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1 Introduction

According to Wikipedia, logic is the study of the principles of valid infer-
ences and demonstration. From the breadth of this definition it is immedi-
ately clear that logic constitutes an important area in the disciplines of phi-
losophy and mathematics. Logical tools and methods also play an essential
role in the design, specification, and verification of computer hardware and
software. It is these applications of logic in computer science which will be
the focus of this course. In order to gain a proper understanding of logic
and its relevance to computer science, we will need to draw heavily on the
much older logical traditions in philosophy and mathematics. We will dis-
cuss some of the relevant history of logic and pointers to further reading
throughout these notes. In this introduction, we give only a brief overview
of the goal, contents, and approach of this class.

2 Topics

The course is divided into four parts:

I. Proofs as Evidence for Truth

II. Proofs as Programs

III. Proof Search as Computation

IV. Substructural and Modal Logics
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L1.2 Constructive Logic: Overview

Proofs are central in all parts of the course, and give it its constructive na-
ture. In each part, we will exhibit connections between proofs and forms
of computations studied in computer science. These connections will take
quite different forms, which shows the richness of logic as a foundational
discipline at the nexus between philosophy, mathematics, and computer
science.

In Part I we establish the basic vocabulary and systematically study
propositions and proofs, mostly from a philosophical perspective. The
treatment will be rather formal in order to permit an easy transition into
computational applications. We will also discuss some properties of the
logical systems we develop and strategies for proof search. We aim at a sys-
tematic account for the usual forms of logical expression, providing us with
a flexible and thorough foundation for the remainder of the course. We will
also highlight the differences between constructive and non-constructive
reasoning. Exercises in this section will test basic understanding of logical
connectives and how to reason with them.

In Part II we focus on constructive reasoning. This means we consider
only proofs that describe algorithms. This turns out to be quite natural in
the framework we have established in Part I. In fact, it may be somewhat
surprising that many proofs in mathematics today are not constructive in
this sense. Concretely, we find that for a certain fragment of logic, con-
structive proofs correspond to functional programs and vice versa. More
generally, we can extract functional programs from constructive proofs of
their specifications. We often refer to constructive reasoning as intuitionis-
tic, while non-constructive reasoning is classical. Exercises in this part ex-
plore the connections between proofs and programs, and between theorem
proving and programming.

In Part III we study a different connection between logic and programs
where proofs are the result of computation rather than the starting point as
in Part II. This gives rise to the paradigm of logic programming where the
process of computation is one of systematic proof search. Depending on
how we search for proofs, different kinds of algorithms can be described at
a very high level of abstraction. Exercises in this part focus on exploiting
logic programming to implement various algorithms in concrete languages
such as Prolog.

In Part IV we study logics with more general and more refined notions
of truth. For example, in temporal logic we are concerned with reasoning
about truth relative to time. Another example is the modal logic S5 where
we reason about truth in a collection of worlds, each of which is connected
to all other worlds. Proofs in this logic can be given an interpretation as dis-
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tributed computation. Similarly, linear logic is a substructural logic where
truth is ephemeral and may change in the process of deduction. As we will
see, this naturally corresponds to imperative programming.

3 Goals

There are several related goals for this course. The first is simply that we
would like students to gain a good working knowledge of constructive
logic and its relation to computation. This includes the translation of in-
formally specified problems to logical language, the ability to recognize
correct proofs and construct them.

The second set of goals concerns the transfer of this knowledge to other
kinds of reasoning. We will try to illuminate logic and the underlying
philosophical and mathematical principles from various points of view.
This is important, since there are many different kinds of logics for rea-
soning in different domains or about different phenomena1, but there are
relatively few underlying philosophical and mathematical principles. Our
second goal is to teach these principles so that students can apply them in
different domains where rigorous reasoning is required.

A third set of goals relates to specific, important applications of logic in
the practice of computer science. Examples are the design of type systems
for programming languages, specification languages, or verification tools
for various classes of systems. While we do not aim at teaching the use of
particular systems or languages, students should have the basic knowledge
to quickly learn them, based on the materials presented in this class.

