1
®I2 PlusI2
OF PlusE
—o] LolI
—oF LolE

17 Bangl
\E BangE
T TopI
11 Onel
1F OneE
0F ZeroE

Figure 7: Linear Logic (LL) Rules

blackboard Dcheck

Hyp Hyp((number))
Hypv Hypv((number))
AN AndI

AF1 AndE1

AE2 AndE2

oI ImpI

oF ImpE

VIl OrI1l

VI2 OrI2

VE OrE

TI TI

FE FE

ar BoxI

my) BoxE

ur, BoxEp

oI Dial

Here Here

OF DiaE

Figure 8: Modal Logic (ML) Rules

