
Constructive Logic (15-317), Fall2021
Assignment 7: Theorem Proving

Instructor: Karl Crary
TAs: Avery Cowan, Katherine Cordwell, Matias Scharager, Antian Wang

Submit to Gradescope by Wednesday, October 27, 2021, 11:59 pm

For this homework, you will only be submitting SML files:

• hw.sml (your coding solutions)

1

Implementing a theorem prover

You might have noticed, after some practice, that proving a theorem in a calculus becomes quite a
mechanical task. Wouldn’t it be great if we could have the computer do that for us? That is exactly our
goal for this homework: to implement an automatic theorem prover for propositional intuitionistic logic.

The first thing to think about is which calculus we will use. The holy grail of constructive logic would
be a prover that could automatically generate a natural deduction proof for an arbitrary proposition.
However, it should be clear by now that natural deduction is not the best choice for search, as it is too
non-deterministic. The verification calculus could be a bit better, as it avoids the redundant steps that
eliminate and introduce the same connective over and over again, but it still has the problem of keeping
track of the right assumptions at the right places. Maybe we should try the context-style presentation
of natural deduction, since this keeps the context in place. In this case we need to be very smart about
which direction to work at each step, since we can either go upwards or downwards. Instead of trying to
come up with heuristics for that, why don’t we use the sequent calculus itself, where proof construction
always happens from the bottom up?

Indeed, sequent calculi are much better behaved for proof search. But we need to be careful about it.
Think about the first sequent calculus we have seen. In this first version, the formulas on the left side of
the sequent were persistent. This means we can always choose to decompose those formulas. In fact, any
sequent calculus that has what we call implicit contraction1 of some formulas runs into the same problem.
The inversion calculus avoids these problems. This calculus refines the restricted sequent calculus into
two mutually dependent forms of sequents.

∆− ; Ω
R−→ C Decompose C on the right

∆− ; Ω
L−→ C+ Decompose Ω on the left

Above, Ω is a plain context containing any kind of formula. ∆− is a context restricted to those formulas
whose left rules are not invertible, and C+ in the second sequent is a formula whose right rule is not
invertible. Both types of sequents can also contain atoms. All the rules of the inversion calculus have the
property that the “weight” of the sequents decrease when the rules are read bottom-up, except the left
rule for implication. Use of the implication left rule can lead to looping because we can continue to try
using the left implication rule on the same implication in the premise. As such, we will be extending
inversion to use Roy Dyckhoff’s contraction-free sequent calculus. His calculus, called g4ip, relies on
distinguishing the type of antecedent on an implication on the left. To perform efficient proof search, we
are extending the inversion calculus with a new form of judgment to apply synchronous (non-invertible)
rules; these include the right rules of right-synchronous connectives and the left rules of left-synchronous
connectives.

For further information, please see the notes posted along with the homework. They have an excellent
description of combining g4ip with the inversion calculus, along with suggestions for implementing
these rules as a decision procedure in a functional programming language.

Our forms of judgment are as follows:

∆−; Ω
g4ip−−→R C Decompose C on the right

∆−; Ω
g4ip−−→L C+ Decompose Ω on the left

∆− g4ip−−→S C+ Apply non-invertible rules

The rules of our version of g4ip are divided roughly into the inversion phases (right and left) and
the search phase. Unlike in the inversion calculus, we have the search rule to make a formal distinction

between ∆−; · g4ip−−→L C+ and ∆− g4ip−−→S C+. Purposefully, the search phase does not have the secondary

1Usually in the form of applying a rule to decompose a formula and keeping a copy of the original formula in the context.

2

Ω context anymore, because search should only happen once all left-invertible propositions in Ω are
processed and all left-noninvertible propositions in Ω are shifted into ∆. For clarity, we can formally
define the polarities mentioned in the rules. Positive and negative correspond exactly with non-left
invertible propositions and non-right invertible propositions.

C+ ::= A ∨B | ⊥ | P
C− ::= (A1 ⊃A2)⊃B | P ⊃B | P

Above, P is considered atomic while all other metavariables are arbitrary propositions. Based on
these polarizations, the negative context ∆− is composed entirely of negative propositions.

For reference, the rules for g4ip are below.

