
Constructive Logic (15-317), Fall2021
Assignment 3: Proofs as Programs + Verifications and Uses

Instructor: Karl Crary
TAs: Avery Cowan, Katherine Cordwell, Matias Scharager, Antian Wang

Due: Wednesday, September 22, 2021, 11:59 pm

The assignments in this course must be submitted electronically through Gradescope. Written homework PDFs
and coding SML files will both go to Gradescope. For this homework, submit two files:

• hw3.pdf (your written solutions)

• hw3.sml (your coding solutions)

1



Trees are Programs

Task 1 (12 points). Prove the following theorems using the proof-as-program logic in SML. You can look at
support/pap examples.sml for reference proofs as programs proof trees.

a. prove deMorgagain: ¬A ∧ ¬B ⊃ ¬(A ∨B)

b. prove toptobottom: (A⊃>) ∧ (⊥⊃A)

c. prove reuse: ((A⊃B) ∧ (A⊃ C))⊃ (A⊃B ∧ C)

d. prove ormap: ((A ∨B)⊃ C)⊃ (A⊃ C) ∧ (B ⊃ C)

You can compile your code the same way as for natural deduction. You can pretty print your proof-as-program
proof trees by running the following command in your repl:

>> Out.print_pap Homework3.{proof_name_here}

A wild FUNCTION has appeared!

Task 2 (8 points). For this task, you will be directly writing the code that inhabits the corresponding type for a
proposition. For each proposition, either submit SOME(v) where v is a value1 of that type or leave it as NONE if the
proposition is unprovable2. Rather than using the course infrastructure for proof-as-program trees, this question
will now study SML programs in their natural habitat.

We provide you with the void type3 and abort function4 to deal with falsehood. Similarly, you have access to
the built-in structure Either 5 in order to deal with ∨.

a. prove curry: (A ∧B ⊃ C)⊃A⊃B ⊃ C

b. prove abba: ((A⊃B)⊃B)⊃A

c. prove contrapositive: (A⊃B)⊃ (¬B ⊃ ¬A)

d. prove exclusion: ((A ∨B) ∧ ¬A)⊃B

I thunk therefore I am

Task 3 (8 points). Consider a unary connective ◦ defined by the following rules:

> true
u

...
A true
◦A true ◦I

u ◦A true > true
A true ◦E

1. Can you prove a simple relationship between A true is ◦A true?

2. Using thunk(u.M) as the proof term for the intro rule (aka introduction form), give the appropriate intro rule.
for thunk(u.M) : ◦A.

3. Using M << N as the proof term for the elim rule (aka elimination form), give the appropriate elim rule. for
M << N : A.

4. Does ◦ have a contraction rule6? Write out a contraction rule for ◦ if one exists. Otherwise, show that no
reduction rule is possible.

5. Why might a programming language or programmer want to use thunks in code?7

1A value is an expression that has finished executing. For this problem, we will also accept your answer if v is an expression that reduces to a
value.

2Proving the totality of functions using exceptions or recursion is nontrivial so do not use exceptions or recursion for this task
3datatype void = (* no constructors *)
4abort: void -> ’a
5dataype (’a, ’b) either = INL of ’a | INR of ’b
6Remember that a contraction rule shows how to reduce the elimination form of a connective to a simpler term
7Any reasonable guess is fine

2



Verifications
Consider the ♣ connective.

A true
u

...
B true

A true
v

...
C true

♣(A,B,C) true
♣Iu,v

♣(A,B,C) true A true

B true
u

...
D true

D true
♣Eu

1

♣(A,B,C) true A true

C true
u

...
D true

D true
♣Eu

2

Task 4 (5 points). Give rules for forming the judgments that ♣(A,B,C) has a verification and that ♣(A,B,C) can
be used.

Task 5 (4 points). Give a verification for this proposition

(¬A ∧B)⊃ ((A⊃B)⊃ (¬A⊃ ¬B))⊃⊥

For clarification on how to write a verifications-and-uses proof, please look at examples/vau examples.sml

Task 6 (10 points). For each of the following propositions, give a verification-and-uses proof and its corresponding
proofs-as-programs term.

1. ⊥⊃>

2. ⊥⊃> (Do not use the same verification/proof term as part a. Use a new one.)

3. (A⊃B)⊃ (¬B ⊃ ¬A)

4. (A⊃B)⊃ (B ⊃ C)⊃ (A⊃ C)

3