These learning goals present different challenges for students from dif-
ferent disciplines. Lectures, recitations, exercises, and the study of these
notes are all necessary components for reaching them. These notes do not
cover all aspects of the material discussed in lecture, but provide a point
of reference for definitions, theorems, and motivating examples. Recita-
tions are intended to answer students’ questions and practice problem solv-
ing skills that are critical for the homework assignments. Exercises are a
combination of written homework to be handed in at lecture and theorem
proving or programming problems to be submitted electronically using the
software written in support of the course. A brief tutorial and manual are
available with the on-line course material.

1for example: classical, intuitionistic, modal, second-order, temporal, belief, linear, rele-
vance, affirmation, . . .
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4 Intuitionism

We call a logic constructive if its proofs describe effective constructions. The
emphasis here is on effective which is to say that the construction conveyed
by a proof can actually be carried out mechanically. In other words, con-
structive proofs describe algorithms. At first one might think that all proofs
describe constructions of this form, and this was historically true for a long
time. At some point in the 19th century this direct link between mathe-
matics and computation seemed to get lost. Some mathematicians objected
to this and started to develop a foundations of mathematics in which all
proofs denote effective constructions.

In order to understand this distinction better, we start with a theorem
that illustrates the distinction, the so-called Banach-Tarski Paradox.2

Theorem 1 Given a solid ball in 3-dimensional space, there exists a decomposi-
tion of the ball into a finite number of disjoint subsets, which can then be put back
together in a different say to yield two identical copies of the original ball. Indeed,
the reassembly process involves only moving the pieces around and rotating them,
without changing their shape. The reconstruction can work with as few as five
pieces.

This is considered paradoxical, since we obviously cannot carry out
such a decomposition. The intermediate pieces are in fact non-measurable
infinite scatterings of points. The decomposition relies critically on the ax-
iom of choice in set theory, which is highly non-constructive.

This is the kind of theorem (and proof, which we not show here but
is sketched in the article) that mathematician L.E.J. Brouwer3 might have
objected to. It is meaningless with respect to our understanding of effec-
tive constructions, even if the formalities of its proof are sound. This en-
tails a criticism of Hilbert’s program, who posited that at the foundations
of mathematics should be a formal system of axioms and inference rules
with respect to which we can judge the correctness of mathematical argu-
ments. Brouwer called himself an intuitionist, perhaps to contrast himself to
Hilbert as a formalist.4 Since intuitionistic logic has subsequently also been
formalized (e.g., by Kolmogorov and Heyting), the modern way of framing
the opposing sides are intuitionistic logic (or arithmetic) and classical logic (or
arithmetic).

2See https://en.wikipedia.org/wiki/Banach-Tarski_paradox
3See https://en.wikipedia.org/wiki/L._E._J._Brouwer
4For more on this controversy in the foundations of mathematics, see

https://en.wikipedia.org/wiki/Brouwer-Hilbert_controversy.
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One of the key differences is the interpretation of the existential quan-
tifier. In intuitionistic logic, proving ∃x.A(x) entails exhibiting a witness t
and a proof of A(t). In classical logic, it is sufficient to show that ∀x.¬A(x)
is impossible without exhibiting a witness in the proof.

As example, we consider the following theorem and proof.

Theorem 2 There are two irrational numbers a and b such that ab is rational.

Proof: Consider
√
2
√
2
. There are two cases:

Case:
√
2
√
2

is rational. Then a = b =
√
2 satisfies the claim.

Case:
√
2
√
2

is irrational. Then a =
√
2
√
2

and b =
√
2 satisfy the claim,

since ab = (
√
2
√
2
)
√
2 =
√
2
2
= 2.