3

Right Inversion

∆−; Ω
g4ip−−→R A ∆−; Ω

g4ip−−→R B

∆−; Ω
g4ip−−→R A ∧B

∧R
∆−; Ω, A

g4ip−−→R B

∆−; Ω
g4ip−−→R A⊃B

⊃R
∆−; Ω

g4ip−−→R >
>R

Switching Mode

∆−; Ω
g4ip−−→L C+

∆−; Ω
g4ip−−→R C+

LR+

Left Inversion

∆−; Ω, A,B
g4ip−−→L C+

∆−; Ω, A ∧B
g4ip−−→L C+

∧L
∆−; Ω, A

g4ip−−→L C+ ∆−; Ω, B
g4ip−−→L C+

∆−; Ω, A ∨B
g4ip−−→L C+

∨L
∆−; Ω,⊥ g4ip−−→L C+

⊥L

∆−; Ω
g4ip−−→L C+

∆−; Ω,> g4ip−−→L C+
>L

Compound Left Invertible Rules

∆−; Ω, B
g4ip−−→L C+

∆−; Ω,>⊃B
g4ip−−→L C+

>⊃L
∆−; Ω, A1 ⊃A2 ⊃B

g4ip−−→L C+

∆−; Ω, (A1 ∧A2)⊃B
g4ip−−→L C+

∧⊃L

∆−; Ω, A1 ⊃B,A2 ⊃B
g4ip−−→L C+

∆−; Ω, (A1 ∨A2)⊃B
g4ip−−→L C+

∨⊃L
∆−; Ω

g4ip−−→L C+

∆−; Ω,⊥⊃B
g4ip−−→L C+

⊥⊃L

Shift and Search

∆−, A−; Ω
g4ip−−→L C+

∆−; Ω, A− g4ip−−→L C+
shift

∆− g4ip−−→S C+

∆−; · g4ip−−→L C+
search

Search Rules

P ∈ ∆−

∆− g4ip−−→S P
init

∆−; · g4ip−−→R A

∆− g4ip−−→S A ∨B

∨R1

∆−; · g4ip−−→R B

∆− g4ip−−→S A ∨B

∨R2

Compound Left Search Rules

P ∈ ∆− ∆−;B
g4ip−−→L C+

∆−, P ⊃B
g4ip−−→S C+

P⊃L
∆−;A2 ⊃B,A1

g4ip−−→R A2 ∆−;B
g4ip−−→L C+

∆−, (A1 ⊃A2)⊃B
g4ip−−→S C+

⊃⊃L

Because g4ip’s rules all reduce the “weight” of the formulas making up the sequent when read bottom-up,
it is straightforward to see that it represents a decision procedure.

4

Task 1 (40 points). Implement a proof search procedure based on the inversion extended g4ip. This
algorithm should take in a right inversion judgement and produce an inversion with g4ip proof option.
Efficiency should not be a primary concern, but see the hints below regarding invertible rules. Strive in-
stead for correctness and elegance, in that order. You should write your implementation in the file hw7.sml.

To compile your code locally run smlnj -m sources.cm. To activate pretty printing during local
testing call Printing.activate() from your repl.

Here are some hints to help guide your implementation:

• Be sure to apply all invertible rules before you apply any non-invertible rules. Recall that the
non-invertible rules in g4ip are init, ∨R1, ∨R2, P⊃L and ⊃⊃L. Among these, init and P⊃L have
somewhat special status: if they apply, we don’t need to look back because there is no premise (init),
or the sequent in the premise is provable whenever the conclusion is (P⊃L).

• When it comes time to perform non-invertible search, you’ll have to consider all possible choices
you might make. Many theorems require you to use your non-invertible hypotheses in a particular
order, and unless you try all possible orders, you may miss a proof.

• Since you will be creating your own proof trees algorithmically, make sure to read the inversion g4ip.sml
file carefully. We also won’t have the usual macros to create a proof tree so looking at the definition
of proofs in logic.sml might also be helpful.

• Generating a proof can be difficult and create incredibly nested cases. As such, we suggest using
continuation passing style (CPS) to simplify your code. For a refresher on CPS, please feel free to
look at the 15-150 notes on the topic.

• Your code should be elegant and use good style. Please look at the style guide from the pre-requisite
course 15-150 to guide your stylistic decisions in SML.

• The rules themselves are non-deterministic, so one must invest some effort in extracting a determin-
istic implementation from them. Planning before coding will likely save time.

• Test your code early and often! If you come up with any interesting test cases that help you catch
errors, we encourage you to share them on Piazza.

There are many subtleties and design decisions involved in this task, so don’t leave it until the last
minute!

5

http://www.cs.cmu.edu/~15150/resources/lectures/12/lecture12.html
https://www.cs.cmu.edu/~15150/resources/handouts/style.pdf

