Constructive Logic (15-317), Fall2021 Assignment 3: Proofs as Programs + Verifications and Uses

Instructor: Karl Crary

TAs: Avery Cowan, Katherine Cordwell, Matias Scharager, Antian Wang

Due: Wednesday, September 22, 2021, 11:59 pm

The assignments in this course must be submitted electronically through Gradescope. Written homework PDFs and coding SML files will both go to Gradescope. For this homework, submit two files:

- hw3.pdf (your written solutions)
- hw3.sml (your coding solutions)

Trees are Programs

Task 1 (12 points). Prove the following theorems using the proof-as-program logic in SML. You can look at support/pap_examples.sml for reference proofs as programs proof trees.

- a. prove deMorgagain: $\neg A \land \neg B \supset \neg (A \lor B)$
- b. prove toptobottom: $(A \supset \top) \land (\bot \supset A)$
- c. prove reuse: $((A \supset B) \land (A \supset C)) \supset (A \supset B \land C)$
- d. prove ormap: $((A \lor B) \supset C) \supset (A \supset C) \land (B \supset C)$

You can compile your code the same way as for natural deduction. You can pretty print your proof-as-program proof trees by running the following command in your repl:

```
>> Out.print_pap Homework3.{proof_name_here}
```

A wild FUNCTION has appeared!

Task 2 (8 points). For this task, you will be directly writing the code that inhabits the corresponding type for a proposition. For each proposition, either submit SOME(v) where v is a value¹ of that type or leave it as NONE if the proposition is unprovable². Rather than using the course infrastructure for proof-as-program trees, this question will now study SML programs in their natural habitat.

We provide you with the void type³ and abort function⁴ to deal with falsehood. Similarly, you have access to the built-in structure Either ⁵ in order to deal with \lor .

- a. prove curry: $(A \land B \supset C) \supset A \supset B \supset C$
- b. prove abba: $((A \supset B) \supset B) \supset A$
- c. prove contrapositive: $(A \supset B) \supset (\neg B \supset \neg A)$
- d. prove exclusion: $((A \lor B) \land \neg A) \supset B$

I thunk therefore I am

Task 3 (8 points). Consider a unary connective \circ defined by the following rules:

$$\begin{array}{c} \overline{\top true} & u \\ \vdots \\ \underline{A \ true} \\ \circ A \ true \end{array} \circ I^{u} \qquad \underline{\circ A \ true} \ \overline{-T \ true} \\ \overline{A \ true} \circ E \end{array}$$

- 1. Can you prove a simple relationship between A true is $\circ A$ true?
- 2. Using **thunk**(u.M) as the proof term for the intro rule (aka introduction form), give the appropriate intro rule. for **thunk**(u.M) : $\circ A$.
- 3. Using *M* << *N* as the proof term for the elim rule (aka elimination form), give the appropriate elim rule. for *M* << *N* : *A*.
- 4. Does \circ have a contraction rule⁶? Write out a contraction rule for \circ if one exists. Otherwise, show that no reduction rule is possible.
- 5. Why might a programming language or programmer want to use thunks in code?⁷

¹A value is an expression that has finished executing. For this problem, we will also accept your answer if v is an expression that reduces to a value.

²Proving the totality of functions using exceptions or recursion is nontrivial so do not use exceptions or recursion for this task 3 datatype void = (* no constructors *)

⁴abort: void -> 'a

 $^{^{5}}$ dataype ('a, 'b) either = INL of 'a | INR of 'b

⁶Remember that a contraction rule shows how to reduce the elimination form of a connective to a simpler term

⁷Any reasonable guess is fine

Verifications

Consider the \clubsuit connective.

Task 4 (5 points). Give rules for forming the judgments that $\clubsuit(A, B, C)$ has a verification and that $\clubsuit(A, B, C)$ can be used.

Task 5 (4 points). Give a verification for this proposition

$$(\neg A \land B) \supset ((A \supset B) \supset (\neg A \supset \neg B)) \supset \bot$$

For clarification on how to write a verifications-and-uses proof, please look at examples.sml

Task 6 (10 points). For each of the following propositions, give a verification-and-uses proof and its **corresponding** proofs-as-programs term.

1. $\bot \supset \top$

- 2. $\perp \supset \top$ (Do not use the same verification/proof term as part a. Use a new one.)
- 3. $(A \supset B) \supset (\neg B \supset \neg A)$
- 4. $(A \supset B) \supset (B \supset C) \supset (A \supset C)$