�

At this point, the classical mathematician is profoundly happy, since
this is an extremely short and elegant proof of a prima facie nontrivial the-
orem. The intuitionist is profoundly unhappy, since it does not actually
exhibit irrational witnesses a and b such that ab is rational. They might

a = b =
√
2, or they might be a =

√
2
√
2

and b =
√
2. Therefore an intu-

itionist should reject this proof.
The step which turns out to be incorrect here is to assume that there are

two cases (either
√
2
√
2

is rational or not) without knowing which of the
cases hold. More generally, an intuitionist rejects the law of excluded middle
that any proposition is either true or false (in symbols: A∨¬A). Concretely,
what counts as a constructive proof of A ∨ B is either a proof of A or a
proof of B. So in addition to existential quantification, the intuitionistic
and classical mathematician disagree on the interpretation of disjunction.

However, all is not lost! As an intuitionist, I look at the above proof and
say

Oh, I understand your proof, but it is for a different theorem! What
you have proven is:

Theorem. If
√
2
√
2 is rational or not, then there are two

irrational numbers a and b such that ab is rational.

Surprisingly, as long as we stick to pure logic, or perhaps the theory of
natural numbers, any classical proof can be reinterpreted as an intuition-
istic proof of a different theorem!5 This suggests that, once we accept that

5We may show this interpretation in a future lecture.
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intuitionism can in fact also be formalized, intuitionistic and classical and
no longer in conflict. Instead, intuitionistic logic is a generalization of clas-
sical logic in the sense that has a constructive existential quantifier and a
constructive disjunction, which is absent from classical logic. At the same
time, all classical theorems and proofs can be uniformly imported into in-
tuitionistic logic under some translation.

The intuitionistic interpretation of the proof above yields another ques-
tion: what is the nature of implication? The intuitionistic interpretation of
this particular example clarifies this: the proof of A⊃B consists of a function
to convert a proof of A into a proof of B. Here, this function proceeds by

analyzing the proof of whether
√
2
√
2

is rational or not. If it is rational, we
return the witnesses a = b =

√
2, together with the proof that ab is rational

in this case (which we were in fact given). If it is irrational, we return the

witnesses a =
√
2
√
2

and b =
√
2, together with a (simple equational) proof

that ab = 2 in this case.
Through this example, we have already identified three critial intuition-

istic principles:

1. An intuitionistic proof of ∃x.A(x) exhibits a witness t and a proof of
A(t).

2. An intuitionistic proof of A ∨ B consists of either a proof of A or a
proof of B.

3. An intuitionistic proof of A ⊃ B contains a construction that trans-
forms a proof of A into a proof of B.

To achieve these, an intuitionist has to reject some classical reasoning prin-
ciples or axioms. In natural deduction (as discussed in Lecture 2), this is
manifest in the single axiom of excluded middle.

As a final example, consider the claim:

Theorem 3 Among all the students in the class, there is a leader in the following
sense: if he or she has a tattoo, then everyone in the class has a tattoo.

In logical language, we could formalize this claim as

∃x. (has(x, tattoo)⊃ ∀y. has(y, tattoo))

where the quantifiers range of the students in this class. Here is the (non-
constructive!) proof
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Proof: Either everyone in the class has a tattoo, or there is at least one stu-
dent s who does not have a tattoo.

Case: Everyone has a tattoo. Then any x will do6, because the conclusion
of the implication holds.

Case: There is some student s who does not have a tattoo. Then this stu-
dent s is a leader: since has(s, tattoo) is false, the implication has(s, tattoo)⊃
∀y. has(y, tattoo) is true.

�

This is non-constructive, because we use a form of the excluded middle
to avoid naming a witness to the existential (which we cannot do without
violating students’ privacy in unacceptable ways). Actually, as long as the
domain of quantification is non-empty (usually assumed in classical logic),
this proof has nothing to do with students and tattoos, but the proof above
applies to the logical form

∃x. (A(x)⊃ ∀y.A(y))

Intuitionistically, we cannot prove this without further assumptions about
A.7

In the next lecture we will start to look closely at the intuitionistic mean-
ing of the logical connectives and their proof rules, based on the interpre-
tation we sketched in this lecture.

6As pointed out by a student, this requires there to be at least one person in the class,
which must be the case or that student couldn’t have pointed it out.

7Exercise: which particular intuitionistically true proposition does the proof above es-
tablish?
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